An Inconsistent Hierarchy of Sets in [0, 1]

By Jim Rock

Abstract

Two contradictory arguments are developed from a hierarchy of sets in $[0,1]$. One argument is a proof by contradiction and its conclusion is true. The other argument is an existence argument and while its conclusion is not true, it follows logically from the a valid assumption followed by three true statements that precede the conclusion.

Introduction. For all rational numbers \boldsymbol{a} in the closed interval $[0,1]$ and $\{0\}$ define the collection of all Ra sets equal $\{y$ is a rational number $\mid 0 \leq y<a\}$ and $\{0\}$

The following four true statements characterize the collection of Ra sets and $\{0\}$.
a) The collection forms a hierarchy of sets with R1 at the top and $\{0\}$ on the bottom.
b) Each Ra set contains all the elements in sets below it in the set hierarchy.
c) Each set is a proper subset of all the Ra sets above it in the set hierarchy.
d) Used in Arg \#1 step 4. Each individual Ra set contains at least one element that is not in any of the sets below it in the hierarchy. Otherwise, the entire hierarchy would collapse.

Argument \#1: R1 contains a largest element.

1) Let \boldsymbol{c} and \boldsymbol{d} be two elements of R1 with $\boldsymbol{c}>\boldsymbol{d}$.
2) \boldsymbol{d} is an element of $R c$, which is a proper subset of $R 1$.
3) For any two elements in R1 the smaller element is contained in a proper subset of R1.
4) d) R1 contains a largest element not contained in any set below it in the set hierarchy.

Argument \#2: R1 contains no largest element.

1) Suppose there is a largest element a in R1.
2) $a<(a+1) / 2<1$.
3) Let $b=(a+1) / 2$.
4) Then b is in R1 and $a<b$.

When a largest element is assumed in Argument \#2 it leads to a contradiction so there is no largest element in R1. A valid proof by contradiction.
The difference between the two arguments is no attempt is made to specify a largest element in argument \#1. It is an existence argument only.
But in argument \#1, step 1 is a valid assumption and statements 2, 3, and d) from the Introduction are true statements. Step 4 follows logically from steps $1,2,3$, and \mathbf{d}).

Thus, we have two contradictory arguments that can be developed in any formal system containing sets, arithmetic, and relations between the rational numbers.

Objection: For any Rait is claimed that every element of $\mathrm{R} a$ is in some proper subset below $\mathrm{R} a$ in the hierarchy. Statement d) Used in Arg \#1 step 4 is claimed to be false. In Argument \#2 a is in Rba proper subset below R1. But, $\mathrm{R} b$ is missing $b^{\prime}=(b+1) / 2$. So it is with every other subset Rx of R1. They are all missing $x^{\prime}=(x+1) / 2$. Since the collection of $\mathrm{R} a$ sets is in a nested hierarchy, there is one largest set element missing from all subsets of R1. The same thing is true for each Raset in the nested hierarchy. Each set has a largest element. Otherwise, the entire hierarchy would collapse.
© 2023 James Edwin Rock. This work is licensed under a Creative Commons AttributionShareAlike 4.0 International License.

If you wish, email comments to Jim Rock at collatz3106@gmail.com.

