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Abstract In this paper we had given an elementary proof of the Collatz conjecture, it 

holds. By detailed analysis of the properties of both forward and inverse operations of 

the proposition, we had some important conclusions: 1, there are no cycles except 1 to 

1, and for a given odd it either goes to infinity or returns to 1 in forward operations; 2, 

there hasn’t any triple in the forward path numbers; 3, there have an infinity number 

of inverse path numbers which had been defined as similar numbers between them in 

one time of inverse operation; 4, to do inverse operations (defined as reverse tracing) 

repeatedly from the odd 1, it will obtain all of the odds; 5, for any odd obtained by 

tracing, to do forward operations, it must return to 1 along the reverse tracing path. 
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1. Introductions and statements 

The Collatz conjecture is the 3x+1 conjecture, also known as Kakutani’s problem. It has not 

been proved since it was proposed [1]. Its operation rules are: for any given positive integer n , if 

even, then to / 2n ; if odd, then to 3 1n  . To do it repeatedly, n will eventually return to 1. 

In this paper, we called Collatz conjecture as Collatz proposition, or proposition for short. 

According to the operation rules, an even number will be transformed into an odd firstly, so we 

take odds directly to analyze for the operations and use positive integers when counting. 

 

2. Operational rules and analysis of the operation properties 

In operations, there are many new odds and they form an operation path.  

Definition 1  

(a) The operation process from an odd to a new odd is called one time of operation; times of 

operations are called continuous operations; in one operation, divided by 2 is called one 

time of local operation;  

(b) The new odd obtained after one operation is called a path number; 

(c) One operation done in the order of the proposition is called one time of forward operation. 

Next, we give the formula and analyze the properties of the forward operations. 

 

2.1 The operational formula  
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For any given odd number n , let p  be its path number, then according to the operation rules, 

we have 

    
3 1

2k

n
p


                                    (2.1) 

Where k N and 2k is a divisor. 

Here, we called formula (2.1) as the forward operation formula of the proposition. To analysis 

formula(2.1) , it is not difficult to obtain: for any given odd number n , there has only one path 

number p corresponding to n ; the value of k  is determined by the odd number n , k can be 

expressed as the times of divided by 2, for an example, when it equals to 1, it means in one 

operation, that there is one local operation, and when it equals to 3, there are three local 

operations; for two different odds, the local operations is the same or different because the value 

of k  in the divisor can take all of the positive integers, therefore, there may be infinite odd 

numbers that they will all get the same path number after one operation, and these new odd 

numbers may be some correlation properties with each other.  

 

2.2 The properties of the path numbers 

2.2.1 Numerical comparison of n  and p   

Suppose p n , then from formula (2.1) we have 

1

2 3k
n 


.                                   (2.2) 

It can be seen that equation (2.2) has only one positive integer solution 1 when k is equal to 2. 

From this, we can draw a conclusion (conclusion (1)): for the odd number 1, its path number is 

equal to itself; for any given positive integer n  except 1, its path number p isn’t equal to n  

itself, that is p n . 

Thus it can be seen that there has only one cycle 1-4-2-1 of which n  to be taken 1 in one time of 

operation. If get 1, we stop to do operations. 

In a numerical size relationship from formula (2.1), when 1n  , we can get what as fallows 

If, 1k   p n  

If, 2k   p n  
If, 3k   p n  

Obviously, the larger k  is, the greater the change rate of the path number is.  

Here, for an odd, its path number becomes smaller quickly or even goes to 1 directly when 3k  . 

It’s to do with what whether all odds can go back to 1 and that is what we are going to research 

in this paper. 

 

2.2.2 The triples 

An odd number n  can be expressed as 

2 1n x  . 
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Where 0x   or x N .  

To do one operation for n , suppose we can get a path number 3p , where p is an odd, then from 

formula (2.1) we have the following equation  

 3 2 1 1 6 4
3

2 2k k

x x
p

  
  . 

