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THE RIEMANN HYPOTHESIS IS TRUE: THE END OF THE
MYSTERY -V6-
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Abstract
In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Riemann
Hypothesis : The nontrivial roots (zeros) s = σ + it of the zeta function, defined by:

ζ(s) =
+∞∑
n=1

1
ns , for ℜ(s) > 1

have real part σ =
1
2

. In this note, I give the proof that σ =
1
2

using an equivalent statement of the
Riemann Hypothesis concerning the Dirichlet η function.
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1. Introduction
In 1859, G.F.B. Riemann had announced the following conjecture [1] known Riemann
Hypothesis:

Conjecture 1.1. Let ζ(s) be the complex function of the complex variable s = σ + it
defined by the analytic continuation of the function:

ζ1(s) =
+∞∑
n=1

1
ns , for ℜ(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial zeros
of ζ(s) = 0 are written as :

s =
1
2
+ it

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet η function. The latter is related
to Riemann’s ζ function where we do not need to manipulate any expression of ζ(s) in
the critical band 0 < ℜ(s) < 1. In our calculations, we will use the definition of the

limit of real sequences. We arrive to give the proof that σ =
1
2

.
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1.1. The function zeta(s) We denote s = σ + it the complex variable of C. For
ℜ(s) = σ > 1, let ζ1 be the function defined by :

ζ1(s) =
+∞∑
n=1

1
ns , for ℜ(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical function of
s. Denote by ζ(s) the function obtained by the analytic continuation of ζ1(s) to the
whole complex plane, minus the point s = 1, then we recall the following theorem [2]:

Theorem 1.2. The function ζ(s) satisfies the following :
1. ζ(s) has no zero forℜ(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ ℜ(s) ≤ 1 (called the critical strip)

and are symmetric about both the vertical lineℜ(s) =
1
2

and the real axis ℑ(s) = 0.

The vertical lineℜ(s) =
1
2

is called the critical line.

In addition to the properties cited by the theorem 1.2 above, the function ζ(s)
satisfies the functional relation [2] called also the reflection functional equation for
s ∈ C\{0, 1} :

ζ(1 − s) = 21−sπ−scos
sπ
2
Γ(s)ζ(s) (1.1)

where Γ(s) is the gamma function defined only forℜ(s) > 0, given by the formula :

Γ(s) =
∫ ∞

0
e−tts−1dt, ℜ(s) > 0

So, instead of using the functional given by (1.1), we will use the one presented by
G.H. Hardy [3] namely Dirichlet eta function [2]:

η(s) =
+∞∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s)

The function eta is convergent for all s ∈ C withℜ(s) > 0 [2].

We have also the theorem (see page 16, [3]):

Theorem 1.3. For all t ∈ R, ζ(1 + it) , 0.

So, we take the critical strip as the region defined as 0 < ℜ(s) < 1.
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1.2. A Equivalent statement to the Riemann Hypothesis Among the equivalent
statements to the Riemann Hypothesis is that of the Dirichlet eta function which is
stated as follows [2]:

Equivalence 1.4. The Riemann Hypothesis is equivalent to the statement that all zeros
of the Dirichlet eta function :

η(s) =
+∞∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s), σ > 1 (1.2)

that fall in the critical strip 0 < ℜ(s) < 1 lie on the critical lineℜ(s) =
1
2

.

The series (1.2) is convergent, and represents (1− 21−s)ζ(s) forℜ(s) = σ > 0 ([3],
pages 20-21). We can rewrite:

η(s) =
+∞∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s), ℜ(s) = σ > 0 (1.3)

η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (1.4)

and η(s) = 0⇐⇒ ρ = 0.

2. Preliminaries of the proof that the zeros of the function eta(s) are on the
critical lineℜ(s) = 1/2

Proof. We denote s = σ + it with 0 < σ < 1. We consider one zero of η(s) that
falls in critical strip and we write it as s = σ + it, then we obtain 0 < σ < 1 and
η(s) = 0⇐⇒ (1 − 21−s)ζ(s) = 0. We verify easily the two propositions:

s, is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s) (2.1)

Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) =
(1 − 21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip. We can write:

s, is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s) (2.2)

Let us write the function η:

η(s) =
+∞∑
n=1

(−1)n−1

ns =

+∞∑
n=1

(−1)n−1e−sLogn =

+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=

+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=

+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn) − isin(tLogn))
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The function η is convergent for all s ∈ Cwithℜ(s) > 0, but not absolutely convergent.
Let s be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns = 0

or:

∀ϵ′ > 0 ∃n0,∀N > n0, |

N∑
n=1

(−1)n−1

ns |< ϵ′

We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =
n∑

k=1

(−1)k−1

ks =

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n∑

k=1

(−1)k−1 sin(tLogk)
kσ

with s = σ + it and t , 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with 0 < σ < 1.
It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)
kσ

= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)
kσ

= 0

Using the definition of the limit of a sequence, we can write:

