Inconsistency Defended

By Jim Rock

Abstract

Here two contradictory arguments are defended. They can be developed in any formal system containing sets, arithmetic, and relations between the rational numbers.

Introduction. For all rational numbers \boldsymbol{a} in the closed interval $[0,1]$
let the collection of all R_{a} sets be $\{y$ is a rational number $\mid 0 \leq y \leq a\}$
Consider the entire collection of R_{a} sets. They form a hierarchy of sets.
Each set contains all the elements in sets below it in the set hierarchy.
Each set contains a single element that is not in any set below it in the set hierarchy.
We take the largest element out of each set in the entire collection.

Argument \#1: Each R_{a} contains a largest element.

1) The set containing zero becomes the null set.
2) Their largest element is now missing. But, all other sets remain in the same relative position in the set hierarchy as $\{y$ is a rational number $\mid 0 \leq y<\boldsymbol{a}\}$
3) For each set below an R_{a} in the set hierarchy R_{a} contains the former largest element from the specified set.
4) From 2) 3) Each R_{a} contains elements not in the sets below it in the set hierarchy.
5) Let \boldsymbol{c} and \boldsymbol{d} be two elements of a single $\mathrm{R}_{\boldsymbol{a}}$ set with $\boldsymbol{c}>\boldsymbol{d}$.
6) \boldsymbol{d} is an element of $\mathrm{R}_{\boldsymbol{c}}$, which is a proper subset of $\mathrm{R}_{\boldsymbol{a}}$.
7) For any two elements in R_{a} the smaller element is contained in a proper subset of R_{a}.
8) From 4) 7) Each R_{a} set contains a largest element not in any set below it in the set hierarchy.

Argument \#2: No R_{a} contains a largest element.

1) Suppose there is a largest element a^{\prime} in some individual R_{a}.
2) $a^{\prime}<\left(a+a^{\prime}\right) / 2<a$.
3) Let $b=\left(a+a^{\prime}\right) / 2$.
4) Then b is in R_{a} and $a^{\prime}<b$.

The difference between the two arguments is no attempt is made to specify a largest element in Argument \#1. It is an existence argument only. When a largest element is assumed in Argument \#2 it leads to a contradiction so there is no largest element. A valid proof by contradiction. Using actual rational numbers shows that Argument \#2 is true and Argument $\# 1$ is false. But, the question is whether there are any steps in Argument \#1 that do not follow logically from prior true statements. In statement 4) in Argument \#1 no such elements can be specified. But, does 4) follow logically from 2) and 3).
© 2023 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

If you wish, email comments to Jim Rock at collatz3106@gmail.com.