To simply, then we have 

12
2

3

kx p  .                             (2.3) 

Obviously, the equation (2.3) doesn’t hold for integers, so we can get the following conclusion 

(conclusion (2)): the path number is not a triple, but a non-triple; these triples were skipped in 

operations.  

Thus in operations, only the starting point can be a triple. 

 

2.2.3 Changes of the values of two adjacent odds 

Let n  be an odd and expressed as 2 1x  , where 0x   or x N , thus, one of its adjacent odd 

numbers can be expressed as   

 2 1 2x   . 

To do operation for 2 1x  , and the divisor is used 2 firstly, then we get a middle number as 

fallow  

 3 2 1 1
3 2

2

x
x

 
  . 

To do operation for 2 1 2x   , then we also get a middle number as fallow 

 3 2 1 2 1
3 5

2

x
x

  
  . 

Obviously, in these two numbers above, one is odd and the other is even. They both increase 

firstly, since the even can be divided by 2 again, so it will decrease finally. From this, we can get 

a conclusion (conclusion (3)): for two path numbers of two adjacent odds, if one becomes larger, 

the other must become smaller. 

 

2.3 Narrow paths 

Definition 2 Let n  be an odd, to do operations continuously for it, in every operation process, 

if the times of local operations doesn’t exceed 2, i.e., 2k  , then we called this section of the 

operations path as a narrow path which is composed of n  and its path numbers. 

On the narrow path, the numerical change rate of the path numbers is the smallest, that is, the 

range of changes is the narrowest.  

A complete narrow path has a starting point and an ending point, which we will discuss further 

below (at section 6.1). 

 

3. The similar numbers and their properties 

From the analysis at 2.1, it’s known that the same path number can be obtained when doing one 
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operation for two different odd numbers respectively. For example, if doing one operation for 7 

and 29, they both get 11. For 7, the value of k  in formula (2.1) is 1, and for 29, the value of k

is 3. 

Definition 3 Suppose, there are two odd numbers 1n
 
and 2n

 
which their path numbers are 

both p , then, we called that 1n
 
is a similar number of 2n , or

 2n
 
is a similar number of 1n , 

that is, they are similar each other, and denoted 1n ∽ 2n , or, 2n ∽ 1n . 

For example, 29 is a similar number of 7, or 7 is a similar number of 29, i.e., 29∽7. 

Obviously, the similar numbers are caused by different values of k . 

Next, we analyze the properties of the similar numbers. 

 

3.1 The relationship between similar numbers 

Suppose, there are two similar numbers 1n and 2n , where 2n ＞ 1n , to do one operation on each of 

them, we can get the path numbers
1p and

2p . According to formula (2.1), we have 

1

1
1

3 1

2k

n
p


  

And  

2

2
2

3 1

2k

n
p


 .

 

Where 1 Nk  , and 2 Nk  .  

Now, let
21 pp  , then we have  

1 2

1 23 1 3 1

2 2k k

n n 
 .                                 (3.1) 

Since 2 1n n＞ , we can get 2 1k k＞ , that is, 2 1k k are positive integers. 

From equation (3.1), 2n can be obtained, that is  

 
2 2

2 1 2 1

1 1
2 1 1

2 1 2 1
1 2 2 1

3 32 2

k k
k k k k

k k
n n n  

      
 

.             (3.2) 

Obviously, for equation (3.2), if 2n to be an integer, 2 12 1k k   must be a triple, and there is a 

minimum value 3 in triples and at this time 2 12k k
takes 4.  

Now, let 2 1 2k k t  , i.e., 2 1k k takes evens, where t N , thus we have  

2 1 22 1 2 1 (2 1)(2 1)k k t t t       .                        (3.3) 

As it can be seen from equation (3.3) that there is a triple in three continuous positive integers of

2 1t  , 2t
and 2 1t  . For 2t

, if t  is even, 2 1t   is a triple and we can derive that 2 1t   is not a 

triple (the smallest gap of two triples is 3); if t  is odd, 2 1t  is a triple, and we can also derive 

that 2 1t   is not a triple, that is, when 2 1k k takes odds, 2 12 1k k  hasn’t any triple factor. Thus

2 1k k must take even numbers ( 2 3k  ), that is, 2 12k k
must take a power of 4, and then 2n

 
has 

integer solutions in equation (3.2). 

