Successiveness and operadicity

Ryan J. Buchanan | Roseburg, Oregon | rjbuchanan2000@gmail.com

Abstract

Succession is placed in the context of lifted number rings. Linear-style orderings are considered as operads which split fields by introducing locally transcendental numbers that perfectly close their ancestors by introducing gaps.

<u>Paper</u>

It is well known that the large majority of quasi-well-ordered sequelae exhibit linear-like tree-level ordering. Formally, for a pair of branches of level k, one may define succession as the free ideal φ in the following expression:

 $\forall a.k, (\exists (a \subseteq K) \leftrightarrow (a.k+\varphi) \in K).$

Where a is a countable ordinal, k an ordertype, and $\subseteq K$ downward closure in some class K.

For $\varphi \cong 1$, one obtains a critical point ϱ , which gives rise to the transition map $\gamma^{\kappa} \Rightarrow \pi^+$, where π is the (p-1)th degree divisor sending $\{\kappa, ..., \gamma\}$ to a super-compact ordinal ϵ . For some tiny ϵ , we have that there is a regular pullback into a non-degenerate and quasi-coherent clopen class \mathfrak{P} whose maximal ideal is $\varphi - \tau$. Let $\lambda \coloneqq (\tau = \epsilon)$ be a p-th order proposition in which there is a binary relationship $(\varphi + \epsilon)^{\mathbb{E}} \varrho$, and $\mathfrak{P}: \lambda$ be the true sentence in which this evaluation holds. We will let X^EY mean that there is an effective (forgetful) equivalence from X into the pro-objects of Y such that the sub-object identifier at a representative locus $\mathcal{U}(\varphi^{\leq})$ is equiconsistent with its image at $\mathcal{U}(\varphi)$. One then obtains that φ is the perfection of φ^{\leq} when it is identified with the neighborhood pyk(ϱ), which behaves identically to the π we have established here.

Importantly for us, the automorphism $\mathcal{U} \to \mathcal{U}|\pi$, when specialized in this way, provides a rather lucid technique for lifting from \mathfrak{R}^{\flat} into \mathfrak{H}^{\sharp} . Thus, one obtains the following diagram:

where \mathfrak{H} is identified with spec(\mathbb{Z}). Note that $\mathfrak{P}\lambda^{\circ}$, the case when $\boldsymbol{\tau}$ is less than ϵ , is simply the identity on \mathfrak{P} , and therefore trivial. We can then proceed to make the following precise identification:

Lemma 1.0.0 For $\pi_1(\gamma)$, $\sup(\kappa)$ is an isotopy of $\inf(\epsilon)$ and is effectively equivalent to ϱ . **Corollary 1.0.1** For $\pi_1(\kappa)$, $\inf(\gamma)$ is an isotopy of $\sup(\epsilon)$ and is effectively equivalent to ϱ . **Corollary 1.0.2** $\pi_1(*) \rightarrow \varrho$ is a contravariant operation, and γ, κ, ϵ are respectively the group-like operator, abelian operator, and unital magma (see [HSpI], definition 5)

Let ς be a component of a β -reduced Postnikov system which kills \mathfrak{P} at ho(\mathfrak{Q}), and \mathfrak{Y} the Finsler geometry about a distinguished partner of ς . Write \mathfrak{Y} as the symmetric difference:

$(\mathfrak{H} \mid_{\mathfrak{Q}_{X}\mathfrak{Q}}) \bigtriangleup \mathfrak{H}^{\sharp}$

Definition A.1 A replica of a covering scheme at a site is a second countable model whose gaps are preserved under homothety and inversion. A perfect replica is the target of an invertible map from a perfect set with no gaps, and a maligned replica is a replica which introduces gaps and is non-invertible.

Lemma 1.1.0 For distinct non-trivial ς, ς' , there is a thin equivalence¹ of the form $(\varsigma/\mathfrak{H})^{E}\varsigma'$, where ς' is a maligned replica $\mathfrak{H}^{\mathbb{P}}[\mathcal{M}^{\mathbb{Z}/\mathbb{P}}]$ of \mathfrak{Y} .

Proof Select some Woodin cardinal \mathscr{J} with a finite normal subgroup consisting of the d smallest primes above &_B for

¹See [Thin1] and [Thin2] for context

B a positive integer bounded above by a small member of \mathbb{Z} . We have that g/\mathfrak{H} corresponds to a set bounded by $\Lambda \mathfrak{H}|_{\mathfrak{L}}$ by taking the quotient:

$\prod_{z/p}^{a} \mathfrak{Q} x \mathfrak{Q}.$

Allowing \mathfrak{H}^{\sharp} to be a coherent topos lifted from spec(\mathbb{Z}), we obtain some \mathfrak{Y} consisting of a single transcendental number $\mathfrak{K}_{\mathsf{B+z}}$. That \mathfrak{G}' is maligned follows from the fact that $\mathfrak{G}, \mathfrak{G}'$ are distinct and non-trivial, and therefore non-invertible. A non-cancellable gap is introduced at $\mathfrak{K}_{\mathsf{B}}$, which is the principal connection for \mathcal{T}^{m} the discrete cover of \mathfrak{Y} .

Finally, we may rewrite: $\begin{aligned} \pi_{\text{p-1}}\left(\text{H}\left(\mathcal{G}\right)\right)\wedge^{\star} \rightarrow \pi_{\text{p-1}}\left(\text{H}\left(\mathcal{G}\right)\right) \rightarrow \mathcal{G}' \\ \text{as} \\ & \mathfrak{Y}\cup \mathcal{G} \rightarrow \mathcal{G}\setminus^{\star} \rightarrow \mathfrak{Y}\setminus \beta \\ \text{which kills } \pi_{\text{p-1}} \text{ at } \pi_{\text{p}}. \end{aligned}$

Q.E.D.

Next, we define a proper homomorphism $K \to K$ from some k-level object to its successor as an operand². Write

a \circ_{φ} a- φ

to mean the successor function laid about at the beginning of this document. This is a maximally generic and lossless procedure which acts continuously on the spectrum of any specified ring. For the discrete operand, we can restrict φ to ϱ to produce a transitive binary relationship while neglecting to require that our image in **Set**_{*} is either abelian or group-like.

In this case, we will write

$a \circ_{\varphi|\varrho} a - \varrho$

and obtain that every automorphism takes place over \mathfrak{H}^{\flat} , such that a is synonymous with crit($\pi(\boldsymbol{\varphi},\mathbf{k})$). To show that this function is indeed a homomorphism, one need only consider that **a** is bijective with (**a**+b).t, such that every type of ascent produces

² The term "operand" is used here instead of operad to distinguish this construction from that of May's original operads; they correspond more closely to the "little n-cubes" operad in specific, or to the simplifications of permutahedra.

exactly one join and meet, and thus, it follows that this is a Boolean algebra.

References

[HSpI] T. Cutler <u>H-Spaces I</u> (2020) [Thin1] R. Schindler, P. Schlicht Thin Equivalence Relations in Scaled Pointclasses (2010) [Thin2] G. Hjorth <u>Thin Equivalence Relations and Effective</u> <u>Decomposition</u> (1993)