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Paper analyzes the number of zeros in the binary representation of a natural
number. The analysis is carried out using the concept of the fractional part of
a number, which naturally arises when finding a binary representation. This
idea relies on the fundamental property of the Riemann zeta function, which is
constructed using the fractional part of a number. Understanding that the ratio
of the fractional and integer parts, by analogy with the Riemann zeta function,
expresses the deep laws of numbers, will explain the essence of this work. For
the Syracuse sequence of numbers that appears in the Collatz conjecture, we
use a binary representation that allows us to obtain a uniform estimate for
all terms of the series, and this estimate depends only on the initial term of
the Syracuse sequence. This estimate immediately leads to the solution of the
Collatz conjecture.
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1. Introduction 2

paper analyzes the number of zeros in the binary representation of a natural number. 3

The analysis is carried out using the concept of the fractional part of a number, which 4

naturally arises when finding a binary representation. This idea relies on the fundamental 5

property of the Riemann zeta function, which is constructed using the fractional part of a 6

number. Understanding that the ratio of the fractional and integer parts, by analogy with 7

the Riemann zeta function, expresses the deep laws of numbers, will explain the essence of 8

this work. For the Syracuse sequence of numbers that appears in the Collatz conjecture, we 9

use a binary representation that allows us to obtain a uniform estimate for all terms of the 10

series, and this estimate depends only on the initial term of the Syracuse sequence. This 11

estimate immediately leads to the solution of the Collatz conjecture. 12

2. Materials and Methods 13

This work is based on the following methods of analysis of the Syracuse sequence 1. 14

Analysis of simple cases of natural numbers starting from which the Syracuse sequence 15

quickly converges to one 16

2. A process of expansion of a natural number in powers of two is created. 17

3. The proximity to the completion of decomposition is analyzed at each stage 18

4. The number of zeros in the binary expansion of a natural number is calculated 19

5. It is shown that the number of powers of two prevails in the doitic expansions in the 20

Syracuse sequence 21

6 Based on these results, it is shown that the Syracuse sequence converges to one 22

3. Results 23

In this work we present the final solution to the Collatz conjecture formulated in [1]. 24

The Collatz conjecture concerns integer sequences generated as follows: 25

Start with any positive integer a0. Every next term is defined as 26

an+1 = αnan + βn. (1)

Where n ≥ 0, and if an is even then αn = 0.5, βn = 0 if an is odd, then αn = 3, βn = 1. 27

The conjecture is that regardless of a0 , the sequence will always reach 1. The conjecture 28

is named after Lothar Collatz, who introduced the idea in 1937.[1] It is also known as the 3n 29

+ 1 problem, the 3n + 1 conjecture, the Ulam conjecture (after Stanisław Ulam), Kakutani’s 30

problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse’s 31

algorithm (after Helmut Hasse), or the Syracuse problem. 32

In this work, we obtained a uniform estimate for the Syrocuse sequences and proved 33

that every 4n steps the sequences come down to a number smaller than the starting term, 34

from which follows the solution of the Collatz problem. 35
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4. Rezults 36

Our idea of the proof is to obtain a uniform estimate for the Syracuse sequence
described in Introduction. Here and below, we will always mean by an n-term of the
sequence . For definiteness, we assume that

a0 = 2n+1an, a1 = 2nan, a2 = 2n−1an, ....., an−1 = 2an, an, ...

Let us formulate some well-known results that we will use. Let an be any positive 37

integer and γi ∈ {0, 1} , then we can express a as the sum of the powers of 2 represented by 38

each γi = 1 (2-Base number) 39

an =
n

∑
0

2iγi (2)

According to the sequence generation rule, it is enough to consider the odd numbers,
since even numbers will always become odd. Hence, we can assume that for any a0, after
the last appearance of a zero coefficient γi ∈ {0, 1}), the rest are not zero, as they would
disappear from dividing by 2. Thus, without losing generality of our reasoning, we can
assert that it suffices to consider numbers an of the following form:

an =
n

∑
i=k+2

2iγi +
k

∑
i=0

2i, n > k > 2

Let

an = 2n + 1, n > 0, n ≥ m > 0

and an+k is generated by sequence generation rule (1) Then 40

an+2m = 3m ∗ 4n/2−m + 1 (3)

Proof. Using the rule (1) step by step we get proof. 41

42

Let

an =
n

∑
0

2i, n > 0, n ≥ m > 0

Then 43

an+2m = 3m2n−m − 1 (4)

