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Abstract Suppose that L is a first-order language. Let L† denote the union of L and {t, f}
where t(true), f(false) are the nullary operations. Wemay define a binary relation ‘≤’ such that
the sentences set Φ of the language L† is a preordered set. And wemay construct a boolean
algebra Φ/∼, denoted Φ̃, by an equivalence relation ‘∼’. Then Φ̃ is a partial ordered set. Let A
be a structure of the language L. If Th(A) is a theory of A, then Th†(A) is an ultrafilter. If Ψ ⊂ Φ̃
is a finitely generated filter, then Ψ is principal. Wemay define a kernel of a homomorphism
of the boolean algebra Φ̃ such that the kernel is a filter. And a filter is a kernel if it is satisfied
by some assumptions.
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1. Introduction

Suppose that L is a first-order language. Let L† be the union of L and {t, f} where
t(true), f(false) are two nullary operations. Then L† is a first-order language. Let Φ be
the set of all sentences of the language L†. If we define a binary relation ‘≤’, then Φ
is a preordered set, see proposition 3.1 and notation 3.1. And we have that ϕ ≤ ψ if
and only if ⊨ ϕ → ψ for ϕ,ψ ∈ Φ, cf. propositions 3.4 and 3.5 and corollary 3.5.1.

If we define an equivalence relation ‘∼’, then the quotient Φ̃ B Φ/∼ is a boolean
algebra, see definition 3.1, proposition 3.6, and notation 3.2 for the details. Hence
Φ̃ is a poset, see proposition 3.7.
Suppose that A is a structure of the language L. Let Th(A) be the theory of A. We

denote the quotient Th(A)/∼ by T̃h(A). And let Th†(A) denote the union T̃h(A) ∪ {t}
where t ∈ Φ̃, see notation 3.3. Then Th†(A) is an ultrafilter of Φ̃, see proposition 3.12.
LetL be the set of all structures of the language L. Then the theory Th†(M) is a filter
forM ⊂ L, see proposition 3.13 and corollary 3.13.1 for the details.

If Ψ ⊂ Φ̃ is a finitely generated filter, then Ψ has the minimum µ. Hence Ψ is
principal. And the filter Ψ is consistent if and only if there exists a structure A of the
language L such that A ⊨ µ, cf. propositions 3.14 and 3.15 and corollary 3.14.1. For
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a finite subsetM ∈ L, if Th†(A) is principal for every A ∈ M , then Th†(M) is principal,
see proposition 3.16 and corollary 3.16.1.

We may define a kernel of a homomorphism of the boolean algebra Φ̃. And the
kernel is a filter, see definition 3.2 and propositions 3.17 and 3.20 for more details.
And if ϕ, ψ ∈ Φ̃ and Ψ is a filter generated by {ϕ ∨ ψ }, then Ψ is a kernel of a homo-
morphism φ iff ⊨ φ(ϕ) ∨φ(ψ) with ⊭ φ(ϕ) and ⊭ φ(ψ), cf. propositions 3.18 and 3.19.

2. Preliminaries

2.1. Universal Algebra. Recall some definitions in universal algebra.
Definition 2.1 ([4, 6]). An n-ary operation on a nonempty set X is a mapping f :
Xn → X. An n-ary relation on X is a subset of Xn.
Definition 2.2 ([4,6]). A (first-order) language is a nonempty set L of symbols such
that there exists amapping σ : L→ Úwhere Ú is the set of integers. For every f ∈ L,
σ(f ) is called the arity. If σ(f ) ≥ 0, then we say that f is an n-ary operation symbol.
If σ(f ) < 0, then f is called the n-ary relation symbol. If the arity of an operation
symbol f is 0, 1 or 2, then f is said to be a nullary, unary or binary operation symbol,
respectively. The language L is said to be algebraic if L has no relation symbols.
Definition 2.3 ([4,6]). A structure A of a language L is an ordered pair ⟨A, L⟩ where
A is a nonempty set, and L is amapping such that L(f ) is an n-ary operation(relation)
fA on A, for every n-ary operation(relation) symbol f ∈ L. If f is a nullary operation
symbol in L, then L(f ) is a constant in A. If L is algebraic, then A is called an algebra.
Definition 2.4 ([4,6]). Suppose that L is a language. Let L′ B {f ∈ L | σ(f ) ≥ 0}. Then
L′ is an algebraic language. Let X be a nonempty set, T an algebra of the language
L′ generated by X. Then a member of T is called a term.
Definition 2.5 ([6]). An algebra ⟨B,∨,∧,′ , 0, 1⟩ with two binary operations(∨,∧), one
unary operation(′), and two nullary operations(0, 1) is called a boolean algebra pro-
vided that

• ⟨B,∨,∧⟩ is a distributive lattice[6].
• x ∨ 1 = 1 and x ∧ 0 = 0.
• x ∨ x′ = 1 and x ∧ x′ = 0.