Now, we analyze some cases with 4 and its 4 multiples to find some similar numbers 

respectively,  
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a) when 2 12k k
takes 4, we have the second ( 1n is the first) 

14 12  nn  

b) when 2 12k k
takes 16, we have the third 

  2 1 0

3 1 1 116 5 4 4 1 1 4 4 4n n n n         

c) when 2 12k k
 takes 64, we have the fourth 

  3 2 1 0

4 1 1 164 21 4 4 4 1 1 1 4 4 4 4n n n n            . 

Here, we had got three similar numbers of 1n in turn. As it can be seen that the formula above is 

an iterative formula, thus more generally, we can deduce an iterative formula as follow 

1

1 1

1

4 4
i

i j

i

j

n n 





  .                              (3.4) 

Where 1n takes odds, and i and j takes positive integers. Using formula (3.4), we can get an 

infinite number of similar numbers of 1n . 

As examples, we can find some similar numbers of the original few odd numbers. 

i. Let 1n =1, then from (3.4) we have  

1

1

1

4 4
i

i j

i

j

n 





  .                               (3.5) 

From (3.5) we can obtain a sequence generated by 1 as follow 

 1, 5, 21, 85, 341… 

ii. Let 1n =3, then we can again obtain a sequence generated by 3 as follow 

3, 13, 53, 213, 853… 

iii. Let 1n =7, then we can also obtain a sequence generated by 7 as follow 

7, 29, 117, 469, 1877… 

When 1n =5, the sequence generated by 5 is already in the first sequence. 

It can be seen that when the gap between two similar numbers is the smallest, the relationship 

between two similar numbers is as fallow  

14 12  nn                                    (3.6) 

Here, we called formula (3.6) as the formula of the similar numbers, and also, two similar 

numbers when they have the smallest gap between them as the adjacent similar numbers. By 

using formula (3.6), we can also find out the numberless similar numbers of 1n one by one and 

it's easy to do. We use only this formula in this paper. The similar numbers of any odd number 



6 
 

can be found one-timely if we use the iterative formula (3.4). 

This relationship can be verified by doing operations for 1n and 2n separately.  

a) For
1n , we have the path number 

k

n

2

13 1  . 

b) For 2n , we have a middle even number 

 







 



kk

nn

2

13
4

2

1143 11
.

 

Obviously, the number on the right above can be divided by 4 again, thus we also have a path 

number 

k

n

2

13 1  .
 

As it can be seen that when we do operations for 1n and 2n respectively, we get the same path 

number, so they are similar numbers to each other. 

To do inverse operation for formula (3.6), then we have  

4

12
1




n
n  ,                             (3.7) 

where 2 5n  , obviously, if 1n to be a positive integer and an odd, then it is an adjacent similar 

number of 2n , and 1 2n n＜ . Here Formula (3.7) is called the inverse operation formula of similar 

numbers.  

 

3.2 The sets of similar numbers 

It is obvious from formula (3.6) that any odd number can generate an infinite number of similar 

numbers in turn. 

Definition 4  

(a) Suppose, the similar numbers generated by the odd number 1n in turn are 2n , 3n , …, in , 

where i N and 2i  , then we called the infinite set composed of 1n and in  as an 

infinite set of similar numbers, or a set for short;  

(b) We called in  as the previous similar number of 1in  , and 1in  as the next similar number 

of in ; 

(c) We called 1n as the generating number of a set (the first); called the set as number 1n set. 

For examples, when the generating number is 1, it can generate 5, 21, 85, 341, 1365…an infinite 

number of similar numbers (see section 3.1), 1 and all of its similar numbers constitute a set, this 

set is called number 1 set, in which any similar number returns directly to 1 after one operation; 

1 is the path number of itself and also the rests, so it’s the operational value of number 1 set. In 

the same way, 3 can generate similar numbers such as 13, 53, 213, 853… (see section 3.1), they 

constitute the number 3 set. In a set, all odds constitute an increased sequence. Specifically, if 

every odd in number 1 set be added with 3 to the right in turn, then number 1 set becomes 
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number 3 set (missed the first).  