Proof. Using the formula of the sum of the geometric progression, we get

an =
n

∑
0

2i = 2n+1 − 1

Using the formula (1) we get

an+1 = 3 ∗ 2n − 3 + 1 = 3 ∗ 2n − 2

an+2 = 3 ∗ 2n−1 − 1, an+2m = 3m2n−m − 1

44

Consider 3n as n = 12, 13, 14, 15, 25in binary representation, 45

312 = 10000001101111110001

313 = 110000101001111010011
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314 = 10010001111101101111001

315 = 110110101111001001101011

325 = 1100010101000110010101100010101010100011

We can expect the number of zeros in such numbers to be quite large. And if the Syracuse 46

sequence stumbles upon these numbers, we expect it to turn back to 1. In the following 47

section we will prove this point. 48

Let

an =
n

∑
i=0

4i

then
a2n+1 = 1

Proof.

an+1 = 3
n

∑
i=1

4i + 4

an+2 = 3
n−1

∑
i=0

4i + 1

an+2 = 3
n−1

∑
i=1

4i + 4

an+3 = 3
n−2

∑
i=0

4i + 1

after (n+1)-steps we have proof 49

Consider an = ∑n
i=0 4i as n = 10, 12, 20 in binary representation,

a10 = (100100100)

a12 = (100100100100)

a20 = (100100100100100100)

Binary representation helps to understand the idea of this work. We will demonstrate
several times how the Syracuse sequence turns into a combination of powers of triples,
which in turn have a lot of zeros in binary representation. The zeros, in turn, tend to return
the Syracuse sequence to its initial position. Let

an =
n

∑
i=0

γi2i, γi ∈ {0, 1}

m-is number of non-zero elements γi then 50

an+2m = 3man ∗ 2−n+m (5)

Proof. Proof implies from theorem 3 51

Let

an = 4n+2 − 3
n

∑
i=0

4i(−1)i

then 52

an = 4n+2 − 4n+1(−1)n+1 + 1 (6)
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53

a2n+1 = 3n+14 − 3n+1(−1)n+1 (7)

Proof.

an = 4n+2 − 3
n

∑
i=0

4i(−1)i = 4n+2 − 3
1 − 4n+1(−1)n+1

1 − 4
= 4n+2 − 4n+1(−1)n+1 + 1

Applying rule (1) we get second assertion of Theorem 54

For an defined by formulas

an =
n

∑
0

2i, n ≥ m > 0

then
a3n = 3n − 1

Let
x ∈ N

then ∃
(α1, α2...., αj) ∈ Rj, j ∈ N

x =
j−1

∑
i=1

2[αi ] + 2αj

Proof. Let j=1 then we can take
α1 = log2(x)

x = 2α1

Now let j=2. Then we can take

α1 = log2(x), α2 = log2(x − 2[α1])

2α1 = 2[α1] + 2α2

from which we have

2α1 =
j−1

∑
i=1

2[αi ] + 2αj

Other statement is simple. 55

Let x ∈ N, [αj]− [αj+1] = δj > 0 56

x =
j−1

∑
i=1

2[αi ] + 2αj

x =
j

∑
i=1

2[αi ] + 2αj+1

Then 57

58

δjln2 = −lnϵj − lnln2 + ϵj+1ln2 + o(2−δj+ϵj+1)

2ϵj+1 = (2ϵj − 1)2δj

Proof.
2αj = 2αj+1 + 2[αj ]
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2ϵj = 2−δj+ϵj+1 + 1

ϵj ln 2 = 2−δj+ϵj+1 + o(2−δj+ϵj+1)

2ϵj+1 = (2ϵj − 1)2δj

59

Let x ∈ N, [αj]− [αj+1] = δj > 0 60

ϵ1 < 1/2

x =
j−1

∑
i=1

2[αi ] + 2αj

x =
j

∑
i=1

2[αi ] + 2αj+1

σj = 1 − ϵj

Then 61

62

as δj = 1 63

σj+1ln2 =
2σjln2

1 − σj+1ln2
+ o(σ2

j+1/4)

and as δj > 1 64

σj+1ln2 = 2σjln2
1 − σjln2 + o(2σ2

j+1)

[1 − σj+1ln2]

Proof. From
2ϵj = 2−δj+ϵj+1 + 1

we can rewrite
21−σj = 2−δj+1−σj+1 + 1

after logarithmization we get

ln(21−σj) = ln2 − δjln2

Computing as δj = 1 65

ln(2−σj+1 + 1) = ln((1 − σj+1ln2 + σ2
j+1ln2/2) + 1)

ln(2 − σj+1ln2 + σ2
j+1ln22/2) = ln2 + ln(1 − σj+1ln2/2 + σ2

j+1ln2/4)

ln(2−σj+1 + 1) = ln2 − ln2σj+1/2 + ln22σ2
j+1/2 + o(σ2

j+1/4)

ln2 − σjln2 = ln2 − ln2σj+1/2 + ln22σ2
j+1/2 + o(σ2

j+1/4)