Definition 2.6 ([6]). Let B be a boolean algebra. A subset F of B is a filter if
• 1 ∈ F.
• If a,b ∈ F then a ∧ b ∈ F.
• If a ∈ F then x ∈ F for all x ∈ Bwith x ≥ a.1

Amaximal filter is called an ultrafilter. A filter F is said to be principal if F is gener-
ated by one element.
Definition 2.7 ([4, 6]). Suppose that A,B are structures of a language L. Then a
function φ : A → B is called a homomorphism provided that

φ(fA(a1, . . . ,an)) = fB(φ(a1), . . . ,φ(an))
for all n-ary operation f , and

rA(a1, . . . ,am) implies rB(φ(a1), . . . ,φ(am))
for all m-ary relation r. We denote the set of the homomorphisms from A to B by
Hom(A,B).

1Let a ≥ b if a ∨ b = a. Then a lattice is a poset, cf. [4].
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2.2. Mathematical Logic.

Definition 2.8 ([5]). The following symbols are called the propositional connec-
tives.

Equivalence ↔(2.1)
Implication →(2.2)
Conjunction ∧(2.3)
Disjunction ∨(2.4)
Negation ¬(2.5)

And the following symbols are the quantifiers.

Universal [(2.6)
Existential \(2.7)

Definition 2.9 ([5,6]). Suppose that L is a first-order language and X is a nonempty
set of variables. Let rbeann-ary relation symbol inL, and t1, . . . , tn terms[definition2.4]
over X. Then r(t1 . . . , tn) is said to be an atomic formula. An expression is called a
formula of the language L if it has one of the following forms

• an atomic formula.
• s = twhere s, t are terms.
• [xψ , \xψ where x is a variable and ψ is a formula.
• ψ ↔ ϕ, ψ → ϕ, ψ ∧ ϕ, ψ ∨ ϕ, ¬ψ where ψ ,ϕ are formulas.

A formula ψ is a subformula of ϕ if ψ is consecutive string of symbols in the for-
mula ϕ.

Theorem2.1 ([5]). Letψ ,ϕ,ω be formulas. Thenwehave followingaxiomschemata

⊨ ϕ ↔ ϕ(2.8)
⊨ ϕ ∨ ϕ ↔ ϕ(2.9)
⊨ ϕ ∧ ϕ ↔ ϕ(2.10)
⊨ ψ ∨ ¬ψ(2.11)
⊨ ψ ↔ ¬¬ψ(2.12)

⊨ (ψ ↔ ϕ) ↔ (ψ → ϕ) ∧ (ϕ → ψ)(2.13)
⊨ ψ → ϕ ↔ ¬ψ ∨ ϕ(2.14)
⊨ (ψ → ϕ) ↔ (¬ϕ → ¬ψ)(2.15)
⊨ ψ ∧ ϕ ↔ ¬(¬ψ ∨ ¬ϕ)(2.16)
⊨ ψ ∧ ϕ ↔ ϕ ∧ψ(2.17)
⊨ ψ ∨ ϕ ↔ ϕ ∨ψ(2.18)

⊨ ψ ∨ (ψ ∧ ϕ) ↔ ψ(2.19)
⊨ ψ ∧ (ψ ∨ ϕ) ↔ ψ(2.20)
⊨ ψ ∧ (ϕ ∨ ω) ↔ (ψ ∧ ϕ) ∨ (ψ ∧ ω)(2.21)
⊨ ψ ∨ (ϕ ∧ ω) ↔ (ψ ∨ ϕ) ∧ (ψ ∨ ω)(2.22)
⊨ ϕ ∨ (ψ ∨ ω) ↔ (ϕ ∨ψ) ∨ ω(2.23)
⊨ ϕ ∧ (ψ ∧ ω) ↔ (ϕ ∧ψ) ∧ ω(2.24)
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⊨ ϕ → ϕ ∨ψ(2.25)
⊨ ϕ → (ψ → ϕ)(2.26)

