Why is the Gödel self-referential equation unsolvable?

----Tranclosed logic princiole and its inference(2) **Jincheng Zhang** Oriental Culture Research Office, Guangde County, Anhui Province China. Email:656790205@qq.com

Abstract There exists a Gödel number for each formula of the system $\mathcal N$ of natural numbers. The Gödel undecidable proposition, which is also a formula of the system $\,\mathcal{N}$, also exists a Gödel number p; at the same time, the Gödel undecidable proposition is a self-referential proposition $\mathcal{U}(0^{(p)})$ substituted into its own Gödel number, and the self-referential proposition $\mathcal{U}(0^{(p)})$ Gödel number is also

p, i.e., there is, $g(\mathcal{U}(0^{(p)})) = p$. It can be This equation has no solution.

The traditional view is that the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ is a closed formula and is a natural number proposition; we here transform the Gödel self-referential proposition into a self-referential equation and find that this equation has no solution and the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ is not a natural number proposition. $\mathcal{U}(0^{(p)})$ is an unclosed term (out-of-domain term) that evolves on the

set of natural numbers and $\mathcal{U}(0^{(p)})$ is not a closed formula.

Keywords Gödel undecidable proposition, self-referential proposition, self-referential equation, unclosed term (extra-domain term).

1 Review of Gödel's construction of self-referential propositions

Let us first briefly review the process of proving Gödel's incompleteness theorem.

1 The set of natural numbers

 $N = \{0, 1, 2, 3, \dots, n, \dots\}$

. .

2 Axiomatic system of natural numbers

The "successor, addition, multiplication" on the set of natural numbers can be defined by the following set of axioms.

$$(\mathcal{N}1) \ (\forall x_1) \neg (s(x_1) = 0).$$
$$(\mathcal{N}2) \ (\forall x_1)(\forall x_2)(s(x_1) = s(x_2) \rightarrow x_1 = x_2).$$

 $(\mathcal{N}3) (\forall x_1)(x_1 + 0 = x_1).$

$$(\mathcal{N}4) \ (\forall x_1)(\forall x_2)(x_1 + s(x_2) = s(x_1 + x_2)).$$

 $(\mathcal{N}5) \ (\forall x_1)(x_1 \times 0 = 0).$

$$(\mathcal{N}_{6}) (\forall x_{1})(\forall x_{2})(x_{1} \times s(x_{2}) = (x_{1} \times x_{2}) + x_{1}).$$

$$(\mathcal{N}7) A(0) \to ((\forall x_1)(A(x_1) \to A(s(x_1))) \to (\forall x_1)A(x_1)).$$

(for each formula $A(x_1)$, where x_1 appears freely)

In proving the incompleteness theorem, Gödel first encodes the symbols, formulas, and proofs in the formal system \mathcal{N} with natural numbers. This form of encoding is called the arithmeticization of the system \mathcal{N} .

Gödel's method is not very complicated; he encodes the first-order arithmetic \mathcal{N} by assigning a natural number to each symbol, ensemble formula, and sequence of formula proofs in \mathcal{N} according to a determined rule. Such natural numbers are Gödel numbers.

2、The Gödel number of the system $~{\cal N}~$

(1)The matching number of characters, specify a Gödel number for each character(Let's say g(x)

is the Godel number of x).

Parentheses, commas: g(() = 3, g(,) = 5, g()) = 7.

Logical symbols: $g(\neg) = 9$, $g(\rightarrow) = 11$, $g(\forall) = 13$.

Variable element: $g(x_k) = 7 + 8k$, (k = 1, 2, 3, ...).

Constant element: $g(a_k) = 9 + 8k$, $(k = 1, 2, 3, \dots)$.

Function symbols: $g(f_k^n) = 11 + 8(2^n \times 3^k)$, $(k = 1, 2, 3, \dots)$.

Predicate symbols: $g(A_k^n) = 13 + 8(2^n \times 3^k)$, $(k = 1, 2, 3, \dots)$.

(2) Gödel collocation of strings

Strings $u_0, u_2, u_3, \dots, u_k$, $g(u_0, u_1, \dots, u_k) = 2^{g(u_0)} \cdot 3^{g(u_1)} \cdot 5^{g(u_2)} \cdot \dots \cdot p_k^{g(u_k)}$.