For understanding, there is a table of sets of similar numbers below (see Tab. 1 Table of sets of 

similar numbers). 

 

Tab. 1                         Table of sets of similar numbers 

n\c 
Path 

numb. 
Comp. 

Set 

numb. 

Similar numbers (arranged small to large) 

1 2 3 4 5 6 7 

1 1 = 1 1 5 21 85 341 1365 5461 

2 5 ＞ 3 3 13 53 213 853 3413 13653 

3 1 ＜ 5 5 1 1 1 1 1 1 

4 11 ＞ 7 7 29 117 469 1877 7509 30037 

5 7 ＜ 9 9 37 149 597 2389 9557 38229 

6 17 ＞ 11 11 45 181 725 2901 11605 46421 

7 5 ＜ 13 13 3 3 3 3 3 3 

8 23 ＞ 15 15 61 245 981 3925 15701 62805 

9 13 ＜ 17 17 69 277 1109 4437 17749 70997 

10 29 ＞ 19 19 77 309 1237 4949 19797 79189 

11 1 ＜ 21 21 5 5 5 5 5 5 

12 35 ＞ 23 23 93 373 1493 5973 23893 95573 

13 19 ＜ 25 25 101 405 1621 6485 25941 103765 

14 41 ＞ 27 27 109 437 1749 6997 27989 111957 

15 11 ＜ 29 29 7 7 7 7 7 7 

16 47 ＞ 31 31 125 501 2005 8021 32085 128341 

17 25 ＜ 33 33 133 533 2133 8533 34133 136533 

18 53 ＞ 35 35 141 565 2261 9045 36181 368641 

19 7 ＜ 37 37 9 9 9 9 9 9 

20 59 ＞ 39 39 157 629 2517 10069 40277 161109 

21 31 ＜ 41 41 165 661 2645 10581 42325 169301 

22 65 ＞ 43 43 173 693 2773 11093 44373 177493 

   ……        

    +2 +8 +32 +128 +512 +2048 +8192 

notes 

1. Each row is a set of similar numbers (only 7 odds), the first similar number of each set is the successive 

odd numbers starting from 1, which is the generating number of these set, and each set takes this odd 

number as the number of the set; 

2. Comparison represents the relationship between the generating number and the first path number, and 

the size is continuously distributed in pairs (conclusion 3); the path number is also the operational value 

of the set; 

3. The rows of 5, 13, 21, 29…are subsets (underlined); from the second in a row, the odds are all the 

previous similar number of the first, thus each column contains any odd (some repeated, such as 5 in the 

second column); 

4. The triples are shaded; in a set, there are two non-triples between two triples (see section 3.3). 

 

 

3.3 The smallest gap between two triples in a set  

In a continuous series of odd numbers, two adjacent triples are separated by two non-triples. 3 is 
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the smallest triple, and 3 added by 6 every time, it becomes another triple (odd). Similarly, in a 

set, two adjacent triples are separated by two non-triples. 

To verify as follows:  

A triple can be expressed as 3n , where n is an odd, so according to formula (3.6) the following 

three similar numbers are as follows in turn: 

The first      4 3 1 12 1 3(4 ) 1n n n      

The second   4 12 1 1 48 5 3(16 2) 1n n n        

The third       4 48 5 1 192 21 3 64 7n n n       

As it can be seen, that the first and the second are both not triples, and the third is exactly a 

triple. 

 

3.4 The effects of the similar numbers in operations  

In the continuous operations, when a path number has a similar number smaller than itself, the 

next path number will quickly become smaller, or even directly back to 1. For example, the 

number 853 (in Tab. 1, row 2) is similar to 3, which returns to 5 quickly after one operation; the 

number 1365 (in Tab. 1, row 1) is similar to 1, which returns to 1 directly. For operations, if 

A∽B and B is bigger than A, to do one time of operation for B is that for A, such as, for 1365 is 

that for 1. Those numbers from the second in a set are the ending-numbers of a narrow path (see 

definition 2, the times of local operations exceeds 2).  