Proof. Immediate from truth tables. □

Definition 2.10 ([6]). An occurrence of a variable x in a formula ψ is bound if a
subformula of ψ has the form [xϕ or \xϕ. Otherwise, an occurrence of x is free in
ψ . A formula is called a sentence if the formula has no free variable.
Definition 2.11 ([2, 4]). Let A be a structure of a language L. Suppose that T is
an algebra of terms of the language L. Then an interpretation is a member of
Hom(T ,A). If φ ∈ Hom(T ,A) is a homomorphism, then φx

a is the homomorphism
such that φx

a(x) = a and φx
a(y) = φ(y) for all y , x. For t ∈ T and φ ∈ Hom(T ,A), the

value φ(t) ∈ A is denoted tA[φ].
Definition 2.12 ([2]). Let A be a structure of a language L and ϕ a sentence of the
language L. We say that A satisfies ϕ, denoted A ⊨ ϕ, as follows

ϕ B (s = t)[φ] A ⊨ ϕ iff sA[φ] = tA[φ].(2.27)

ϕ B r(t1 . . . tn)[φ] A ⊨ ϕ iff rA(tA1[φ] . . . t
A
n[φ]).(2.28)

ϕ B ¬ψ[φ] A ⊨ ϕ iff A ⊭ ψ[φ].(2.29)
ϕ B (ψ ∨ ω)[φ] A ⊨ ϕ iff A ⊨ ψ[φ] or A ⊨ ω[φ].(2.30)
ϕ B (ψ ∧ ω)[φ] A ⊨ ϕ iff A ⊨ ψ[φ] and A ⊨ ω[φ].(2.31)
ϕ B (ψ → ω)[φ] A ⊨ ϕ iff A ⊨ ψ[φ] implies A ⊨ ω[φ].(2.32)
ϕ B (ψ ↔ ω)[φ] A ⊨ ϕ iff A ⊨ ψ[φ] if and only if A ⊨ ω[φ].(2.33)
ϕ B [xψ[φ] A ⊨ ϕ iff A ⊨ ψ[φx

a] for all a ∈ A.(2.34)
ϕ B \xψ[φ] A ⊨ ϕ iff A ⊨ ψ[φx

a] for some a ∈ A.(2.35)

If A ⊨ ϕ for all A ∈ L, then ϕ is called a tautology, denoted ⊨ϕ, where L is the set of
the structures of L. The set of the tautologies is denoted Th.
Definition 2.13 ([2, 4]). Let ϕ be a sentence of a language L and A a structure of
the language L. If A ⊨ ϕ, then A is amodel of ϕ. We denote the set of the models of
ϕ byMod(ϕ). A theory is a set of sentences. A theory of a model A is the set of the
sentences satisfied by A. Let Th(A) denote the theory of the model A.
Theorem2.2 (cf. [2,4,6]). Letϕ,ψ be sentences of a language L. ThenMod(ϕ∧ψ) =
Mod(ϕ) ∩Mod(ψ).
Proof. Immediate from (2.31) of definition 2.12. □

Corollary 2.2.1 (cf. [2,4,6]). Let ϕ,ψ be sentences of a language L. If ⊨ ϕ ∧ ψ ↔ ϕ,
thenMod(ϕ) is a subset ofMod(ψ).
Proof. Immediate from theorem 2.2. □

Definition 2.14 ([2, 4]). A theory Φ is said to be consistent if there exists at least
one model A such that A ⊨ Φ.
Theorem 2.3 ([4]). Let Φ be a consistent theory. Then we have that ϕ ∈ Φ implies
¬ϕ < Φ.
Proof. There exists a model A such that A ⊨ Φ. Hence we have that A ⊨ ϕ for every
ϕ ∈ Φ. It follows that A ⊭ ¬ϕ for all ϕ ∈ Φ by axiom schemata (2.12) and (2.29).
Therefore, we have that ¬ϕ < Φ if ϕ ∈ Φ. □
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3. A Boolean algebra of sentences

Notation 3.1. We suppose that L is a first-order language. Let L† B L ∪ {t, f} be a
language where t(true) and f(false) are nullary[definition 2.2] operations. And We
suppose that Φ is the set of all sentences of the language L†. Let L be the set of all
structures of the language L.

Proposition 3.1. Let ϕ,ψ be sentences of the language L†. Define ϕ ≤ ψ if
⊨ ϕ ∧ ψ ↔ ϕ. Then the set Φ is a preordered[1] set where Φ is defined in nota-
tion 3.1.