∀ϵ1 > 0∃nr,∀N > nr, | ℜ(η(s)N) |< ϵ1 =⇒ℜ(η(s)N)2 < ϵ1
2 (2.3)

∀ϵ2 > 0∃ni,∀N > ni, | ℑ(η(s)N) |< ϵ2 =⇒ ℑ(η(s)N)2 < ϵ2
2 (2.4)

Then:

0 <
N∑

k=1

cos2(tLogk)
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)
kσk′σ

< ϵ21

0 <
N∑

k=1

sin2(tLogk)
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ sin(tLogk).sin(tLogk′)
kσk′σ

< ϵ22

Taking ϵ = ϵ1 = ϵ2 and N > max(nr, ni), we get by making the sum member to member
of the last two inequalities:

0 <
N∑

k=1

1
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ϵ2 (2.5)

We can write the above equation as :

0 < ρ2
N < 2ϵ2 (2.6)

or ρ(s) = 0.
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3. Caseℜ(s) = 1/2

We suppose that σ =
1
2

. Let’s start by recalling Hardy’s theorem (1914) ([2], page
24):

Theorem 3.1. There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (2.1-2.2), it follows the proposition :

Proposition 3.2. There are infinitely many zeros of η(s) on the critical line.

Let s j =
1
2+it j one of the zeros of the function η(s) on the critical line, so η(s j) = 0.

The equation (2.5) is written for s j:

0 <
N∑

k=1

1
k
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t jLog(k/k′))
√

k
√

k′
< 2ϵ2

or:
N∑

k=1

1
k
< 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t jLog(k/k′))
√

k
√

k′

If N −→ +∞, the series
N∑

k=1

1
k

is divergent and becomes infinite. then:

+∞∑
k=1

1
k
≤ 2ϵ2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t jLog(k/k′))
√

k
√

k′

Hence, we obtain the following result:

limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t jLog(k/k′))
√

k
√

k′
= −∞ (3.1)

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1
ks j
= 0⇐⇒ η(s) is convergent for s j =

1
2
+ it j

4. Case 0 < ℜ(s) < 1/2

4.1. Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1
2

.

Suppose that there exists s = σ + it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0
with 0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation (2.5):

0 <
N∑

k=1

1
k2σ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ϵ2
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or:
N∑

k=1

1
k2σ < 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1
k2σ −→ +∞ and then, we obtain :

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

= −∞ (4.1)

5. Case 1/2 < ℜ(s) < 1

Let s = σ+ it be the zero of η(s) in 0 < ℜ(s) < 1
2 , object of the previous paragraph.

From the proposition (2.1), ζ(s) = 0. According to point 4 of theorem 1.2, the complex
number s′ = 1 − σ + it = σ′ + it′ with σ′ = 1 − σ, t′ = t and 1

2 < σ
′ < 1 verifies

ζ(s′) = 0, so s′ is also a zero of the function ζ(s) in the band 1
2 < ℜ(s) < 1, it follows

from the proposition (2.2) that η(s′) = 0 =⇒ ρ(s′) = 0. By applying (2.5), we get:

0 <
N∑

k=1

1
k2σ′ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′

< 2ϵ2 (5.1)

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series

∑N
k=1

1
k2σ′ is convergent to

a positive constant not null C(σ′). As 1/k2 < 1/k2σ′ for all k > 0, then :

0 < ζ(2) =
π2

6
=

+∞∑
k=1

1
k2 <

+∞∑
k=1

1
k2σ′ = C(σ′) = ζ1(2σ′) = ζ(2σ′)

From the equation (5.1), it follows that :

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′

= −
C(σ′)

2
= −
ζ(2σ′)

2
> −∞ (5.2)

5.0.1. Case t = 0 We suppose that t = 0 =⇒ t′ = 0. The equation (5.2) becomes:

+∞∑
k,k′=1;k<k′

(−1)k+k′ 1
kσ′k′σ′

= −
C(σ′)

2
= −
ζ(2σ′)

2
> −∞ (5.3)

Then s′ = σ′ > 1/2 is a zero of η(s), we obtain :

η(s′) =
+∞∑
n=1

(−1)n−1

ns′ = 0 (5.4)
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Let us define the sequence S m as:

S m(s′) =
m∑

n=1

(−1)n−1

ns′ =

m∑
n=1

(−1)n−1

nσ′
= S m(σ′) (5.5)

From the definition of S m, we obtain :

limm−→+∞S m(s′) = η(s′) = η(σ′) (5.6)

We have also:

S 1(σ′) = 1 > 0 (5.7)

S 2(σ′) = 1 −
1

2σ′
> 0 because 2σ

′

> 1 (5.8)

S 3(σ′) = S 2(σ′) +
1

3σ′
> 0 (5.9)

We proceed by recurrence, we suppose that S m(σ′) > 0.

