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Abstract： Nature of a proposition constructed by diagonal method of proof is a paradox, so it is an 

unclosed term and an extra-field proposition. There are two kinds of infinities, standard infinity and 

non-standard infinity, and we will explore the diagonal problem in each of the two kinds of infinities 

below.We conclude that: (1) In standard infinity, Cantor's diagonal number can metamorphose into real 

number and the contradiction vanishes. (2) In nonstandard infinity, Cantor's diagonal numbers become 

hyperreal number . Essentially both are unclosed terms of the calculation. 

Therefore, Cantor's diagonal method proves that "the real numbers are not countable" is wrong. 
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1 Cantor’s diagonal method 

As an important reduction to absurdity, the diagonal method, which was created by G. F. P. Cantor 

in 1874, was first used to prove that the set of real numbers is uncountable. 

Note 1.1 Proof of that the set of real numbers is uncountable 

To prove that R  is uncountable, as long as [0, 1]  is proved uncountable, now reduction to 

absurdity is applied. 

Let [0, 1]  be countable, then assume [0, 1]= 1 2 3, , , , ,nx x x x . Since [0, 1]ix  , it 

can be represented by an infinite decimal fraction and these numbers are list in sequence: 

1 11 12 13 10. nx a a a a  

2 21 22 23 20. nx a a a a  

3 31 32 33 30. nx a a a a  

………………………… 

1 2 30.n n n n nnx a a a a  

………………………… 

 

 

Now define a number 11 22 330. nnT a a a a , thereinto, 
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It is obvious that [0, 1]T  , but iT x , 1,2,3, , ,i n ,which is contradictory with that 

[0, 1]  is countable, so that [0, 1]  is uncountable can be proved, and then R  is uncountable.  

With the diagonal method, Cantor (G. F. P. Cantor) also proves that "natural numbers do not have 

one-to-one correspondence with its power set”, that is | |<| ( ) |N N . 

Note 1.2  Proof of that power set of natural numbers is uncountable 

If ( )N is the power set of N  and one-to-one correspondence, namely bijective relation can 

be constructed between ( )N N  and ( N and ( )N , and then there is T , T N , and 

( )T N .  

For a N subset, if it can be determined that elements of N  belong to the subset, then the subset 

of N is determined. We give a general criterion for determining whether any element x  of N  

belongs to the subset.  

Suppose that in ( )N N , any x N corresponds to ( )y N , namely 

( )x N y N   , y is one of subsets of N , y N ,  

x y , or x y ; we provide that: x y x T   ; x y x T   ; 

     Assume that ( )T N , ( )N N , there is 0 ( )x N T N   ;  

  By rule: 0 0x T x T   ; 0 0x T x T   ;  

   It is contradictory, so ( )T N . 

  Note: These proofs can be found in many books of "Mathematical Logic," such as "Introduction 

to Meta-Mathematics," by S. C. Klein. 

 

2 Items constructed by the "diagonal method" are unclosed terms 

Review inference rule of system S, classical predicate logic system K  shall be modified to 

system SK and the axiom of the system is preceded by the “ x U ” and all calculus of the system is 

carried out within U . With the inference rule of SK system, we can prove the following diagonal 

theorem further. 

Theorem 2.1  Generalized Diagonal Theorem 



Let the universal set  1 2, , , ,iU x xx  be a defined set, P  is a property defined on U  

and the proposition P  is a partition related to   and  , namely 

 | ( )x P x  ,  | ( )x P x   ,  construction term T  satisfies the following relation 

( )x P T  , ( )x P T  . 

（1）If T U , then ( ) ( )P T P T .That is: ( ) ( )T U P T P T  . 

（2）If the calculation on U  is consistent, then T U ，T  is an extra-field term. 

Proof:  

 (1) ( )x P x  --------------------------------definition of positive set, 

(2) ( )x P T  ------------------------------- definition of constructive term T  

 (3) x  ( ) ( )P x P T ---------------------------(1)(2) 

 (4) ( )x P x  -----------------------------definition of inverse set, 

 (5) ( )x P T  -----------------------------definition of constructive termT ,  

 (6) x  ( ) ( )P x P T  ----------------------------- (4), (5) 

 (7) x U ( ) ( )P x P T --------------------------(3), (6) U     ， 

 (8) ( ) ( )T U P T P T  -----------------------------（7）substitute x T , 

 （9） T U --------------------------------------------------------------------------（8）. 

