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Abstract Suppose that € is a first-order language. Let £ denote the union of € and {t, f}
where t(true), f(false) are the nullary operations. We may define a binary relation ‘<’ such that
the sentences set ® of the language £ is a preordered set. And we may construct a boolean
algebra ®/~, denoted ®, by an equivalence relation ‘~. Then @ is a partial ordered set. Let A
be a structure of the language L. If Th(A) is a theory of A, then ThT(A) is an ultrafilter. If¥ c &
is a finitely generated filter, then ¥ is principal. We may define a kernel of a homomorphism
of the boolean algebra ® such that the kernel is a filter. And a filter is a kernel if it is satisfied
by some assumptions.
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1. INTRODUCTION

Suppose that € is a first-order language. Let £ be the union of € and {t, f} where
t(true), f(false) are two nullary operations. Then £ is a first-order language. Let ® be
the set of all sentences of the language £7. If we define a binary relation ‘<’, then ®
is a preordered set, see proposition 3.1 and notation 3.1. And we have that ¢ < y if
andonly if E¢ — y for ¢,y € @, cf. propositions 3.4 and 3.5 and corollary 3.5.1.

If we define an equivalence relation ‘~, then the quotient ® := &/~ is a boolean
algebra, see definition 3.1, proposition 3.6, and notation 3.2 for the details. Hence
® is a poset, see proposition 3.7.

Suppose that A is a structure of the language ¥. Let Th(A) be the theory of A. We
denote the quotient Th(A)/~ by Th(A). And let Th'(A) denote the union Th(A) U {t}
wheret € , see notation 3.3. Then Th'(A) is an ultrafilter of ®, see proposition 3.12.
Let £ be the set of all structures of the language €. Then the theory Th' (M) is a filter
for M c L, see proposition 3.13 and corollary 3.13.1 for the details.

If ¥ c & is a finitely generated filter, then ¥ has the minimum p. Hence V¥ is
principal. And the filter ¥ is consistent if and only if there exists a structure A of the
language L such that A k y, cf. propositions 3.14 and 3.15 and corollary 3.14.1. For
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a finite subset M € £, if Th'(A) is principal for every A € M, then Th'(M) is principal,
see proposition 3.16 and corollary 3.16.1.

We may define a kernel of a homomorphism of the boolean algebra ®. And the
kernel is a filter, see definition 3.2 and propositions 3.17 and 3.20 for more details.
And if ¢, w € ® and V¥ is a filter generated by {¢ V v }, then V¥ is a kernel of a homo-
morphism ¢ iff E (@) V @(y) with E ¢(¢) and £ ¢(y), cf. propositions 3.18 and 3.19.

2. PRELIMINARIES

2.1. Universal Algebra. Recall some definitions in universal algebra.

Definition 2.1 ([4, 6]). An n-ary operation on a nonempty set X is a mapping f:
X" — X. An n-ary relation on X is a subset of X".

Definition 2.2 ([4,6]). A (first-order) language is a nonempty set £ of symbols such
that there exists a mapping o: £ — Z where Z is the set of integers. For every f € &,
o(f) is called the arity. If o(f) > O, then we say that f is an n-ary operation symbol.
If o(f) < O, then f is called the n-ary relation symbol. If the arity of an operation
symbolfisO, 1 or 2,then f is said to be a nullary, unary or binary operation symbol,
respectively. The language £ is said to be algebraic if £ has no relation symbols.

Definition 2.3 ([4,6]). A structure A of a language 2 is an ordered pair (A, L) where
Alisanonempty set,and L isa mapping such that L(f) isan n-ary operation(relation)
A on A, for every n-ary operation(relation) symbol f € £. If f is a nullary operation
symbolin £, then L(f) isa constant in A. If £ is algebraic, then A is called an algebra.

Definition 2.4 ([4,6]). Suppose that Lisalanguage. Let &’ := {f € £ | o(f) = 0}. Then
£ is an algebraic language. Let X be a nonempty set, T an algebra of the language
2" generated by X. Then a member of T is called a term.