Proof. By axiom schema (2.10), we have ϕ ≤ ϕ. And if ϕ ≤ ψ and ψ ≤ ω then we
have

1. ⊨ ϕ ∧ψ ↔ ϕ — hypothesis.
2. ⊨ ψ ∧ ω ↔ ψ — hypothesis.
3. ⊨ ϕ ∧ψ ∧ ω ↔ ϕ —modus ponens, 1 and 2.
4. ⊨ ϕ ∧ ω ↔ ϕ —modus ponens, 1 and 3.

It follows that ϕ ≤ ψ and ψ ≤ ω imples ϕ ≤ ω. Therefore, the set Φ is preordered. □

Corollary 3.1.1. Letϕ,ψ be sentences of the languageL†. Ifψ ≥ ϕ then ⊨ ϕ∨ψ ↔ ψ .

Proof. We have that
1. ⊨ ϕ ∧ψ ↔ ϕ — hypothesis.
2. ⊨ (ϕ ∧ψ ↔ ϕ) → (ϕ → ϕ ∧ψ) — axiom schema (2.13).
3. ⊨ ϕ → ϕ ∧ψ —modus ponens, 2.
4. ⊨ ϕ → ϕ ∧ψ ∨ψ — axiom schema (2.25).
5. ⊨ ϕ → ψ — axiom schema (2.19).
6. ⊨ ψ → ψ — axiom schema (2.8).
7. ⊨ ϕ ∨ψ → ψ —modus ponens, 5 and 6.
8. ⊨ ψ → ψ ∨ ϕ — axiom schema (2.25).
9. ⊨ ϕ ∨ψ ↔ ψ —modus ponens, 7 and 8.

This completes the proof. □

Proposition 3.2. Let τ be a tautology of the language L†. Then we have ϕ ≤ τ for
all sentence ϕ of the language L†.

Proof. For all sentence ϕ of L†,
1. ⊨ ϕ → (τ → ϕ) — axiom schema (2.26).
2. ⊨ ¬ϕ ∨ (¬τ ∨ ϕ) — axiom schema (2.14).
3. ⊨ (¬ϕ ∨ ¬τ) ∨ ϕ — axiom schema (2.23).
4. ⊨ ϕ ∧ τ → ϕ — axiom schemata (2.14) and (2.16).
5. ⊨ τ — hypothesis.
6. ⊨ τ → (ϕ → τ) — axiom schema (2.26).
7. ⊨ ϕ → τ —modus ponens, 5 and 6.
8. ⊨ ϕ → ϕ — axiom schema (2.8).
9. ⊨ ϕ → τ ∧ ϕ —modus ponens, 7 and 8.

10. ⊨ ϕ ↔ ϕ ∧ τ —modus ponens, 4 and 9.
This completes the proof. □

Proposition 3.3. Let ϕ,ψ ∈ Φ. Then we have ϕ ≤ ϕ ∨ψ and ϕ ∧ψ ≤ ϕ.
Proof. Immediate from axiom schemata (2.10), (2.20) and (2.24). □
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Proposition 3.4. Let ϕ,ψ ∈ Φ. Then we have that A ⊨ ϕ implies A ⊨ ψ if ϕ ≤ ψ for all
structure A of the language L.

Proof. This is an immediate consequence of corollary 2.2.1. □

The following proposition is the converse of the proposition 3.4.

Proposition 3.5. Let ϕ,ψ ∈ Φ. If ⊨ ϕ → ψ then ϕ ≤ ψ .
Proof. We have that

1. ⊨ ϕ → ϕ — axiom schema (2.8).
2. ⊨ ϕ → ψ — hypothesis.
3. ⊨ ϕ → ϕ ∧ψ —modus ponens, 1 and 2.
4. ⊨ ϕ ∨ ¬ϕ — axiom schema (2.11).
5. ⊨ ϕ ∨ ¬ϕ → ϕ ∨ ¬ϕ ∨ ¬ψ — axiom schema (2.25).
6. ⊨ ϕ ∨ ¬ϕ ∨ ¬ψ —modus ponens, 5.
7. ⊨ ϕ ∨ ¬ϕ ∨ ¬ψ → (ϕ ∧ψ → ϕ) — axiom schemata (2.14) and (2.16).
8. ⊨ ϕ ∧ψ → ϕ —modus ponens, 7.
9. ⊨ ϕ ∧ψ ↔ ϕ —modus ponens, 3 and 8.