(3) Gödel collocation of a finite sequence of strings

Let $s_0, s_1, s_2, \dots, s_k$ be the string, $g(s_0, s_1, \dots, s_k) = 2^{g(s_0)} \cdot 3^{g(s_1)} \cdot 5^{g(s_2)} \cdot \dots \cdot p_k^{g(s_k)}$

(where $p_1, p_2, p_3, \dots, p_k$, i.e.: 2,3,5,7, ... denotes the kth prime number)

Each formula A(x), of the system \mathcal{N} under the above definition corresponds to a Gödel number g(A(x))

3. Expressible definition: a k-element relation R on a set of natural numbers N is said to be expressible in $\mathcal{N}_{,}$ if there exists a formula with k free variables $\xi(x_1, x_2, \dots, x_n)_{,}$ such that for any natural number n_1, n_2, \dots, n_k

if $R(n_1, n_2, \dots, n_k)$ holds in N, then $\mathcal{N} \vdash \xi(0^{(n_1)}, 0^{(n_2)}, \dots, 0^{(n_k)})$.

if $R(n_1, n_2, \cdots, n_k)$ does not hold in N, then $\mathcal{N} \vdash \neg \xi(0^{(n_1)}, 0^{(n_2)}, \cdots, 0^{(n_k)})$.

(set of natural numbers $N = \{0, 1, 2, 3, \dots, n, \dots\}$).

4. Expressibility theorem : recursive relations in the system ${\cal N}$ are expressible.

We can prove that recursive functions are expressible.

- (1) zero function, the successor function is expressible.
- (2) synthetic operations remain expressible.
- (3) recursive operations remain expressible.
- (4) the minimum number operation maintains expressibility.

Furthermore, considering that the characteristic function $C_{R(x_1,x_2,\dots,x_k)}$ of a k-element recurrence

relation $R(x_1, x_2, \dots, x_k)$ defined on natural numbers is a recursive function, this gives us a corollary that every recurrence relation is expressible in \mathcal{N} .

In this way we prove the expressibility theorem.

5. The definition of the binary relation W

W(m,n) m is the Gödel number of the formula $\mathcal{A}(x)$ and n is the Gödel number of the proof of the

formula $\mathcal{A}(m)$ from \mathcal{N} .

Denoted as a set, $W = \{(m, n)\}, (m, n) \in W$ holds and $(m, n) \in W$ does not hold, $(m, n) \notin W$.

6. Binary relations W recursiveness

It can be shown that the binary relation W(m,n) is recursive, so that $W = \{(m,n)\}$ is expressible in \mathcal{N} as follows:

 $(m,n) \in W \Longrightarrow \mathcal{N} \vdash w(0^{(m)}, 0^{(n)}); \quad (m,n) \notin W \Longrightarrow \mathcal{N} \vdash \neg w(0^{(m)}, 0^{(n)})$

7. Construction of Gödel's undecidable proposition $\mathcal{U}(0^{(p)})$

(1) Structural formula $\forall y \neg w(x, y)$.

 $g(\forall y \neg w(x, y)) = p$; p is Gödel number of formula $\forall y \neg w(x, y)$.

(2) Replace all free occurrences of x in $\forall y \neg w(x, y)$ with $0^{(p)}$ to obtain $\forall y \neg w(0^{(p)}, y)$,

Denote $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y) \cdots y$ is the Gödel number obtained from $\mathcal{U}(0^{(p)})$.

The interpretation of $\forall y \neg w(0^{(p)}, y)$ is that "for any y, that y is the Gödel number obtained from $\mathcal{U}(0^{(p)})$ is wrong";

or "For any y, y is a Gödel number proved by the formula p (i.e. $\mathcal{U}(0^{(p)})$) does not hold."

Or $\forall y \neg w(0^{(p)}, y) \leftrightarrow \neg \exists y w(0^{(p)}, y)$ "There is not y, y is Gödel number proved by $\mathcal{U}(0^{(p)})$," that is " $\mathcal{U}(0^{(p)})$ is unprovable"; $\mathcal{U}(0^{(p)})$ narrates its own unprovability."

(3) $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$, it is Gödel's undecidable proposition.