1. m = 2q =⇒ S m+1(σ′) =
m+1∑
n=1

(−1)n−1

ns′ = S m(σ′) +
(−1)m+1−1

(m + 1)σ′
, it gives:

S m+1(σ′) = S m(σ′) +
(−1)2q

(m + 1)σ′
= S m(σ′) +

1
(m + 1)σ′

> 0⇒ S m+1(σ′) > 0

2. m = 2q + 1, we can write S m+1(σ′) as:

S m+1(σ′) = S m−1(σ′) +
(−1)m−1

mσ′
+

(−1)m+1−1

(m + 1)σ′

We have S m−1(σ′) > 0, let T =
(−1)m−1

mσ′
+

(−1)m

(m + 1)σ′
, we obtain:

T =
(−1)2q

(2q + 1)σ′
+

(−1)2q+1

(2q + 2)σ′
=

1
(2q + 1)σ′

−
1

(2q + 2)σ′
> 0 (5.10)

and S m+1(σ′) > 0.

Then all the terms S m(σ′) of the sequence S m are great then 0, it follows that
limm−→+∞S m(s′) = η(s′) = η(σ′) > 0 and η(σ′) < +∞ because ℜ(s′) = σ′ > 0
and η(s′) is convergent. We deduce the contradiction with the hypothesis s′ is a zero
of η(s) and:

The equation (5.3) is false for the case t′ = t = 0. (5.11)

5.0.2. Case t′ = t , 0 We suppose that t′ , 0. Let s′ = σ′ + it′ = 1 − σ + it a zero
of η(s), we have:

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′

= −
C(σ′)

2
= −
ζ(2σ′)

2
> −∞ (5.12)
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the left member of the equation (5.12) above is finite and depends of σ′ and t′, but the
right member is a function only of σ′ equal to −ζ(2σ′)/2.

We recall the following theorem (see page 140, [3]):

Theorem 5.1.

limT−→+∞
1
T

∫ T

1
|ζ(σ” + iτ)|2 dτ = ζ(2σ”) (σ” >

1
2

) (5.13)

We fix σ” = σ′, from the theorem above, ζ(2σ′) is independent of any τ ≥ 1 > 0,
then ζ(2σ′) does non depend of t′ so that s′ = σ′ + it′ is a root of η, it follows the
contradiction with equation (5.12). Then the equation (5.12) is false.

It follows that the equation (5.12) is false for the case t′ , 0. (5.14)

It follows that the equation (5.2) is false and η(s′) does not vanish for σ′ ∈]1/2, 1[.

From (5.11-5.14), we conclude that the function η(s) has no zeros for all s′ = σ′+it′

with σ′ ∈]1/2, 1[, it follows that the case of the paragraph (4) above concerning the

case 0 < ℜ(s) <
1
2

is false too. Then, the function η(s) has all its zeros on the

critical line σ =
1
2

. From the equivalent statement (1.4), it follows that the Riemann
hypothesis is verified. □

From the calculations above, we can verify easily the following known proposition:

Proposition 5.2. For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

6. Conclusion

In summary: for our proofs, we made use of Dirichlet η(s) function:

η(s) =
+∞∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s), s = σ + it

on the critical band 0 < ℜ(s) < 1, in obtaining:

- η(s) vanishes for 0 < σ = ℜ(s) =
1
2

;

- η(s) does not vanish for 0 < σ = ℜ(s) <
1
2

and
1
2
< σ = ℜ(s) < 1.

Consequently, all the zeros of η(s) inside the critical band 0 < ℜ(s) < 1 are on the

critical lineℜ(s) =
1
2

. Applying the equivalent proposition to the Riemann Hypothe-
sis (1.4), we conclude that the Riemann hypothesis is verified and all the nontrivial
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zeros of the function ζ(s) lie on the critical lineℜ(s) =
1
2

. The proof of the Riemann
Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 6.1. The Riemann Hypothesis is true:

All nontrivial zeros of the function ζ(s) with s = σ+it lie on the vertical lineℜ(s) =
1
2

.

Statements and Declarations:
- The author declares no conflicts of interest.
- No funds, grants, or other support was received.
- The author declares he has no financial interests.
- ORCID - ID:0000-0002-9633-3330.

References
[1] Bombieri E. . 2006. The Riemann Hypothesis. In The millennium prize problems, edited by J.

Carlson, A. Jaffe and A. Wiles, pp. 107–124, Clay Math. Institute, Amer. Math. Soc., Providence,
RI.

[2] Borwein P., Choi S., Rooney B. and Weirathmueller A. . 2008. The Riemann hypothesis - a
resource for the afficionado and virtuoso alike. 1st Ed. CMS Books in Mathematics, Springer-
Verlag, New-York. https://doi.org/10.1007/978-0-387-72126-2

[3] Titchmarsh E.C., Heath-Brown D.R. . 1986. The theory of the Riemann zeta-function. 2sd Ed.
revised by D.R. Heath-Brown. Oxford University Press, New-York.

Abdelmajid Ben Hadj Salem, Résidence Bousten 8, Av. Mosquée Raoudha, Bloc B,
1181 Soukra Raoudha, Tunisia.
e-mail: abenhadjsalem@gmail.com