This completes the proof. □

Corollary 3.5.1. Let ϕ,ψ ∈ Φ. Then ϕ ≤ ψ if and only if ⊨ ϕ → ψ .

Proof. Immediate from propositions 3.4 and 3.5. □

Wehave that Φ is a preordered set. Nowwemay construct a poset[4] by a equiv-
alence relation on Φ.

Definition 3.1. Suppose that ϕ andψ are sentences of the language L†. We define
ϕ ∼ ψ if ⊨ ϕ ↔ ψ . It is clear that ‘∼’ is an equivalence relation[3]. Let Φ̃ denote the
quotient[3] set of Φ by ∼.
Notation 3.2. If ϕ ∈ Φ then the equivalence class[3] of ϕ is also denoted ϕ. Hence
if ϕ ∈ Φ then ϕ is a sentence, and if ϕ ∈ Φ̃ then ϕ is an equivalence class.

In definition 2.8, there are five propositional connectives. But it follows from the-
orem 2.1 that logic calculus only need two connectives, i.e., ¬ and ∨. Hence Φ̃ may
form a boolean algebra.

Proposition 3.6. We have that ⟨Φ̃,∨,∧,¬, t, f⟩ is a boolean algebra[definition 2.5].

Proof. By axiom schemata (2.17) to (2.22), we have that ⟨Φ̃,∨,∧⟩ is a distributive
lattice. And we have

⊨ ϕ ∧ f↔ f
⊨ ϕ ∨ t↔ t

⊨ ϕ ∨ ¬ϕ ↔ t
⊨ ϕ ∧ ¬ϕ ↔ f

Therefore, the distributive lattice is a boolean algebra. □

A lattice is a poset, cf. [4,6]. Hence we have the following propositions.

Proposition 3.7. Let ϕ,ψ ∈ Φ̃. Define ϕ ≤ ψ if ⊨ ϕ ∧ ψ = ϕ. Then the boolean
algebra Φ̃ is a poset[6].

Proof. This is an immediate consequence of definition 3.1 and proposition 3.1. □
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Proposition 3.8. Let ϕ,ψ ,ω ∈ Φ̃. Then we have that

ϕ ∧ψ ≤ ϕ,ψ ≤ ϕ ∨ψ .
Proof. Immediate from proposition 3.3. □

Proposition 3.9. Let ϕ,ω,ω′ ∈ Φ̃. Then ϕ ≤ ω and ϕ ≤ ω′ implies ϕ ≤ ω ∧ ω′.

Proof. It is obvious. □

Proposition 3.10. Let ϕ,ψ ∈ Φ̃. Then we have that ϕ ≤ ψ if and only if there exists
ω ∈ Φ̃ such that ⊨ ϕ ∨ ω ↔ ψ .

Proof. Ifϕ ≤ ψ then ⊨ ϕ∨ψ ↔ ψ by corollary 3.1.1. Henceψ is the desired sentence.
On the other hand, if ⊨ ϕ ∨ ω ↔ ψ then ϕ ≤ ψ by proposition 3.3. □

Proposition 3.11. Let ϕ,ψ ∈ Φ̃. Then let Ω be the set {ω ∈ Φ̃ | ω ≥ ϕ and ω ≥ ψ}.
Then the infimum of Ω exists and (inf Ω = ϕ ∨ψ) ∈ Ω.

Proof. Let ω,ω′ ∈ Φ̃. If ϕ,ψ ≤ ω and ϕ,ψ ≤ ω′ then ϕ,ψ ≤ ω ∧ ω′ by proposition 3.9.
And we have ω ∧ω′ ≤ ω,ω′ by proposition 3.8. If ω ≥ ϕ,ψ then ⊨ ω ∧ (ϕ ∨ψ) ↔ ϕ ∨ψ ,
since axiomschema (2.21). Henceω ≥ ϕ∨ψ . Byproposition3.8wehaveϕ,ψ ≤ ϕ∨ψ .
Therefore, ϕ ∨ψ is the infimum of Ω. □

Suppose that A is a structure of the language L. Then there exists a mapping
ϱ : Th(A) → Φ̃ by sending the sentences to its equivalence classes. We shall see
that the union ϱ(Th(A))∪ {t} is a filter[definition 2.6] in the boolean algebra Φ̃where
t ∈ Φ̃.