Definition 2.5 ([6]). An algebra (B,V,A,,0, 1) with two binary operations(V, A), one
unary operation(’), and two nullary operations(0, 1) is called a boolean algebra pro-
vided that

e (B,V,A) is a distributive lattice[6].
e xV1=1landxAO=0.
e xVXx =landxAx =0.
Definition 2.6 ([6]). Let B be a boolean algebra. A subset F of B is a filter if

e 1eF.
e Ifa,be FthenaAbeF.
e IfaecFthenxe Fforallx e Bwithx > a.’

A maximal filter is called an ultrafilter. A filter F is said to be principal if F is gener-
ated by one element.

Definition 2.7 ([4, 6]). Suppose that A, B are structures of a language £. Then a
function ¢: A — B is called a homomorphism provided that

@(fA(a1,...,an) = FPp(a1),. ... @(an)
for all n-ary operation f, and
r(a1,...,am) implies rP(p(a1),...,@(am))

for all m-ary relation r. We denote the set of the homomorphisms from A to B by
Hom(A, B).

lleta > bifa Vb = a. Then a lattice is a poset, cf. [4].
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2.2. Mathematical Logic.

Definition 2.8 ([5]). The following symbols are called the propositional connec-
tives.

(2.1) Equivalence -
(2.2) Implication —
(2.3) Conjunction A
(2.4) Disjunction \%
(2.5) Negation =
And the following symbols are the quantifiers.

(2.6) Universal v
(2.7) Existential 3

Definition 2.9 ([5,6]). Suppose that £ is a first-order language and X is a nonempty
set ofvariables. Letrbe an n-aryrelationsymbolin £,and ty,..., t, terms[definition 2.4]
over X. Then r(ty...,ts) is said to be an atomic formula. An expression is called a
formula of the language & if it has one of the following forms

e an atomic formula.

e s =twheres,tareterms.

e Vxy, Ixy where x is a variable and y is a formula.

ey o dy - wAd wVe -y where y, ¢ are formulas.

A formula y is a subformula of ¢ if y is consecutive string of symbols in the for-
mula ¢.

Theorem 2.1 ([5]). Lety, ¢, w be formulas. Then we have following axiom schemata

(2.8) Fp o ¢

(2.9) FEPVP e

(2.10) FEPANP o ¢

(2.11) FyV-y

(2.12) Fy e -y

(2.13) Ely @) o (y = @)A(d—y)
(2.14) Fy > ¢ o yVe

(2.15) E(y — @) o (mp — )
(2.16) EY A o oy Vv -g)
(2.17) FYyAPp o dAYy

(2.18) EyVo o dVy

(2.19) FyVyAg) oy

(2.20) Fy Ay Vo) oy

(2.21) FEYA@Vw) o yAd)ViyAw)
(2.22) FY V(P AW o (¥ V) Ay V)
(2.23) FPpV(iyVw) o (V) Ve

( ( (

2.24) FEPA(WAw) o (pAY)Aw
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(2.25) FEd o> PpVy
(2.26) Fd — (v — @)
Proof. Immediate from truth tables. m]

Definition 2.10 ([6]). An occurrence of a variable x in a formula y is bound if a
subformula of y has the form Vx¢ or Ix¢. Otherwise, an occurrence of x is free in
. Aformula is called a sentence if the formula has no free variable.

Definition 2.11 ([2, 4]). Let A be a structure of a language £. Suppose that T is
an algebra of terms of the language £. Then an interpretation is a member of
Hom(T,A). If ¢ € Hom(T,A) is a homomorphism, then ¢ is the homomorphism
such that ¢ (x) = aand @}(y) = ¢(y) forally # x. Fort € T and ¢ € Hom(T,A), the
value ¢(t) € A is denoted t*[gp].

Definition 2.12 ([2]). Let A be a structure of a language € and ¢ a sentence of the
language L. We say that A satisfies ¢, denoted A k ¢, as follows

(2.27) ¢ = (s = t)[¢] Ak ¢ iff o] = t[p].