8. Gödel's Incompleteness Theorem

Theorem 1.1 If \mathcal{N} is consistent, then $\mathcal{U}(0^{(p)})$ is not a theorem of \mathcal{N} , and its negation $\neg \mathcal{U}(0^{(p)})$ is not a theorem of \mathcal{N} . Therefore, if \mathcal{N} is consistent, the system \mathcal{N} is incomplete.

Proof:

(1)
$$(m,n) \in W \Longrightarrow \mathcal{N} \vdash w(0^{(m)},0^{(n)}), (m,n) \notin W \Longrightarrow \mathcal{N} \vdash \neg w(0^{(m)},0^{(n)}),$$

(2) $\mathcal{N} \vdash \mathcal{U}(0^{(p)})$ ------hypothesis, denoting the

Gödel number which proved of $\mathcal{U}(0^{(p)})$ from \mathcal{N} as q, then $(p,q) \in W$, (1)

- (3) $\mathcal{N} \vdash w(0^{(p)}, 0^{(q)})$ ------ (1), (2),
- (4) $\mathcal{N} \vdash \forall y \neg w(0^{(p)}, y)$ ------ (2), $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$,
- (5) $\mathcal{N} \vdash \neg w(0^{(p)}, 0^{(q)})$ ------ (4),
- (7) $\mathcal{N} \vdash \neg \mathcal{U}(\mathbf{0}^{(p)})$ ------hypothesis,
- (8) $\mathcal{N} \vdash \neg \forall y \neg w(0^{(p)}, y) \leftrightarrow \exists y w(0^{(p)}, y) \dots$ (7), $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$,

(9) (6) had proved $\mathcal{U}(0^{(p)})$ does not hold in \mathcal{N} , any q, $(p,q) \notin W$, ------(6),

(10)
$$\mathcal{N} \vdash \neg w(0^{(p)}, 0^{(q)})$$
------- (1), (9),

(11) $\mathcal{N} \vdash w(0^{(p)}, 0^{(q)})$ ------ (8), Let q be the Gödel number that $\mathcal{U}(0^{(p)})$ proves from \mathcal{N} ,

(12) $\mathcal{N} \not\models \neg \mathcal{U}(0^{(p)})$ ------- (10), (11) contradiction,

The construction and proof of the above undecidable proposition $\mathcal{U}(0^{(p)})$ was given by Gödel in 1931 and can be found in the general mathematical logic literature and in [1] (some notation has been adjusted for printing convenience).

 \mathcal{N} contains a closed formula $\mathcal{U}(0^{(p)})$ which is true in the model N but is not a theorem of \mathcal{N} . The system \mathcal{N} is generally considered to be incomplete. The above proof that $\mathcal{U}(0^{(p)})$ is an undecidable proposition is correct. The key is that the essence of the undecidable proposition $\mathcal{U}(0^{(p)})$ is misunderstood, and the following will prove that $\mathcal{U}(0^{(p)})$ is an unclosed term, an extradomain undecidable proposition that does not affect the completeness of the system \mathcal{N} .

2.Gödel self-referential equation without solution

The formula of each of system \mathcal{N} is a proposition about natural numbers, and the formula of each of system \mathcal{N} exists a Gödel number, Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ also the formula of system \mathcal{N} , and also a Gödel number p; at the same time, the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ is a self-referential proposition that substitutes its own Gödel number, and the self-referential proposition $\mathcal{U}(0^{(p)})$ Gödel number is also p that is, there is that

$$g(\mathcal{U}(0^{(p)})) = p.$$

But this equation has no solution.

Definition 2.1 Gödel self-referential propositions

The Gödel undecidable proposition $\mathcal{U}(0^{(p)})$,

5 / 13

$$\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y).$$

is also called a Gödel self-referential proposition.

In the following we analyze the undecidable proposition $\mathcal{U}(0^{(p)})$ again according to the Gödel number.

(1) The number of characters assigned, for each character, a Gödel number: (v is a character, g(v) is the Gödel number of v).

Parentheses, commas: g(() = 3, g() = 5, g()) = 7.

Logical symbols: $g(\neg) = 9$, $g(\forall) = 13$.

Predicate symbols: g(w) = 11

Variable element: $g(0^{(x)}) = x$.

