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1. Abstract 1

The Paper analyzes the number of zeros in the binary representation of a natural num- 2

ber. The analysis is carried out using the concept of the fractional part of a number, which 3

naturally arises when finding a binary representation. This idea relies on the fundamental 4

property of the Riemann zeta function, which is constructed using the fractional part of a 5

number. Understanding that the ratio of the fractional and integer parts, by analogy with 6

the Riemann zeta function, expresses the deep laws of numbers, will explain the essence of 7

this work. For the Syracuse sequence of numbers that appears in the Collatz conjecture, we 8

use a binary representation that allows us to obtain a uniform estimate for all terms of the 9

series, and this estimate depends only on the initial term of the Syracuse sequence. This 10

estimate immediately leads to the solution of the Collatz conjecture. 11

2. Introduction 12

The paper analyzes the number of zeros in the binary representation of a natural num- 13

ber. The analysis is carried out using the concept of the fractional part of a number, which 14

naturally arises when finding a binary representation. This idea relies on the fundamental 15

property of the Riemann zeta function, which is constructed using the fractional part of a 16

number. Understanding that the ratio of the fractional and integer parts, by analogy with 17

the Riemann zeta function, expresses the deep laws of numbers, will explain the essence of 18

this work. For the Syracuse sequence of numbers that appears in the Collatz conjecture, we 19

use a binary representation that allows us to obtain a uniform estimate for all terms of the 20

series, and this estimate depends only on the initial term of the Syracuse sequence. This 21

estimate immediately leads to the solution of the Collatz conjecture. 22

3. Materials and Methods 23

This work is based on the following methods of analysis of the Syracuse sequence 1. 24

Analysis of simple cases of natural numbers starting from which the Syracuse sequence 25

quickly converges to one 26

2. A process of expansion of a natural number in powers of two is created. 27

3. The proximity to the completion of decomposition is analyzed at each stage 28

4. The number of zeros in the binary expansion of a natural number is calculated 29

5. It is shown that the number of powers of two prevails in the doitic expansions in the 30

Syracuse sequence 31

6 Based on these results, it is shown that the Syracuse sequence converges to one 32

4. Results 33

In this work we present the final solution to the Collatz conjecture formulated in [1]. 34

The Collatz conjecture concerns integer sequences generated as follows: 35

Start with any positive integer a0. Every next term is defined as 36

an+1 = αnan + βn. (1)

Where n ≥ 0, and if an is even then αn = 0.5, βn = 0 if an is odd, then αn = 3, βn = 1. 37

Version March 27, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/notspecified


Version March 27, 2023 submitted to Journal Not Specified 2 of 6

The conjecture is that regardless of a0 , the sequence will always reach 1. The conjecture 38

is named after Lothar Collatz, who introduced the idea in 1937.[1] It is also known as the 3n 39

+ 1 problem, the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani’s 40

problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse’s 41

algorithm (after Helmut Hasse), or the Syracuse problem. 42

In this work, we obtained a uniform estimate for the Syrocuse sequences and proved 43

that every 4n steps the sequences come down to a number smaller than the starting term, 44

from which follows the solution of the Collatz problem. 45

5. Rezults 46

Our idea of the proof is to obtain a uniform estimate for the Syracuse sequence
described in Introduction. Here and below, we will always mean by an n-term of the
sequence . For definiteness, we assume that

a0 = 2n+1an, a1 = 2nan, a2 = 2n−1an, ....., an−1 = 2an, an, ...

According to the sequence generation rule, it is enough to consider the odd numbers,
since even numbers will always become odd. Hence, we can assume that for any a0, after
the last appearance of a zero coefficient γi ∈ {0, 1}), the rest are not zero, as they would
disappear from dividing by 2. Thus, without losing generality of our reasoning, we can
assert that it suffices to consider numbers an of the following form:

an =
n

∑
i=k+2

2iγi +
k

∑
i=0

2i, n > k > 2

Binary representation helps to understand the idea of this work. 47

Theorem 1. Let
x ∈ N, [αj]− [αj+1] = δj > 0, ϵ1 < 1/2,

x =
j−1

∑
i=1

2[αi ] + 2αj , x =
j

∑
i=1

2[αi ] + 2αj+1 , σj = 1 − ϵj

Then
as δj = 1

σj+1ln2 =
2σjln2

1 − σj+1ln2
+ o(σ2

j+1/4)

as δj > 1

σj+1ln2 = −2δj−1 ln2 − 2−δj−1

1 − σj+1ln2/2
+ 2δj−1σjln2

1
1 − σj+1ln2/2

+ o(σ2
j+1)