Notation 3.3. Suppose that A is a structure of the language L. The quotient subset
Th(A)/∼ is denoted T̃h(A) where ‘∼’ is defined in definition 3.1. And we denote the
union T̃h(A) ∪ {t} by Th†(A) where t ∈ Φ̃. It is clear that Th†(A) ⊂ Φ̃.

Proposition 3.12. The set Th†(A) is an ultrafilter[definition 2.6] in Φ̃.

Proof. It is obvious that t ∈ Th†(A). Let ϕ,ψ ∈ Th†(A). Then ϕ ∧ ψ ∈ Th†(A) by (2.31).
For all ω ∈ Φ̃, we have that ω ≥ ϕ implies ω ∈ Th†(A) since corollary 3.5.1. By (2.29),
exactly one of A ⊨ ϕ, A ⊨ ¬ϕ is true for all ϕ ∈ Φ̃. This completes the proof. □

Remark 3.1. Let ϕ,ψ ∈ Φ and A be a structure of the language L. We have
⊨ (ψ → ϕ) ∨ (ψ → ¬ϕ). If A ⊨ ϕ and A ⊨ ϕ → ψ , then A ⊨ ϕ ↔ ψ . But ⊨ ϕ ↔ ψ
need not be true. Hence we have that A ⊭ ψ → ¬ϕ and ¬ϕ < Th†(A) if A ⊨ ϕ and
A ⊨ ϕ → ψ .

Proposition 3.13. Let {Ai }i∈I bea set of structures of the languageL. Thenwehave

Th†({Ai }) =
⋂
i∈I

Th†(Ai).

Proof. It is clear that the intersection of the filters is a filter. And it is obvious that
Ai ⊨ ϕ if and only if ϕ ∈ Th†(Ai) for all i. □

Corollary 3.13.1. LetM ⊂ L. Then the set Th†(M) is a filter.

Proof. This is an immediate consequence of proposition 3.13. □
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If a filter is finitely generated, then the filter is principal. And the intersection
of finitely many principal filters is a principal filter. Hence we have the following
propositions.

Proposition 3.14. If the filter Th†(A) is finitely generated, then Th†(A) has themin-
imum.

Proof. Suppose that the filter Th†(A) is generated by the set {ϕ1, . . . ,ϕn }. Let
ϕ B

∧
1≤i≤nϕi. Then we have ϕ ∈ Th†(A). Therefore, it is obvious that ϕ is the mini-

mum of the filter by proposition 3.8. □

Corollary 3.14.1. If the filter Th†(A) is finitely generated, then Th†(A) is a principal
filter.

Proof. Immediate from definition 2.6 and proposition 3.14. □

Proposition 3.15. Let Ψ be a finitely generated filter of the boolean algebra Φ̃, µ
theminimummember ofΨ. ThenΨ is consistent[definition2.14] if and only if there
exists a structure A of the language L such that A ⊨ µ.

Proof. If Ψ is consistent, then there exists a structure A of the language L such that
A ⊨ µ by definition 2.14. On the other hand, we have that A ⊨ µ implies A ⊨ ψ for all
ψ ∈ Ψ by proposition 3.4. It follows that A ⊨ Ψ. Hence Ψ is consistent. □

Proposition 3.16. Let A,B be structures of the language L. Suppose that Th†(A)
and Th†(B) are principal. Then Th†({A,B }) is a principal filter.

Proof. Suppose that Th†(A) and Th†(B) are generated by ϕ and ψ , respectively. By
proposition 3.13 we have Th†({A,B }) = Th†(A) ∩ Th†(B). Let Ω denote the intersec-
tion. Then Ω is the set {ω ∈ Φ̃ | ω ≥ ϕ and ω ≥ ψ}. Hence Ω is generated by ϕ ∨ ψ
since proposition 3.11. □

Corollary 3.16.1. LetM ⊂ L bea finite subset. If Th†(A) is principal for everyA ∈ M ,
then Th†(M) is principal.

Proof. Immediate from corollary 3.13.1 and proposition 3.16. □

Remark 3.2. Suppose that Th†(A) is a principal filter generated by ϕ. We have
known that Th†(A) is an ultrafilter by proposition 3.12. Hence one of ψ ,¬ψ is in
Th†(A) for all ψ ∈ Φ̃. It follows ϕ ≤ ψ or ϕ ≤ ¬ψ , i.e., ⊨ (ϕ ∧ ψ) ↔ ϕ or ⊨ (ϕ ∧ ¬ψ) ↔ ϕ.
This is consistent since we have ⊨ (ϕ → ψ) ∨ (ϕ → ¬ψ) and corollary 3.5.1.