The diagonal theorem can also be simply expressed as follows: 

Let  1 2, , , ,iU x xx be a defined set, P  is a property defined on U , construct a new 

term T different from any term in U , that is ( ) ( )x U P x P T  , then 

 (1) If T U , then ( ) ( )P T P T , namely: ( ) ( )T U P T P T  ,  

 (2)If the calculus on U  is consistent, then T U , T  is an extra-field term. 

 (Namely, if T U , then calculus on U is inconsistent, if the calculus on U is consistent, 

thenT U ,T is the unclosed term of the calculus).  

Example 2.1 Binary predicate representation of "Diagonal method of proof” 

  The “ diagonal method of proof ”can also be expressed as a binary predicate as follows: 



Let  1 2[0,1] , , , ,ix xx ,  

1 11 12 13 10. nx a a a a  

2 21 22 23 20. nx a a a a  

3 31 32 33 30. nx a a a a  

………………………… 

1 2 30.n n n n nnx a a a a  

………………………… 

 

The n
th

 term of the i th element ix  in the table is expressed as ( , )iP x n  by binary predicate, 

and above table can be arranged as follows: 

1 1 1 1 1

2 2 2 2 2
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Now define a number 1 2 30. ( ,1) ( ,2) ( ,3) ( , )nT P x P x P x P x n , thereinto  

( , ) 1, ( , ) 9
( , )

0, ( , ) 9

i i

i

i

P x i P x i
P x i

P x i

 
 


, (that is ( , )iP x i is different from ( , )iP x i ) 

 

New number T , which satisfied the n
th

 term of T  is different from the  n
th

 term of nx , that 

is  

( , ) ( , )nP T n P x n ,  

Is [0,1]T  ? Assume that [0,1]T   is true, and there is some nx , meeting nx T , namely:  

( , ) ( , )P T n P T n . 

Inference 2.1 Cantor’s diagonal number T  is an extra-field term  

(1) If T  is Cantor’s diagonal number at interval[0, 1] , then  



[0,1] ( , ) ( , )T P T n P T n  ;  

(2)If the calculus on set of real numbers R  is consistent, then [0, 1]T  ,T R . 

(It can be further proved that: Cantor’s diagonal number T  is a hyperreal number) 

Example 2.2 Binary predicate representation of "Diagonal Proof Method” 

Denote x y  with binary predicate ( , )P x y , construct a set T  satisfying:  

x y x T   ; x y x T   ; 

That is  

( , ) ( , )P x y P x T ; ( , ) ( , )P x y P x T  ; 

Assume that ( )T N , ( )N N , there exists 0 ( )x N T N   ; 

There exists 0x y , y T , substitute 0 ,x T  in above formula to get :  

0 0( , ) ( , )P x T P x T ;  

It is contradictory, so ( )T N . 

Inference 2.2 Diagonal set on set of natural numbers’ power set is an extra-field term 

 (1)  If T is the diagonal set on N , set of natural numbers’ power set ( )N  , then  

0 0( ) ( , ) ( , )T N P x T P x T  ;  

(2) If the calculus on N , set of real numbers is consistent, then ( )T N ,T N .  

(Diagonal set T  on ( )N ,  power set of natural numbers’ set N , is an unclosed term in 

calculation, a undefined set) 

In the proof process of diagonal theorem, we add a bijective relation :F N U  between U  

and set of real numbers, N  

:F N U ， x U  ( ) ( )P x P T ; 

If T U , the above formula is not contradictory; 

If T U , there is x T , if put x T into the above formula, then the contradiction is derived. 

:F N U , T U ( ) ( )P T P T ;  

In above formula, the contradiction is generated by adding T U . The contradiction disappear 



without T U , x T , 

It is indicated that the contradiction is caused by T U and is unrelated with the bijective 

relation :F N U . 

Namely the existence of fixed term contradiction is unrelated with the bijective relation 

:F N U .  

 

3 Review Cantor’s diagonal numbers from the infinite perspective 

The set of m-bit decimals of the interval [0,1]  is written as [0,1]m , 1 2 30. mx a a a a ,  and 

since each bit can only be 0-9 of these ten numbers （ 0,1,2, ,9ma  ）, the complete arrangement of 

10 numbers has a total of 10m
, that is, all m-bit decimals of the interval [0,1]m  has a  total of 10m

, 

so that the number of bits and the number is not equal, we can use the method of complementary 0 after 

the10m
 bits,  

1 2 3 10
0. 00 0 mmx a a a a

 

make the number of bits and the number of decimals are equal, and let 10m n . 

