ZFC Inconsistency Explained and Defended

By Jim Rock

Abstract

There is a class of sets that can be constructed within ZFC that both have and do not have a largest element. Two contradictory arguments creating these sets are explained and defended. Introduction: For all rational numbers \boldsymbol{a} in the closed interval [0, l] let the collection of all $\mathrm{R}_{\boldsymbol{a}}$ sets be $\{y$ is a rational number $\mid 0 \leq y \leq a\}$ The entire collection of R_{a} sets form a hierarchy of sets. Each set contains all the elements in sets below it in the set hierarchy. Each set contains a single element that is not in any set below it in the set hierarchy. We take the largest element out of each set in the entire collection. The set containing zero becomes the null set. The largest element is now missing from every R_{a} set. However, all R_{a} sets remain in the same relative position in the set hierarchy as $\{y$ is a rational number $\mid 0 \leq y<a\}$

Argument \#1: Each R_{a} contains a largest element.

1) Each R_{a} contains the former largest elements of the subsets below it in the set hierarchy.
2) Each R_{a} contains elements not in the subsets below it in the set hierarchy.
3) Let \boldsymbol{c} and \boldsymbol{d} be two elements of a single $\mathrm{R}_{\boldsymbol{a}}$ set with $\boldsymbol{c}>\boldsymbol{d}$.
4) d is an element of R_{c}, which is a proper subset of R_{a}.
5) for any two elements in R_{a} the smaller element is contained in a proper subset of R_{a}.
6) From step 2) and step 5) each R_{a} set contains a largest element not in any set below it in the set hierarchy.

Argument \#2: No R_{a} contains a largest element.

1) Suppose there is a largest element a^{\prime} in some individual R_{a}.
2) $a^{\prime}<\left(a^{\prime}+a\right) / 2<a$.
3) Let $b=\left(a^{\prime}+a\right) / 2$.
4) Then b is in R_{a} and $a^{\prime}<b$.

No attempt is made to specify a largest element in Argument \#1. However, each step within Argument \#1 is either a true statement or a logical conclusion from true statements.

When a largest element is assumed in Argument \#2, it leads to a contradiction; so there is no largest element. That is a valid proof by contradiction.

Objection: For each Ra set it is claimed that every element is in some proper subset below Ra in the hierarchy. Step 2) in Argument \#1 is claimed to be false. In Argument \#2 a^{\prime} is in R b, which is a proper subset below $\mathrm{R} a$. However, $\mathrm{R} b$ is missing $b^{\prime}=(a+b) / 2$. So it is with every subset $\mathrm{R} x$ of $\mathrm{R} a$. They are all missing $x^{\prime}=(a+x) / 2$.
Since all the sets below each $\mathrm{R} a$ are in a nested hierarchy with $\mathrm{R} a$ at the top, there is one largest $\mathrm{R} a$ set element missing from all subsets of each $\mathrm{R} a$. All $\mathrm{R} a$ sets have a largest element or the entire hierarchy would collapse.
© 2023 James Edwin Rock. This work is licensed under a Creative Commons AttributionShareAlike 4.0 International License.
If you wish, email comments to Jim Rock at collatz3106@gmail.com.