(2.28) ¢ =rty...tn)[e] Ak @ iff (o] . .. thlepl).

(2.29) ¢ = ~yle] AE@iff Ar ylpl]

(2.30) ¢ = (v V)] Ak @iffAE ] or Ak wlpl].

(2.31) ¢ = (y A w)p] Ak ¢ iff Ak ylpl and A E wlp].

(2.32) ¢ = (v — w)[ep] AE @ iffAEwlp] implies A E wlep].
(2.33) ¢ = (v < w)p] AE@iff Akr ylp]ifandonly if A E wlep].
(2.34) ¢ = Vxy[p] Ak ¢ iff Ak ylpy] foralla e A.

(2.35) ¢ = Ixy[yp] Ak ¢ iff Ak wlp}] for some a € A.

IfAE ¢ forall A e L, then ¢ is called a tautology, denoted k¢, where L is the set of
the structures of £. The set of the tautologies is denoted Th.

Definition 2.13 ([2, 4]). Let ¢ be a sentence of a language £ and A a structure of
the language &. If A £ ¢, then A is a model of ¢. We denote the set of the models of
¢ by Mod(¢). A theory is a set of sentences. A theory of a model A is the set of the
sentences satisfied by A. Let Th(A) denote the theory of the model A.

Theorem 2.2 (cf. [2,4,6]). Let ¢,y be sentences of a language L. Then Mod (¢ Ay) =
Mod(¢) N Mod(y).

Proof. Immediate from (2.31) of definition 2.12. O
Corollary 2.2.1 (cf. [2,4,6]). Let ¢,y be sentences of a language & If E¢ Ay & ¢,
then Mod(¢) is a subset of Mod(y).

Proof. Immediate from theorem 2.2. O
Definition 2.14 ([2,4]). A theory @ is said to be consistent if there exists at least
one model A such that A £ ®.

Theorem 2.3 ([4]). Let ® be a consistent theory. Then we have that ¢ € & implies
-¢p ¢ P.

Proof. There exists a model A such that A £ ®. Hence we have that A £ ¢ for every
¢ € . It follows that A £ —¢ for all ¢ € & by axiom schemata (2.12) and (2.29).
Therefore, we have that —¢ ¢ d if p € b. O
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3. A BOOLEAN ALGEBRA OF SENTENCES

Notation 3.1. We suppose that € is a first-order language. Let €7 := QU {t,f} be a
language where t(true) and f(false) are nullary[definition 2.2] operations. And We
suppose that ® is the set of all sentences of the language £'. Let £ be the set of all
structures of the language £.

Proposition 3.1. Let ¢,y be sentences of the language £'. Define ¢ < wy if
E¢d Ay & ¢. Then the set @ is a preordered[1] set where & is defined in nota-
tion 3.1.

Proof. By axiom schema (2.10), we have ¢ < ¢. And if ¢ < y and y < w then we
have

l. Edprhy o — hypothesis.

2. FYAwey — hypothesis.

3. EpAY Aw e P — modus ponens, 1 and 2.
4. FPpAhw e @ — modus ponens, 1 and 3.

It follows that ¢ < w and y < w imples ¢ < w. Therefore, the set @ is preordered. O

Corollary 3.1.1. Let ¢, y be sentences of the language &', Ify > ¢ thenk pVy < .
Proof. We have that

1. Ay o @ — hypothesis.
2. ElpAy o @)oo PAY) — axiom schema (2.13).
3. EpoPAy — modus ponens, 2.
4, EpoPAY VY — axiom schema (2.25).
5 r¢p—-vy — axiom schema (2.19).
6. Fy oy — axiom schema (2.8).
7. EPVYy oy — modus ponens, 5 and 6.
8 Fy-oywyVe — axiom schema (2.25).
9. EpVy oy — modus ponens, 7 and 8.
This completes the proof. O

Proposition 3.2. Let T be a tautology of the language £f. Then we have ¢ < T for
all sentence ¢ of the language e,