It is not difficult to see that the similarity existing in odds is of great significance in judging this 

proposition.  

 

4. The analysis of cycles in forward operations 

In the continuous series of odd numbers, we divided every four odds into a group starting with 1, 

and a group is marked tg , where t N , thus the expressions of four odds in tg are as follows,  

1 1 8( 1) 8 7n t t                                    (4.1) 

2 3 8( 1) 8 5n t t                                    (4.2) 

3 5 8( 1) 8 3n t t                                    (4.3) 

4 7 8( 1) 8 1n t t                                    (4.4) 

Here, we can get the odds in a group, such as 1, 3, 5 and 7 in 1g , and 9, 11, 13 and 15 in 2g , and 

so on. According to the formula (2.1), the path number 1p of 1n is as follow 

1
1 2

3 1 3(8 7) 1 24 20 6 5

2 2 2 2k k k k

n t t t
p



    
     .               (4.5) 

As the molecules is an odd in equation (4.5), thus if 1p to be an integer and an odd, then k must 

take 2, so we get 

1 6 5p t  .                                  (4.6) 

Obviously, 1n has decreased after one time of operation. 

As the same, 
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2
2 1

3 1 3(8 5) 1 24 14 12 7

2 2 2 2k k k k

n t t t
p



    
    .                (4.7) 

That is 

2 12 7p t  .                                  (4.8) 

Obviously, 2n has increased after one time of operation. 

And for 4p , we also have  

4
4 1

3 1 3(8 1) 1 24 2 12 1

2 2 2 2k k k k

n t t t
p



    
    .                  (4.9) 

That is 

4 12 1p t                                       (4.8) 

Obviously, 4n has also increased.  

Now, we analyze 3n , and it can be seen that it has similar numbers less than it. Here is the proof. 

Let its previous similar number be 3sn , according to formula (3.7), and then we have 

3
3

1 8 3 1
2 1

4 4
s

n t
n t

  
    .                     (4.9) 

It can be seen that equation (4.9) had got any odd, and for a part of odds, they also have smaller 

similar numbers, for example, the third odd 21 in 3g has two smaller similar numbers 5 and 1 (see 

Tab. 1). 

Here, the path number 3p of 3sn is as follow from formula (2.1) 

3
3 1

3 1 3(2 1) 1 6 2 3 1

2 2 2 2

s

k k k k

n t t t
p



    
    .                 (4.10) 

For equation (4.10), when t takes evens and as analyzed for equation (4.5), we can get 

3 3 1p t  .                                (4.11) 

And when t takes odds, the right side of equation (4.10) has another local operation and even 

more, therefore 3p will again become smaller, so 3 1t  can be regarded as the maximum value of

3p when t takes odds. The aim of what we do here is for analyzing below the gap between 3n and

3p after taking the similar number 3sn of 3n . Obviously, 3n has decreased after one time of 

operation, that is, there is a distance between 3n and 3p . We will analyze under what conditions 

that 3p is equal to 3n after taking similar numbers. 

Next, we analyze the cycles in continuous forward operations. Firstly we take 1n in tg to analyze 

under what conditions that the path numbers of 1n is equal to it. After one time of operation, its 

path number 1p is in another group or in the same, after second operation, the path number of 1p is 

also in a group, and so on. Obviously, when a path number returns to a certain group, it can still 
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be represented by an expression of one of the four odds in a group, and it also has its path 

number. Now we compare 1n with each path number of four odds, that is, using 1p , 2p , 3p and 4p

respectively, to determine if it is equal to 1n . If any of them is not equal to 1n , then it can be 

determined that there is no cycle in continuous operations, and conversely, there is a cycle. For 

example, for the second odd 27 in 4g , its path number 41 is the first odd in 6g , and the odd 41 has 

its path number 31 in 4g , and so on. Obviously, both 41 and 31 are different from 27. In fact, 

what we need to determine is whether all of the path numbers of 27 is equal to 27. If not, then we 

can determine that there hasn’t any cycle in the continuous operations starting from 27. We make 

the same comparison with the path numbers of the rest three odds in a group. 