Since, y, x are variable elements of the formula, in the natural number system \mathcal{N} , y, x are natural numbers (Since $0^{(p)}$ is a systematic representation of p, which is essentially the same), we can define its Gödel numbers $g(0^{(x)}) = x$, $g(0^{(y)}) = y$.

(2) Gödel collocation of strings

Strings
$$v_0, v_2, v_3, \dots, v_k$$
 $g(v_0, v_1, \dots, v_k) = 2^{g(v_0)} \cdot 3^{g(v_1)} \cdot 5^{g(v_2)} \cdot \dots \cdot p_k^{g(v_k)}$

By construction of the Gödel undecidable proposition: p is the Gödel number of the formula $\forall y \neg w(x, y)$

$$g(\forall y \neg w(x, y)) = p \dots (A)$$

Replace all free occurrences of x in $\forall y \neg w(x, y)$ with $0^{(p)}$ to obtain undecidable proposition $\forall y \neg w(0^{(p)}, y)$

$$\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$$

By (A)

$$g(\forall y \neg w(x, y)) = p \Longrightarrow g(\mathcal{U}(0^{(p)})) = g(\forall y \neg w(0^{(p)}, y)) = p \dots (B)$$

The left side of this equation is an equation containing the Gödel number p, and the right side is p.

Since $0^{(p)}$ is a systematic representation of p, which is essentially the same, we classify the interequation as $g(\mathcal{U}(p)) = p$.

If the equation $g(\mathcal{U}(p)) = p$ has a solution, then the equation $g(\mathcal{U}(0^{(p)})) = p$ also has a solution.

If the equation $g(\mathcal{U}(p)) = p$ has no solution, then the equation $g(\mathcal{U}(0^{(p)})) = p$ also has no solution.

To investigate whether this equation has a solution, we expand the left-hand side of the equation using the definition of the Gödel number.

$$g(\mathcal{U}(0^{(p)})) = g(\forall y \neg w(0^{(p)}, y)) = 2^{g(\forall)} \cdot 3^{g(y)} \cdot 5^{g(\neg)} \cdot 7^{g(w)} \cdot 11^{g(()} \cdot 13^{g(0^{(p)})} \cdot 17^{g(,)} \cdot 19^{g(y)} \cdot 23^{g())} \cdot g(\mathcal{U}(0^{(p)})) = 2^{13} \cdot 3^{g(y)} \cdot 5^9 \cdot 7^{11} \cdot 11^3 \cdot 13^{g(0^{(p)})} \cdot 17^7 \cdot 19^{g(y)} \cdot 23^5 \cdot g(0^{(p)}) = 2^{13} \cdot 3^y \cdot 5^9 \cdot 7^{11} \cdot 11^3 \cdot 13^p \cdot 17^7 \cdot 19^y \cdot 23^5 \dots (C)$$

According to the idea of the proof of Gödel, by (B), the Gödel number of equation $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$ is also p, i.e.:

$$g(\mathcal{U}(0^{(p)})) = p \dots (D)$$

Combining (C) (D) yields the equation:

$$2^{13} \cdot 3^{y} \cdot 5^{9} \cdot 7^{11} \cdot 11^{3} \cdot 13^{p} \cdot 17^{7} \cdot 19^{y} \cdot 23^{5} = p$$

Definition 2.1 Gödel self-referential equation

Called the algebraic equation containing the Gödel numbers

$$g(\mathcal{U}(0^{(p)})) = p.$$

or
$$g(\forall y \neg w(0^{(p)}, y)) = p$$
.

or
$$2^{13} \cdot 3^{y} \cdot 5^{9} \cdot 7^{11} \cdot 11^{3} \cdot 13^{p} \cdot 17^{7} \cdot 19^{y} \cdot 23^{5} = p$$
.

as Gödel self-referential equations.

The Gödel self-referential proposition can be transformed into the Gödel self-referential equation.

Theorem 2.1 Gödel's self-referential equation has no integer solutions Proof: Gödel's self-referential equation

$$2^{13} \cdot 3^{y} \cdot 5^{9} \cdot 7^{11} \cdot 11^{3} \cdot 13^{p} \cdot 17^{7} \cdot 19^{y} \cdot 23^{5} = p.$$

Since $2^{13} \cdot 3^y \cdot 5^9 \cdot 7^{11} \cdot 11^3 \cdot 13^p \cdot 17^7 \cdot 19^y \cdot 23^5$ is much larger than p regardless of the natural numbers of y.