When n , the complete arrangement of 10 numbers （ 0,1,2, ,9ma  ）, is all infinite 

decimal places of the interval [0,1] , and then construct Cantor's diagonal number. 

Theorem 3.1 Cantor's diagonal number on a finite bit interval is an unclosed term 

Let 11 22 330. nnT a a a a
 
be Cantor's diagonal number of all n-bit (n is a finite number) real 

numbers on the interval [0,1]n , then,   

[0,1]nT 
. 

Proof: Let 

1 11 12 13 10. nx a a a a  

2 21 22 23 20. nx a a a a  

3 31 32 33 30. nx a a a a  

 

1 2 30.n n n n nnx a a a a  



be a list of all real numbers in the interval[0,1]n ， 

Define diagonal number 11 22 330. nnT a a a a ，( iia and 
iia

 
are different numbers). 

If 9iia  ，then, definite 1ii iia a  ； 

If 9iia  ，then, definite 1ii iia a  。 

[0,1]n ii iiT a a   ，（ 1,2,3, ,i n ） 

That is， [0,1]nT  . 

That is, Cantor's diagonal number on a finite bit interval is an unclosed term. 

Please consider the question:  if the number of diagonals is arranged at infinity, 

[0,1]n ii iiT a a    , 
 
does this contradiction still exist? 

When n , 

1 11 12 13 10. nx a a a a  

2 21 22 23 20. nx a a a a  

………………………… 

1 2 30.x a a a a      

11 22 330.T a a a a  

1 2

11 2210 10 10 10n

nnT a a a a   

          (Decimal expansion). 

[0, 1] ( )T a a    . 

When n , we have already explored in Infinity and Infinite Induction that there are two 

kinds of infinities, standard infinity and non-standard infinity, and we will explore the diagonal problem 

in each of the two kinds of infinities below. 

 

Theorem 3.2 Cantor's diagonal number on infinite bit interval 

Let 11 22 330.T a a a a
 
be the Cantor's diagonal number of all   bit real numbers on the 

interval [0,1] , then 

(1) In standard infinity, the Cantor's diagonal numbers can be metamorphosed into real numbers 

and the contradiction vanishes, [0,1]T  . 

(2) In non-standard infinity, the contradiction still exists.  



[0,1] ii iiT a a   ， [0,1]T  .The diagonal number is an unclosed term. 

Proof: The finite representation of the Cantor’s diagonal number is  

1 2

11 2210 10 10 n

nnT a a a         . 

Cantor’s diagonal number, when n  is finite, [0, 1] ( )nn nnT n a a   . This is a 

contradiction. 

 

When n，according to the method of infinite induction, the identical equation holds for 

infinity (see Infinity and Infinite Induction),  

(1) In standard infinity, 1 ，
1

0


，10 0   10 0a 

   , the diagonal number 

11 22 330. nnT a a a a a .. 

all become 0 at infinity， 

11 22 330. 000nnT a a a a . 

Since T  is a real number, 11 22 330. nnT a a a a we can only see the number 

11 22 33 nna a a a  at infinity, infinite bit a  
of T can not be seen, or what can see only is the number 

0, at this time the extra-domain term T metamorphoses into tthe real number of the domain term. 

    [0, 1] ( )T a a    ,This contradiction has actually disappeared because a  is not 

visible.  

Cantor’s diagonal number is contradicted only at finite, when T is arranged at infinity, this does 

not contradict. 

(2) In non-standard infinity, 1  ，
1

0
  

(has been rewritten as  ), 

10 0   10 0a 

   ，the diagonal number 

11 22 330. nnT a a a a a . 

[0,1] ii iiT a a   ， [0,1]T  ； 

The diagonal number is the unclosed term of the calculus, that is, the extra-field term. 

(In non-standard infinity, 10 0  has been rewritten as10 0  , a has been rewritten as 

a , see  Infinity and Infinite Induction) 



10 0a 

   , the number at infinity is not 0, T  is no longer a real number, and the hyperreal 

numbers have this property. 

At this point Cantor’s diagonal number T  is a hyperreal number and T  is arranged outside the 

domain, which is also not contradictory. 

 We conclude that: (1) In standard infinity, Cantor's diagonal number can metamorphose into real 

number and the contradiction vanishes. (2) In nonstandard infinity, Cantor's diagonal numbers become 

hyperreal number . Essentially both are unclosed terms of the calculation. 

Therefore, Cantor's diagonal method proves that "the real numbers are not countable" is wrong. 
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