σj+1ln2 =
2σjln2

1 − σj+1ln2/2
+ o(σ2

j+1/4)

Repeating computing as δj > 1 we get

ln(2−δj+1−σj+1 + 1) = ln((2−δj+1)2−σj+1 + 1)
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ln(1+ 2−δj+1 + 2−δj+1[−σj+1ln2+ σ2
j+1ln22/2]) = ln(1+ 2−δj+1 − σj+1ln2/2+ σ2

j+1ln2/4)

σjln2 = ln22−δj+1 + 2−δj+1σj+1ln2 + o(σ2
j+1)

σj+1ln2 = 2δj−1 ln2 − 2−δj−1

1 − σj+1ln2/2
+ 2δj−1σjln2

1
1 − σj+1ln2/2

+ o(σ2
j+1)

σj+1ln2 = −2δj−1 ln2 − 2−δj−1

1 − σj+1ln2/2
+ 2δj−1σjln2

1
1 − σj+1ln2/2

+ o(σ2
j+1)

66

Examples calculating ϵj 67

as ϵj+1 ≈ 0.51 and 68

69

1.
as δj = 1, ϵj = 2ϵj+1 /(4 ln 2) ≈ 0.75

2.
as δj = 2, ϵj = 2ϵj+1 /(4 ln 2) ≈ 0.51

3.
as δj = 3, ϵj = 2ϵj+1 /(8 ln 2) ≈ 0.25

4.
as δj = 4, ϵj = 2ϵj+1 /(8 ln 2) ≈ 0.12

Examples calculating ϵj+1 70

as ϵj ≈ 0.51 and 71

72

1.
as δj = 1, ϵj+1 ≈ 0.75

2.
as δj = 2, ϵj+1 ≈ 0.51

3.
as δj = 3, ϵj+1 ≈ 0.25

4.
as δj = 4, ϵj+1 ≈ 0.12

Let 73

x ∈ N, x =
j−1

∑
i=1

2[αi ] + 2αj

αj = [αj]

Then 74

the number of zeros in the binary representation Cz is calculated by the following formula 75

Cz =
j−1

∑
i=1

[δi − 1] + αj − 1

Proof.

Cz =
j−1

∑
i=1

[αi − αi+1 − 1] + αj − 1
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By definition δi

Cz =
j−1

∑
i=1

[δi − 1] + αj − 1

76

Let introduce µk, νk for

x =
n

∑
i=0

γi2i

by following rule

γk + γk+1 = 1, and γk+µk
+ γk+µk+1 = 1, or, γ0 = 1 or γn = 1and

i=µk

∏
i=k

γi = 1;

γj + γj+1 = 1, and γj+µj + γj+νj+1 = 1, νj =

i=νj

∑
i=j

(1 − γi)

Let
x = 3n = 2[α]+{α}

x =
n∗
∑
i=1

γi2i

{α} > 1/2

nν − count o f ν, nµ − count o f µ

Uµ = {µ1, µ2, ...., µnµ} Uν = {ν1, ν2, ...., νnν}

then ∀ δi, ∃ µk Such that
δi = µk − 1

∀ δik , ∃ µjk Such that
ik < jk, jk+1 < ik+1

nν = nµ + 1

n∗ =
nµ

∑
1

µk +
nν

∑
1

νk =
nµ

∑
1
(νk + µk) + nν

Proof. Proof issue from definition µ, ν and conditions the Theorem 77

Let
x = 3n = 2[α]+{α}

x =
n∗
∑
i=1

γi2i

n∗ = n ∗ [ln(3)/ ln(2)]

78

|{α} − 1/2| ≤ 0.1 (8)

then

x =
n

∑
1

γk ∗ 2k, γk ∈ {0, 1}

x =
n

∑
1

γk ∗ 2k, γk ∈ {0, 1}
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∑
γi=0

1 ≥ n∗/2 − 5

Proof. Solving equation
3n = 2α

we get 79

α = n/ ln(3)/ ln(2) (9)

We can rewrite 80

3n = 2[α]+{α}

Using Theorem 8, we create a sequence

ϵi, mi, ϵ1 = {α}

2ϵ1 =
i−1

∑
k=0

2[αk ]−α1 + 2αi−α1

Suppose
∑

γi=0
1 = 0

then by Theorem 10 we have

σj+1ln2 =
2σjln2

1 − σj+1ln2
+ o(ln 2σ2

j+1/4)

2−1σj+1ln2 =
σjln2

1 − σj+1ln2
+ 2−1 ∗ o(ln 2σ2

j+1/4)