It is clear that the above equation for *p* has no integer solution for *p* for any *y*.

the equation $g(\mathcal{U}(p)) = p$ has no solution, then the equation $g(\mathcal{U}(0^{(p)})) = p$ also has no solution.

Or p does not exist, and neither does the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$.

Definition 2.2 Unclosedness of the algorithm

Let $U = \{x_1, x_2, \dots, x_i, \dots\}$ be the domain of definition of a certain monadic or multivariate

operation \odot .

If $\forall a \in U$, $\forall b \in U \Longrightarrow a \odot b \in U$, then, U is closed to the operation \odot . If $\exists a \in U$, $\exists b \in U \Longrightarrow a \odot b \notin U$, then, U is not closed for the operation \odot .

Example 2.1 Unclosedness of the algorithm

$$N = \{0, 1, 2, \dots, n, \dots\},$$

$$\forall a \in N, \quad \forall b \in N \Longrightarrow a + b \in N.$$

$$\forall a \in N, \quad \forall b \in N \Longrightarrow a \times b \in N.$$

Therefore, N is closed for all additive operations, multiplicative operations.

$$2 \in N, 7 \in N \Longrightarrow 2 - 7 \notin N.$$
$$2 \in N, 7 \in N \Longrightarrow 2 \div 7 \notin N.$$

Therefore, N is not closed for subtraction operations, nor for division operations.

Example 2.2 Unclosedness of the algorithm

Q is the set of rational numbers ,

$$\forall a \in Q, \ \forall b \in Q \Longrightarrow a - b \in Q.$$
$$\forall a \in Q, \ \forall b \in Q \Longrightarrow a \div b \in Q.$$

Therefore, Q is closed for subtraction operations, and for division operations.

$$2 \in Q \Longrightarrow \sqrt{2} \notin Q$$
$$-3 \in Q \Longrightarrow \sqrt{-3} \notin Q$$

Therefore, Q is not closed to the extraction of square root operation.

Definition 2.3 Out-of-domain terms

Let $U = \{x_1, x_2, \dots, x_i, \dots\}$ be a set, mapping $f : U \to U$, satisfies the solution x_p of an equation x = f(x), if the equation has no solution, or element $x_p \notin U$, in the set U, the element x_p is called an extra-domain term. The essence of an extra-domain term is the unclosed term of the algorithm. Gödel's self-referential equation

$$2^{13} \cdot 3^{y} \cdot 5^{9} \cdot 7^{11} \cdot 11^{3} \cdot 13^{p} \cdot 17^{7} \cdot 19^{y} \cdot 23^{5} = p$$

p has no integer solution, so *p* is an out-of-domain term.

3. Gödel undecidable propositions $\mathcal{U}(0^{(p)})$ are out-of-domain terms

Above we transformed the Gödel self-referential proposition into Gödel self-referential equation, and found that this undecidable proposition is an arithmetic unclosed term, perhaps you may think that it is a difference of mapping methods, in fact, any mapping method, Gödel self-referential equation has no solution. In the following, we rigorously prove that the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ is an arithmetic unclosed term.

Definition 3.1 Let the set of all formulas of system \mathcal{N} be $U = \{\mathcal{A}_1(x), \mathcal{A}_2(x), \dots, \mathcal{A}_l(x), \dots\}$, i.e., take the set of all closed formulas U of system \mathcal{N} as the full set.

If $R(n_1, n_2, \dots, n_k)$ is a recursive predicate and $\xi(0^{(n_1)}, 0^{(n_2)}, \dots, 0^{(n_k)})$ is a formula mapped by the predicate $R(n_1, n_2, \dots, n_k)$ onto the system \mathcal{N} , let \mathcal{N} be the standard model of the system \mathcal{N} of natural numbers.

- If $R(n_1, n_2, \dots, n_k)$ is true on N, denoted as $V(R(n_1, n_2, \dots, n_k)) = 1$.
- If $R(n_1, n_2, \dots, n_k)$ is false on N, denoted as $V(R(n_1, n_2, \dots, n_k)) = 0$.