Proof.
2ϵj = 2−δj+ϵj+1 + 1 ⇒ 21−σj = 2−δj+1−σj+1 + 1 ⇒

ln(21−σj) = ln2 − σjln2 = ln(2−δj+1−σj+1 + 1)

Computing as δj = 1

ln(2−δj+1−σj+1 + 1)|δj=1 = ln(2−σj+1 + 1) = ln((1− σj+1ln2+ σ2
j+1ln2/2) + 1+ o(σ2

j+1/4))

ln(2 − σj+1ln2 + σ2
j+1ln22/2) = ln2 + ln(1 − σj+1ln2/2 + σ2

j+1ln2/4 + o(σ2
j+1/4))

ln(2−σj+1 + 1) = ln2 − ln2σj+1/2 + ln22σ2
j+1/2 + o(σ2

j+1/4)

ln2 − σjln2 = ln2 − ln2σj+1/2 + ln22σ2
j+1/4 + o(σ2

j+1/4)
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σj+1ln2 =
2σjln2

1 − σj+1ln2/2
+ o(σ2

j+1/4)

Repeating computing as δj > 1 we get

ln(2−δj+1−σj+1 + 1) = ln(2−δj+12−σj+1 + 1) =

ln(1 + 2−δj+1 + 2−δj+1[−σj+1ln2 + σ2
j+1ln22/2] + o(σ2

j+1/4 + 2−δj+1) =

2−δj+1 + 2−δj+1[−σj+1ln2 + σ2
j+1ln22/2] + o(σ2

j+1 + 2−δj+1) ⇒

ln2 − σjln2 = 2−δj+1 + 2−δj+1[−σj+1ln2 + σ2
j+1ln22/2] + o(σ2

j+1 + 2−δj+1)

σj+1ln2 = −2δj−1 ln2 − 2−δj+1

1 − σj+1ln2/2
+ 2δj−1σjln2

1
1 − σj+1ln2/2

+ o(σ2
j+1 + 2−δj+1)

48

Theorem 2. Let

x ∈ N, αj = [αj] x =
j−1

∑
i=1

2[αi ] + 2αj

Then the number of zeros in the binary representation Cz is calculated by the following formula

Cz =
j−1

∑
i=1

[δi − 1] + αj − 1

Proof.

Cz =
j−1

∑
i=1

[αi − αi+1 − 1] + αj − 1

By definition δi

Cz =
j−1

∑
i=1

[δi − 1] + αj − 1

49

Let’s introduce µk, νk for x = ∑n
i=0 γi2i by following rules

γk + γk+1 = 1, γk+µk
+ γk+µk+1 = 1,

i=µk

∏
i=k+1

γi = 1;

γj + γj+1 = 1, γj+µj + γj+νj+1 = 1, νj =

i=νj

∑
i=j+1

(1 − γi)

another words 50

µk, is count of ones starting at point k with no zeros in between until the first zero or until 51

the end of the sequence 52

νj is count of zeros starting at point j with no ones in between until the first zero or until 53

the end of the sequence 54

Theorem 3. Let

x = 3n = 2[α]+{α} =
n∗
∑
i=1

γi2i,

{α} > ln2, n∗ = n ∗ [ln(3)/ ln(2)] (2)
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then
∑

γi=0
1 ≥ n∗/2 − 5

Proof.
3n = 2α ⇒ α = n/ ln(3)/ ln(2) ⇒ 3n = 2[α]+{α}

Using Theorem 1, we create a sequence

ϵi, mi, ϵ1 = {α}

2ϵ1 =
i−1

∑
k=0

2[αk ]−α1 + 2αi−α1

Suppose
∑

γi=0
1 = 0

then by Theorem 1

⇒ σj+1ln2 =
2σjln2

1 − σj+1ln2
+ o(ln 2σ2

j+1/4) ⇒

2−1σj+1ln2 =
σjln2

1 − σj+1ln2
+ 2−1 ∗ o(ln 2σ2

j+1/4)

