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Abstract 

The time dependent Ginzburg Landau equation (TGLE) is a prototype model of non-

equilibrium statistical physics and critical phenomena. This brief report points out that, 

applying TGLE to the chaotic dynamics of interacting fields hints to unexpected solutions 

to the challenges confronting high-energy theory.  
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1. Brief overview of TGLE  

Consider a classical scalar field in 1+1 dimensions evolving in 

nonequilibrium conditions, which are likely to develop far beyond the 
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Standard Model (SM) scale. The field dynamics near its critical point is 

described by the TGLE as in [1] 

 ( , ) ( , ) ( , )x t H h x t x tt
ϕ δ η

δϕ
∂ = − + +
∂

 (1) 

in which 

 2 21[ ] [ ( ) ( )]
2

H d x Vx
ϕϕ ϕ∂= +
∂∫  (2) 

( )V ϕ  is the potential function, ( , )h x t  the external field and ( , )x tη  a Gaussian 

white noise source with correlations,  

 ( , ) ( ', ') ( ') ( ')x t x t x x t tη η δ δ∝ − −  (3) 

In particular, the potential function of self-interacting scalar field theory is 

given by, 

 2 4
0 0

1( )
2SV r uϕ ϕ ϕ= +  (4) 
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The model (1) can be alternatively formulated in terms of a probability 

distribution [ , ]P tϕ  via the Fokker-Planck equation, 

 2 [ ]P P Hd x Pt
δ δ δ
δϕ δϕ δϕ

∂ = +
∂ ∫  (5) 

For time-independent fields, the equilibrium solution of (5) amounts to 

 1[ ] exp( [ ])eqP HZϕ ϕ= −  (6a) 

in which the functional integral Z  takes the form associated with 

equilibrium field theory, namely, 

 exp( [ ])Z D Hϕ ϕ= −∫  (6b) 

A reasonable assumption is that the equilibrium settings (6a) and (6b) - 

matching the low-energy regime of field theory - are recovered in the long-

time limit, i.e. 

 lim [ ] [ ]eqt
P Pϕ ϕ

→∞
=  (6c) 
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2. Field bifurcations as analog scenario of the Higgs mechanism 

Consider now the case where (1) works with the potential function (4) and 

where the noise η , external field h and the spatial gradient xϕ∂ ∂  all vanish 

away. One obtains the cubic field equation,  

 2 3
0 0

( )( , ) 4SVx t
t rϕϕ ϕ µ ϕ

ϕ
∂∂ = − = −

∂ ∂
−  (7) 

It can be shown that (7) represents a dynamic analog of electroweak 

symmetry breaking using the term-by-term identification [4-5] 

 2 2
0 2 Hr vλ= −  (8a) 

 0 Hu λ=  (8b) 

Here, v  stands for the vacuum expectation value of the Higgs boson, Hλ  is 

the Higgs self-interaction coupling and time is interpreted as analog of the 

Renormalization Group scale as in 

 0log( )t µ µ=  (9) 
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Equations (7) and (8) provide an alternative scenario to the standard Higgs 

paradigm of the SM, approximately matching its content and predictions. 

The mass-generating mechanism proposed in [4-5] is driven by a cascade of 

bifurcations initiated by the running of ( )H H tλ λ= . The progressive splitting 

and morphing of the scalar field are displayed below.    

 

        Fig. 1 Bifurcation diagram of electroweak symmetry breaking.  

There is an alternative way of interpreting the sequential generation of SM 

via bifurcations, namely, the quartet of electroweak bosons splits into the 
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gluon octet and the lepton multiplet into the quark multiplet according to 

the following process: 

 ( )0
1 8( )W W Z gluonsγ − +
−⇒    

 ( ) ( ) ,e r g
e antiparticles u d c s b t antiparticlesµ τν ν ν µ τ + ⇒ +    

The flowchart points out that the transition (1) (2) (3)U SU SU× ⇒  is a 

transformation of a stable cycle of period 4 in the electroweak sector to a stable 

cycle of period 8 in the strong sector. 