The representable theorem can be written in the following form:

$$V(R(n_1, n_2, \dots, n_k)) = 1 \Longrightarrow \mathcal{N} \vdash \xi(0^{(n_1)}, 0^{(n_2)}, \dots, 0^{(n_k)});$$

$$V(R(n_1, n_2, \dots, n_k)) = 0 \Longrightarrow \mathcal{N} \vdash \neg \xi(0^{(n_1)}, 0^{(n_2)}, \dots, 0^{(n_k)})$$

The following proof shows that the Gödel undecidable proposition $\mathcal{U}(0^{(p)})$ is not a closed formula.

Theorem 3.1 If $\mathcal{U}(0^{(p)})$ is a closed formula, then, W(p,q) is neither true nor false (there is no true or false). That is :

$$\mathcal{U}(0^{(p)}) \in U \models (V(W(p,q)) \neq 1) \land) V(W(p,q)) \neq 0).$$

Proof: The recursive predicate $\mathcal{U}(0^{(p)})$ is representable and the formula $\mathcal{U}(0^{(p)})$ on the system \mathcal{N} should also have a Gödel number. The Gödel number of $\mathcal{U}(0^{(p)})$ is p. We ask whether

(p,q) is in W, $W = \{(p,q)\}$, i.e., whether W(p,q) holds.

According to representability theorem:

- If W(p,q) is satisfied, then $\mathcal{N} \vdash w(0^{(p)}, 0^{(q)})$.
- If W(p,q) is not satisfied , then $\mathcal{N} \vdash \neg w(0^{(p)},0^{(q)})$.

The above equation can also be expressed as follows:

$$V(W(p,q)) = 1 \Longrightarrow \mathcal{N} \vdash w(0^{(p)}, 0^{(q)}),$$
$$V(W(p,q)) = 0 \Longrightarrow \mathcal{N} \vdash \neg w(0^{(p)}, 0^{(q)}).$$

If $\mathcal{U}(0^{(p)})$ is a closed formula, assume $\mathcal{U}(0^{(p)})\!\in\!U$, then one of $V(W(p,q))\!=\!1$,

V(W(p,q)) = 0 must reside.

That is: $V(W(p,q)) = 1 \lor V(W(p,q)) = 0$

- (1A) If V(W(p,q)) = 1------hypothesis,
- (2A) $\mathcal{N} \vdash w(0^{(p)}, 0^{(q)})$ ------ (1A), Recursive representable theorem,
- (3A) $\mathcal{N} \vdash \exists yw(0^{(p)}, y)$ ------ (2A),
- (5A) $\mathcal{N} \not\vdash \neg \forall y \neg w(0^{(p)}, y) \cdots \mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y),$
- (6A) $\mathcal{N} \not\vdash \exists yw(0^{(p)}, y)$ ------ (5A),
- (7A) $V(W(p,q)) \neq 1$ ------ (3A) (6A) contradiction, proof by contradiction,
- (1B) If V(W(p,q)) = 0 -----hypothesis,
- (2B) $\mathcal{N} \vdash \neg w(0^{(p)}, 0^{(q)})$ ------- (1B), Recursive representable theorem,

- (5B) $\mathcal{N} \not\vdash \forall y \neg w(0^{(p)}, y)$ ------ $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$,
- (6B) $\mathcal{N} \not\vdash \neg \exists y w(0^{(p)}, y)$ ------ (5B),
- (7B) $V(W(p,q)) \neq 0$ ------ (3B) (6B) contradiction, proof by contradiction,
- (8) $(V(W(p,q)) \neq 1) \land (V(W(p,q)) \neq 0)$ ------ (7A) (7B),

If $\mathcal{U}(0^{(p)})$ is a closed formula, then W(p,q) is neither true nor false (there is no true or false), which is similar to the paradox.