After repeating j times we get

2−jσj+1ln2 =
σ1ln2

∏
j
1(1 − σk+1ln2/2)

+
j

∑
1

2−k ∗ o(ln 2σ2
k+1/4)

By Theorems (1-2) and condition of the current Theorem proceed

ln2/2 < σ1ln2 < o(ln 2σ2
k+1/4)

immediately
⇒ ∑

γi=0
1 > 0

Let’s introduce 55

as δk = 1 : αk = 0, βk =
1

1 − σj+1ln2

as δk > 1 : αk = −2δj−1 ln2 − 2−δj−1

1 − σj+1ln2/2
, βk =

2δj−1

1 − σj+1ln2/2

σk+1 = αk + βkσk

σj+1ln2 = αj +
m=j−1

∑
m=1

αj−m

l=m

∏
l=1

β j−l+1 +
l=j−1

∏
l=0

β j−lσ1 ⇒

σj+1ln2

∏
l=j−1
l=0 β j−l

=
m=j−1

∑
m=0

αj−m

∏
l=j−1
l=m+1 β j−l

+ σ1 ⇒
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By condition the theorem

σj+1ln2

∏l=n−1
l=0 βn−l

−
m=n−1

∑
m=0

αj−m

∏l=n−1
l=m β j−l

+ σ1 ⇒

σnln2

∏l=n−1
l=0 βn−l

−
m=n−1

∑
m=0

ln2 − 2−δj+1

∏l=n−1
l=m+1 β j−l

= σ1 ⇒

Suppose δj = 2i ∈ (1, n) ⇒

σnln2

∏l=n−1
l=0 βn−l

+
m=n−1

∑
m=0

ln2 − 1/2
2m > σ1 ⇒

2(ln2 − 1/2) > σ1 ⇒

∃δj > 2 ⇒ statement of Theorem 56

57

Theorem 4. Let

an =
n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1}

then

a8n < an

Proof. In more detail, the estimation process consists of replacing 3l in an+l by formula
7 which does not contain powers of the triple which allows one to evaluate the resulting
terms of the Syracuse sequence. as a result, we get the following estimate. Let’s introduce
operators defined formulas

P f = f /2, T f = 3 f + 1, Z f = 3 f

Let’s consider all possible scenarios of the behavior of the Syracuse sequence, the same
possible scenarios can be written in the following form

an+n = T1T2.....Tnan

Ti ∈ {P, T}, Ri ∈ {Z, P}, , an+n = R1R2.....Rnan + A

Let’s introduce
m = ∑

Ri=Z
1

and compute
∑

Ri=P
1 = n − m + m = n

By rules of Collatz we have after 2n steps

an+n = 3m/2nan + Bn

where
Aj = ∑

Ri=Z, i=1,j
1, Cj = − ∑

Ri=Z,i=1,j
1 − ∑

Ri=P, i=1,j
1

Bn = ∑
j=1,n

3Aj 2Cj

Bn ≤ ∑
j=1,n

3j/2j < 23n/2n ≤ 2(3/4)nan
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A = a2n = 3m(an ∗ 2−n + Bn) = (an ∗ 2−n + Bn)3m

A =
[α1]

∑
i=0

γi2i, γi ∈ {0, 1}, α1 = m ∗ ln3/ln2 + ln(2−nan)

Let
m∗ is count o f non zeros o f γi

l∗ is count o f zeros o f γi

by theorem 2 we will have

m∗ ≤ [α1]/2 + 5 = [m ln 3/ ln 2]/2 + 5

l∗ ≥ [α1/2 − 5 = [m ln 3/ ln 2]/2 − 5

After [α1] steps applying rules of Collatz we have

a2n+[α1]
≤ 3m3α1/22−α125 ∗ 35(an ∗ 2−n + Bn) = 3mq1 ∗ an

where
q1 = 3m3α1/22−α125 ∗ 35

Repeating the process 3 times and using n > 1000 ⇒ q3 < 1 ⇒ a8n < an 58

Theorem 5. Let

an =
n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1}

then for an Collatz conjecture is true 59

Proof. Proof follows from theorem 1-7 60

61

6. Conclusions 62

Our assertion proves that after 2n of steps the sequence comes to a number less than 63

the start one, from which follows the solution of the Collatz conjecture. 64
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