We shall see that ifφ a homomorphism[definition 2.7] of Φ̃ then the subsetφ–1(t)
is a filter.

Proposition 3.17. Let φ : Φ̃ → Φ̃ be a homomorphism. Then the subset φ–1(t) is a
filter in Φ̃.

Proof. Let ϕ,ψ ∈ φ–1(t) and k denote φ–1(t). Then we have
φ(ϕ ∧ψ) = φ(ϕ) ∧φ(ψ) = t.

Hence we have ϕ ∧ψ ∈ k. So is ϕ ∨ψ . And for all ω ∈ Φ̃ with ω ≥ ϕ, we have
φ(ω) = φ(ϕ ∨ ω) = φ(ϕ) ∨φ(ω) = t

since corollary 3.1.1. Hence we have ω ∈ k. And it is clear that t ∈ k. Therefore, the
subset k is a filter. □
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Definition 3.2 (cf. [3, 4, 6]). The kernel of a homomorphism φ, denoted kerφ, is
defined by φ–1(t).

Remark 3.3. Suppose that a filterΨ is not anultrafilter in Φ̃. Ifϕ∨ψ ∈ Ψwithϕ,ψ < Ψ,
then there may not be a homomorphism such that Ψ is a kernel. Since if ϖ is a
homomorphism with Ψ = kerϖ thenϖ(ϕ ∨ψ) =ϖ(ϕ) ∨ϖ(ψ). Andϖ(ϕ) ∨ϖ(ψ) may
not be a tautology ifϖ(ϕ),ϖ(ψ) , t. Hence we have a constradiction with ϕ,ψ < Ψ.
Therefore a kernel is a filter but a filter need not be a kernel.

Proposition 3.18 (cf. [2,4,6]). Let ϕ, ψ ∈ Φ̃ with ϕ , ψ . Suppose that ⊭ ϕ and ⊭ ψ .
Then we have that ⊨ ϕ ∨ψ if and only ifMod(ϕ) ∪Mod(ψ) = L, that is, for all A ∈ L,
either ϕ or ψ is satisfied by A.

Proof. Wemay assume ϕ , ¬ψ without loss of generality. IfMod(ϕ) ∪Mod(ψ) = L,
then either A ⊨ ϕ or A ⊨ ψ for all A ∈ L. Hence we have ⊨ ϕ ∨ ψ by (2.33). On the
other hand, that ⊨ ϕ ∨ ψ implies A ⊨ ϕ ∨ ψ for all A ∈ L. By (2.33) we have A ⊨ ϕ or
A ⊨ ψ for all A ∈ L. It followsMod(ϕ) ∪Mod(ψ) = L. This completes the proof. □

Proposition 3.19. Let ϕ, ψ ∈ Φ̃. Suppose that Ψ is a filter generated by {ϕ ∨ ψ }.
Then there exists a homomorphismφ of Φ̃ such that Ψ is a kernel ofφ if and only if
there exists ϕ′, ψ′ ∈ Φ̃ such that ⊨ ϕ′ ∨ψ′ with ⊭ ϕ′ and ⊭ ψ′.

Proof. Let φ : Φ̃ → Φ̃ be a homomorphism defined by

φ(x) =

ϕ′ if x = ϕ,
ψ′ if x = ψ ,
f if x , ϕ,ψ and x < Ψ.

Then it is clear that the statement holds. □

It is clear that an ultrafilter is a kernel, since one of ϕ,¬ϕ is in the ultrafilter for all
ϕ ∈ Φ̃. The set Th†(A) is an ultrafilter.

Proposition 3.20. Suppose that A is a structure of the language L. Then there
exists a homomorphism φ : Φ̃ → Φ̃ such that kerφ = Th†(A).

Proof. Let ϕ,ψ ∈ Φ̃. If ϕ,ψ < Th†(A) then ϕ ∧ ψ < Th†(A), since ϕ ∧ ψ ≤ ϕ,ψ . And if
A ⊨ ϕ ∨ψ then either ϕ or ψ is a member of Th†(A). Then we define a mapping φ as
follows,

φ(ψ) =
{
t if ψ ∈ Th†(A),
f if ψ < Th†(A).

It is obvious that φ is the desired homomorphism. □
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