Theorem 3.2 Under the assumption that the evolution on U is consistent, U is not a closed formula of the system \mathcal{N} , i.e. $\mathcal{U}(0^{(p)}) \notin U$

(1)
$$\mathcal{U}(0^{(p)}) \in U \vdash V(W(p,q)) = 1 \lor V(W(p,q)) = 0$$
 -----model definition;

- $(3) \quad (V(W(p,q)) \neq 1) \land (V(W(p,q)) \neq 0) \leftrightarrow \neg (V(W(p,q)) = 1 \lor V(W(p,q)) = 0);$
- (4) $\mathcal{U}(0^{(p)}) \in U \vdash \neg (V(W(p,q)) = 1 \lor V(W(p,q)) = 0)$ ------ (2) (3);

(5)
$$\vdash \neg(\mathcal{U}(0^{(p)}) \in U)$$
. (i.e. $\mathcal{U}(0^{(p)}) \notin U$)------ (1) (4) contradiction, proof by contradiction;

That is, " $\mathcal{U}(0^{(p)})$ is an out-of-domain term". $\mathcal{U}(0^{(p)})$ is an unclosed term of the system \mathcal{N} algorithm and does not affect the completeness of the system \mathcal{N} .

A common example is:

Example 3.1 Assuming the set of integers, the full set, $J = \{\dots, -2, -1, 0, 1, 2, \dots\}$, f(n) = 1 - n, constructing a self-referential equation n = 1 - n.

Let P(n) denote the proposition "*n* is even", then $\neg P(n)$ denote the proposition "*n* is odd" $\neg P(n)$;

if
$$P(n)$$
. "*n* is even" \Rightarrow "1-*n* is odd" \Rightarrow *n*=1-*n*, "*n* is odd" $\Rightarrow \neg P(n)$

if $\neg P(n)$: "*n* is odd" \Rightarrow "1-*n* is even" \Rightarrow *n*=1-*n*, "*n* is even" \Rightarrow *P*(*n*).

So: $P(n) \leftrightarrow \neg P(n)$

We already know that: n = 1 - n, $n = \frac{1}{2}$, $\frac{1}{2} \notin J$, $\frac{1}{2}$ are unclosed terms (out-of-domain term) on the set of integers.

The above example has the following characteristics:

In this example, "*n* is even" and "*n* is not even" lead to the contradiction that P(n), $\neg P(n)$ are undecidable propositions, this undecidable proposition is normal and $\frac{1}{2}$ is no longer an integer at all and is an extra-domain term.

The "Gödel undecidable proposition" in the system \mathcal{N} (axiomatic system of natural numbers, hereafter) is an extraterritorial undecidable proposition in the same sense as the "undecidability in the set of integers of $P(\frac{1}{2})$ " above, and the extraterritorial undecidable proposition is not related to the completeness of the system.

If Gödel's incompleteness theorem holds, the condition must be satisfied:

" p in an undecidable proposition $\mathcal{U}(0^{(p)})$ is a natural number."

Otherwise $\mathcal{U}(0^{(p)})$ is not a natural number proposition. It can be proved above that this condition is not satisfied .

Gödel's self-referential equation

$$2^{13} \cdot 3^{y} \cdot 5^{9} \cdot 7^{11} \cdot 11^{3} \cdot 13^{p} \cdot 17^{7} \cdot 19^{y} \cdot 23^{5} = p$$

is no integer solution.

This also shows that $\mathcal{U}(0^{(p)}) = \forall y \neg w(0^{(p)}, y)$ is not a natural number proposition, is not a closed formula for the system \mathcal{N} and that $\mathcal{U}(0^{(p)})$ is an unclosed term of the algorithm.

This paper proves that:

(1) The undecidable proposition $\mathcal{U}(0^{(p)})$ proved by Gödel back then is not false, but it is mistakenly believed that $\mathcal{U}(0^{(p)})$ is a closed formula of the system \mathcal{N} .

(2) The undecidable proposition $\mathcal{U}(0^{(p)})$ constructed by Gödel has no truth or falsity, is not a closed formula of the system \mathcal{N} , and is a unclosed term of logical algorithm.

Appendix References

[1]Hamilton, A.G: Logic for Mathematicians, Cambridge of University, 1978: 82-83.

[2]Jincheng Zhang, Fixed Terms and Undecidable Propositions of Logics and Mathematic Calculus (I)[J] System Intelligent Journal, 2014(4)

[3]Jincheng Zhang, Fixed Terms and Undecidable Propositions of Logics and Mathematic Calculus (II)[J] System Intelligent Journal, 2014(5)

[4] Jincheng Zhang. *Paradox*, *Logic And Non-Cantor Set Theory* [M]. Harbin: Harbin Institute of Technology Press, 2018:1.