Proof. For all sentence ¢ of ef,

1. ¢ > (1> ) — axiom schema (2.26).
2. E-¢pV (-t V) — axiom schema (2.14).
3. F(m¢pVaT)V — axiom schema (2.23).
4. EPpAT o P — axiom schemata (2.14) and (2.16).
5 kT — hypothesis.
6. ET—> (¢ > 1) — axiom schema (2.26).
7. E¢p—oT — modus ponens, 5 and 6.
8 Fp—o¢ — axiom schema (2.8).
9. Ep—oTAYP — modus ponens, 7 and 8.

10. EpeoPpAT — modus ponens, 4 and 9.

This completes the proof. |

Proposition 3.3. Let ¢,y € . Thenwe have¢p <dpVyand ¢ Ay < ¢.

Proof. Immediate from axiom schemata (2.10), (2.20) and (2.24). O
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Proposition 3.4. Let ¢,y € ®. Then we have that Ak ¢ implies Ak y if¢ <y forall

structure A of the language L.

Proof. This is an immediate consequence of corollary 2.2.1. O
The following proposition is the converse of the proposition 3.4.

Proposition 3.5. Let ¢,y € P. If Ep - y then ¢ < y.

Proof. We have that

1. Ep— ¢ — axiom schema (2.8).
2. Edp oy — hypothesis.
3. Fpo Ay — modus ponens, 1 and 2.
4. FE@V g — axiom schema (2.11).
5 V- —o>¢V-agV-y — axiom schema (2.25).
6. FpVpV-y — modus ponens, 5.
7. EPV -V o (pAY > P) — axiom schemata (2.14) and (2.16).
8 EPpAy > ¢ — modus ponens, 7.
9. FPpAYy & ¢ — modus ponens, 3 and 8.
This completes the proof. O

Corollary 3.5.1. Let ¢,y e d. Then¢p <y ifandonlyif e ¢ — .
Proof. Immediate from propositions 3.4 and 3.5. O

We have that @ is a preordered set. Now we may construct a poset[4] by a equiv-
alence relation on &.

Definition 3.1. Suppose that ¢ and y are sentences of the language £~2T. We define
¢ ~yif £ & y. Itisclear that ‘~' is an equivalence relation[3]. Let ® denote the
quotient[3] set of ® by ~.

Notation 3.2. If ¢ € ® then the equivalence class[3] of ¢ is also denoted ¢. Hence
if ¢ € dthen ¢ is a sentence, and if ¢ € ® then ¢ is an equivalence class.

In definition 2.8, there are five propositional connectives. But it follows from the-
orem 2.1 that logic calculus only need two connectives, i.e., = and V. Hence & may
form a boolean algebra.

Proposition 3.6. \We have that (®, V, A, 1, ) is a boolean algebra[definition 2.5].

Proof. By axiom schemata (2.17) to (2.22), we have that (®, V, A) is a distributive
lattice. And we have

EpAfeo T
EpVtet
FPV-p ot
EP A o f
Therefore, the distributive lattice is a boolean algebra. |
A lattice is a poset, cf. [4,6]. Hence we have the following propositions.

Proposition 3.7. Let ¢,y € ®. Define¢ < wif E ¢ Ay = ¢. Then the boolean
algebra @ is a poset[6].

Proof. This is an immediate consequence of definition 3.1 and proposition 3.1. 0O
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Proposition 3.8. Let ¢, y,w € ®. Then we have that
PAY <Py <PVy.
Proof. Immediate from proposition 3.3. O
Proposition 3.9. Let ¢,w,w’ € . Thenp < wand ¢ < w’ impliesp < w A w'.
Proof. It is obvious. O

Proposition 3.10. Let ¢,y € ®. Then we have that ¢ < y if and only if there exists
wedsuchthate g Vw e y.