3. Chaotic Strings and SM parameters  

A familiar embodiment of the TGLE equation (1) is the random walk model, 

applicable to a variety of contexts, from classical diffusion and Brownian 

motion to the Path Integral formulation of quantum theory. The 1+1 

diffusion equation reads, 

 
2

2
( , ) 1 ( , )

2
x t x t
t x

ϕ ϕ∂ ∂=
∂ ∂

 (10) 
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Adding random fluctuations and a deterministic “force” to the diffusive 

term (10) yields 

 0
2

2
( )( , ) 1 ( , ) ( , )

2
Vx t x t N x tt x

ϕϕ ϕ
ϕ

∂∂ ∂= + +
∂ ∂∂

 (11) 

in which 0 ( )V ϕ  is the deterministic potential and ( , )N x t  the noise 

contribution related to (3). Comparative evaluation of (1) and (11) leads to   

 
2

2
( , )( , ) x th x t
x

ϕ∂=
∂

 (12a) 

 0( ) ( )V Vϕ ϕ= −  (12b) 

Numerical analysis of differential equation (11) requires converting it into a 

discrete map. To this end, we introduce the parameterization, 

 t nτ= ,  x iδ= ,  , 1,2,...n i =  (13) 

which gives 

 
1 1

1
2

2 ( )
2

i i i i i i
nn n n n nV noiseϕ ϕ ϕ ϕ ϕ ϕ

τ ϕδ

+ −
+ − − + ∂= + +

∂
 (14) 
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Labeling the coupling constant,  

 2
τ
δ

α =  (15) 

renders (14) in the form, 

 1 10
1

( )(1 )[ ] ( )
1 2

i
ni i i i

n n nn
V noiseϕτ αϕ α ϕ ϕ ϕ τ

α ϕ
+ −

+
∂= − + + + + ⋅

− ∂
 (16) 

It can be shown [2 - 3] that (16) is equivalent to a coupled map lattice [6], which 

is a spatially extended dynamical system governed by the equation, 

 1 1
1 (1 ) ( ) ( )

2
i i i i

n n nn T noiseαα τ+ −
+Φ = − Φ + Φ + Φ + ⋅  (17) 

Here, the field Φ  is a normalized version of ϕ  at some energy scale ∆  given 

by 

 i i
n nϕ =Φ ∆  (18) 

and the local map T  assumes the form, 
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 0

2

( )( )
(1 )

VT τ
α

∂ ∆ΦΦ =Φ+
∂Φ∆ −

 (19) 

Drawing from the framework of stochastic quantization and coupled map 

lattices, [2] shows that SM parameters can be fixed using a model of self-

interacting scalar field theory in 1+1 dimensions. This model is built on the 

analogy with (17)-(19) and is referred to as describing chaotic strings (CS). 

Specifically, the SM parameters are fixed by a Renormalization flow 

equation for the coupling constants α  having the form, 

 ( )d bW noisedt
α α= +  (20) 

 0 ( )Vd b noisedt
αα
α

∂= − +
∂

 (21) 

where ( )W α  is the interaction potential of chaotic strings, 0( )V α  their 

expectation potential and 0b >  a positive constant. 

Tab. 1 lists the values for some of the actual versus predicted SM parameters 

derived from the CS model.  
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      Tab. 1: Actual vs. predicted SM parameters using the CS model [2]. 

4. Comparing the Bifurcation Model (BM) to the CS Model  

The object of this section is to compare the two approaches discussed in 

sections 2 and 3. It is instructive to see that, although both theories can be 

traced to the onset of TGLE at high energies, they differ in many respects. 
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1) CS incorrectly estimates the mass of the Higgs boson whereas BM 

asserts that the Higgs mass naturally follows from the bifurcation 

dynamics of the cubic map. 

2) BM makes no reference to quantized vacuum fluctuations, but to the 

evolution of classical fields.    

3) The dynamics of BM is controlled by the flow of the scalar self-

coupling ( Hλ ), whereas in CS by the flow of the coupling between 

chaotic strings (α ).   

4) In contrast with BM, CS is based upon stochastic quantization which 

introduces an unphysical time coordinate.  

5)  It’s unclear how the SM gauge structure, three generations, and 

chirality of weak interactions develop in CS.  

6) BM makes no reference to string theory or to Feynman webs. 

7) BM applies to the start of the transition to chaos whereas CS to the end 

of this transition corresponding to fully developed chaos.  
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8) At least in principle, BM can accommodate particle decay channels as 

resulting from a random walk on the bifurcation tree. 
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