After repeating j times we get

2−jσj+1ln2 =
σ1ln2

∏
j
1(1 − σk+1ln2/2)

+
j

∑
1

2−k ∗ o(ln 2σ2
k+1/4)

By Theorems (9-10) and condition of the current Theorem proceed

ln2/2 < σ1ln2 < o(ln 2σ2
k+1/4)

repeating, we get in case of our conditions

∑
γi=0

1 ≥ 2

Let

Pk =
k

∏
1
(1 − σk+1ln2/2)

then by Theorem 10 we get

Pn∗2−n∗
σn∗+1 = ln 2σ1 − ln2∗

nµ

∑
k=1

Pk2−n∗+∑i=k
i=1(µk+νk)− ln2∗ Pnν 2−n∗−1+∑nν

i=1(µk+νk)2nν + ln 2∗σ1 + o(max
j

(ln 2σ2
j )/4)

Finally we get

ln 2∗σ1 = ln2∗ 2−n∗
Pn∗σn∗+1 + ln2∗

nµ

∑
k=1

Pk2−n∗+∑i=k
i=1(µk+νk)+ ln2∗ Pnν 2−n∗+∑nν

i=1(µk+νk)2nν−1 + o(max
j

(ln 2σ2
j )/4)
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Computing s , where

s = ln2 ∗
nµ

∑
k=1

∗Pk2−n∗+∑i=k
i=1(µk+νk) + ln2 ∗ ∗Pnν 2−n∗+∑nν

i=1(µk+νk)2nν−1

theorem 81

supposing
nµ

∑
i=1

µk < n∗/2 − 1

we get

nµ <
nµ

∑
i=1

µk < n∗/2 − 1

s < ln2 ∗
n∗/2−1

∑
k=1

∗Pk2−2k ≤ ln 2 ∗ 1
4

1
1 − 1/4

= ln2/3

the other side
ln2/2 < σ1ln2 < ln2/3

immediately we get
nµ

∑
i=1

µk > n∗/2

Now by Theorem 13 me can using counting ϵi = 1 − σi for counting δi and then we
get.

∑
γi=0

1 ≥ n∗/2 − 1

82

Let

an =
n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1}

then

a8n < an

Proof. Consider our formula for 3 in binary representation, and we see the participation
of 4i creates an intermittent sequence of zeros and ones, and zero has about the same
number of ones, more precisely, zeros are not less than the number of ones minus 2 and
after applying Theorem 3-17 we get proof. In more detail, the estimation process consists
of replacing 3l in an+l by formula 7 which does not contain powers of the triple which
allows one to evaluate the resulting terms of the Syracuse sequence. as a result, we get the
following estimate. Let’s introduce operators defined formulas

P f = f /2

T f = 3 f + 1

Z f = 3 f

Let’s consider all possible scenarios of the behavior of the Syracuse sequence, the same
possible scenarios can be written in the following form

an+n = T1T2.....Tnan

Ti ∈ {P, T}
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Ri ∈ {Z, P}

an+n = R1R2.....Rnan + A

Let’s introduce
m = ∑

Ri=Z
1

and compute
∑

Ri=P
1 = n − m + m = n

By rules of Collatz we have after 2n steps

an+n = 3m/2nan + Bn

where
Bn = ∑

j=1,n
3∑Ri=Z, i=1,j 1/2∑Ri=Z, i=1,j 1+∑Ri=P, i=1,j 1

Bn ≤ ∑
j=1,n

3j/2j < 23n/2n ≤ 2(3/4)nan

A = a2n = 3m(an ∗ 2−n + Bn) = (an ∗ 2−n + Bn)3m

A =
[α1]

∑
i=0

γi2i, γi ∈ {0, 1}, α1 = m ∗ ln3/ln2 + ln(2−nan)

Let
m∗ is count o f non zeros o f γi

l∗ is count o f zeros o f γi

by theorem 12 we will have

m∗ ≤ [α1]/2 + 5 = [m ln 3/ ln 2]/2 + 5

l∗ ≥ [α1/2 − 5 = [m ln 3/ ln 2]/2 − 5

After [α1] steps applying rules of Collatz we have

a2n+[α1]
≤ 3m3α1/22−α125 ∗ 35(an ∗ 2−n + Bn) = 3mq1 ∗ an

where
q1 = 3m3α1/22−α125 ∗ 35

Repeating the process 3 times and using n > 1000, we get

q3 < 1

we get
a8n < an

83

Let

an =
n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1}

then for an Collatz conjecture is true 84

Proof. Proof follows from theorem 3-14 85

86
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5. Conclusions 87

Our assertion proves that after 2n of steps the sequence comes to a number less than 88

the start one, from which follows the solution of the Collatz conjecture. 89
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