Proof. If ¢ < wthenk ¢ Vy & y bycorollary 3.1.1. Hence y is the desired sentence.
On the other hand, ifE ¢ Vw < yw then ¢ < y by proposition 3.3. |

Proposition 3.11. Let ¢,y € ®. Then let Q betheset{w € ® | w > pandw > y}.
Then the infimum of Q exists and (infQ =¢ vV y) € Q.

Proof. Let w,w’ € ®. If ¢,y < wand ¢,y < w’ then ¢,y < w A w’ by proposition 3.9.
And we have w A w’ < w,w’ by proposition 3.8. Ifw > ¢,y thenk w A (pVy) & P Vy,
since axiomschema (2.21). Hencew > ¢Vy. By proposition 3.8 we have ¢,y < ¢pVy.
Therefore, ¢ V y is the infimum of Q. m|

Suppose that A is a structure of the language £. Then there exists a mapping
0: Th(A) — & by sending the sentences to its equivalence classes. We shall see
that the union o(Th(A)) U {t} is a filter[definition 2.6] in the boolean algebra ® where
te .

Notation 3.3. Su ppose that A is a structure of the language L. The quotient subset
Th(A)/:is denoted Th(A) where ‘~' is defined in definition 3.1. And we denote the
union Th(A) U {t} by Th'(A) where t € ®. It is clear that Th(A) c &.

Proposition 3.12. The set Th'(A) is an ultrafilter[definition 2.6] in ®.

Proof. It is obvious that t € Th'(A). Let ¢,y € Th'(A). Then ¢ Ay € Th'(A) by (2.31).
For all w € ®, we have that w > ¢ implies w € ThT(A) since corollary 3.5.1. By (2.29),
exactly one of Ak ¢, A £ —¢ is true for all ¢ € . This completes the proof. |

Remark 3.1. Let ¢, € & and A be a structure of the language £. We have
FEly > @) Vg - ). fAEpandAE¢p - y,thenAE ¢ & y. Bute ¢ & v
need not be true. Hence we have that A ¥ w — —¢ and —¢ ¢ Th'(A) if A £ ¢ and
AEd — .

Proposition 3.13. Let{A,}ic be aset of structures of the language L. Then we have

Th'({A}) = | Th(A).
i€l
Proof. It is clear that the intersection of the filters is a filter. And it is obvious that
Ai k¢ ifand only ifqbeThT(A,-) for all /. O
Corollary 3.13.1. Let M C L. Then the set Th'(M) is a filter.

Proof. This is an immediate consequence of proposition 3.13. O
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If a filter is finitely generated, then the filter is principal. And the intersection
of finitely many principal filters is a principal filter. Hence we have the following
propositions.

Proposition 3.14. Ifthe filter Th'(A) is finitely generated, then Th'(A) has the min-
imum.

Proof. Suppose that the filter Th'(A) is generated by the set {p1,....06n}. Let
¢ = A1<i<n ®i- Then we have ¢ € Th'(A). Therefore, it is obvious that ¢ is the mini-
mum of the filter by proposition 3.8. O

Corollary 3.14.1. Ifthe filter Th'(A) is finitely generated, then Th'(A) is a principal
filter.

Proof. Immediate from definition 2.6 and proposition 3.14. O

Proposition 3.15. Let ¥ be a finitely generated filter of the boolean algebra &, u
the minimum member of Y. Then ¥ is consistent[definition 2.14] ifand only ifthere
exists a structure A of the language & such that A p.

Proof. If ¥ is consistent, then there exists a structure A of the language £ such that
Ak p by definition 2.14. On the other hand, we have that A £ y implies A k y for all
v € ¥ by proposition 3.4. It follows that A £ ¥. Hence V¥ is consistent. |

Proposition 3.16. Let A, B be structures of the language £. Suppose that ThT(A)
and Th'(B) are principal. Then ThT({A, B}) is a principal filter.

Proof. Suppose that Th'(A) and Th'(B) are generated by ¢ and y, respectively. By
proposition 3.13 we have ThT({A,B}) = Th'(A) N Th(B). Let Q denote the intersec-
tion. Then Qistheset {w € ® | w > ¢p and w > yw}. Hence Q is generated by ¢ V y
since proposition 3.11. O

Corollary 3.16.1. Let M c L be afinite subset. IFTh'(A) is principal for every A € M,
then Th'(M) is principal.

Proof. Immediate from corollary 3.13.1 and proposition 3.16. O
Remark 3.2. Suppose that ThT(A) is a principal filter generated by ¢. We have
known that Th'(A) is an ultrafilter by proposition 3.12. Hence one of W,y s in

Th(A) forally € ®. It follows ¢ < worg < =y, ie E(pAy) & Pore (P A-y) o ¢.
This is consistent since we have k (¢ — y) V (¢ — —y) and corollary 3.5.1.

We shall see that if ¢ a homomorphism[definition 2.7] of ® then the subset ¢ (t)
is a filter.

Proposition 3.17. Let ¢: ® — ® be a homomorphism. Then the subset ¢~ 1(t) is a
filter in ®.

Proof. Let ¢,y € @~ 1(t) and k denote ¢~1(t). Then we have
plpAy) =@ Aply) =t
Hence we have ¢ Ay € k. Sois¢ V y. And for all w € ® with w > ¢, we have
plw)=@lpVw)=p@)Velw =t

since corollary 3.1.1. Hence we have w € k. And it is clear that t € k. Therefore, the
subset k is a filter. O
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Definition 3.2 (cf. [3, 4, 6]). The kernel of a homomorphism ¢, denoted ker ¢, is
defined by @71 (t).

Remark 3.3. Suppose that afilter ¥ is not an ultrafilterin ®. If p Vi € ¥ with g,y ¢ V¥,
then there may not be a homomorphism such that ¥ is a kernel. Since if w is a
homomorphism with ¥ = kerw then w(¢ V y) = w(¢) V w(y). And w(¢) V w(y) may
not be a tautology if w(¢), w(y) # t. Hence we have a constradiction with ¢,y ¢ V.
Therefore a kernel is a filter but a filter need not be a kernel.

Proposition 3.18 (cf. [2,4,6]). Let ¢, w € ® with ¢ # w. Suppose that ¥ ¢ and ¢ .
Then we have that e ¢ V y if and only if Mod(¢) U Mod(y) = L, that is, forall A € L,
either ¢ or y is satisfied by A.

Proof. We may assume ¢ # -y without loss of generality. If Mod(¢) U Mod(y) = L,
then either A ¢ or Ak y forall A € L. Hence we have k ¢ V y by (2.33). On the
other hand,thatk ¢ Vy impliesAe ¢ vy forall A e L. By (2.33) we have A E ¢ or
Ak y forall A e L. It follows Mod(¢) U Mod(y) = L. This completes the proof. O

Proposition 3.19. Let ¢, w € ®. Suppose that Y is a filter generated by {¢ V y }.
Then there exists a homomorphism ¢ of ® such that ¥ is a kernel of ¢ if and only if
there exists ¢’, w' € ® such that e ¢’ vV w’ with ¥ ¢’ and ¢ y’.

Proof. Let ¢: ® — ® be a homomorphism defined by
¢ ifx=¢,

’

px) =y’ ifx=y,
f ifx#¢,wandx¢V.

Then it is clear that the statement holds. m]

It is clear that an ultrafilter is a kernel, since one of ¢, =¢ is in the ultrafilter for all
¢ € ®. The set Th'(A) is an ultrafilter.

Proposition 3.20. Suppose that A is a structure of the language 2. Then there
exists a homomorphism ¢: ® — & such that ker ¢ = Th'(A).

Proof Let ¢,y € ®. If ¢,y ¢ Th'(A) then ¢ Ay ¢ Th'(A), since p Ay < @, y. And if
AE ¢ Vythen either ¢ or y isa member of Th'(A). Then we define a mapping @ as
follows,
t ify e Th'(A),
ply) = : ¥
f ify ¢ Th'(A).
It is obvious that ¢ is the desired homomorphism. O
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