 

4.1 Comparisons 1n with four path numbers 

a) Let 1 1p n ，then we have 

6 5 8 7t t   .                              (4.12) 

From equation (4.12), we get 1t  ，that is, only in 1g ，the path number of the odd 1 is equal to 

itself, it is a small cycle, and that is also the conclusion (1) obtained in section 2.2.1, and we 

can get 1 1p n when 2t  . 

b) Let 2 1p n ，then we have 

12 7 8 7t t   .                               (4.13) 

From equation (4.13), we get 0t  ，that is, 2 1p n . 

c) Let 3 1p n ，then we have 

1

3 1
8 7

2k

t
t




  .                                (4.14) 

It can be seen that the equation (4.14) holds when 1t  , and 2k  . This means that in 1g , 

1 8 7 1n t  
 
(equation (4.1)) and 3 8 3 5n t  

 
(equation (4.3)), as 5 has a smaller similar 

number 1, so we take 1 to do one time of operation and get its path number 1, so here, 1 is 

just 3p , i.e., it is the path number of 3n , thus 3 1p n . Because the previous similar number 

decreases, so we take the maximum value 3 1t  of 3p to compare with8 7t  , and it can be 

seen that8 7t  is greater than 3 1t  when 2t  . Now we get 3 1p n when 2t  . 

d) Let 4 1p n ，then we have 

12 1 8 7t t   .                              (4.15) 

From equation (4.15), we get 

3

2
t   . 

Since it is not a positive integer solution, so we can get 4 1p n . 



11 
 

From the analysis of a) to d), a conclusion (conclusion (a)) can be concluded: any path number is 

not equal to itself when keep doing operations starting with 1n , and 2t  .  

 

4.2 Comparisons 2n with four path numbers 

a) Let 1 2p n ，then we have 

6 5 8 5t t   .                                (4.16) 

From equation (4.16), we get 0t  ，so 1 2p n . 

b) Let 2 2p n ，then we have 

12 7 8 5t t   .                               (4.17) 

From equation (4.17), we can get 

1

2
t  . 

Since it is not a positive integer solution, so we have 2 2p n . 

c) Comparisons 2n with 3p . Here, we take the maximum value 3 1t  of 3p , and then we have 

                            2 8 5n t  .                               (4.2) 

Analyzing 3 1t  and8 5t  , it is not difficult to see that, 8 5t  is greater than 3 1t  for any

1t  , so 3 2p n .                      

d) Let 4 2p n ，then we have 

12 1 8 5t t   .                            (4.18) 

From equation (4.18), we get 1t   ，since it is not a positive integer solution, so 4 2p n . 

From the analysis of a) to d), a conclusion (conclusion (b)) can be concluded: any path number 

when keep doing operations starting with 2n , is not equal to itself when 2t  .  

 

4.3 Comparisons 3n with four path numbers 

a) Let 1 3p n ，then we have 

6 5 8 3t t   .                             (4.19) 

From equation (4.19), we can get 1t   ，since it is not a positive integer solution, so

1 3p n . 

b) Let 2 3p n ，then we have 

12 7 8 3t t   .                            (4.20) 

From equation (4.20), we get 1t  ，that is, only in 1g , the path number 5 of the second odd 3, 

is equal to the third odd 5. Obviously, the left side of equation (4.20) is greater than the right 

side when 2t  , so we get 2 3p n when 2t  . 

c) Comparisons 3n with 3p . Here, we take the maximum value 3 1t  of 3p , and we have 
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3 8 3n t  .                              (4.3)                           

Analyzing 3 1t  and8 3t  , it is not difficult to see that, 8 3t  is greater than 3 1t  for any

1t  , so 3 3p n . 

d) Let 4 3p n ，then we have 

12 1 8 3t t                                  (4.21) 

From equation (4.21), we get 

1

2
t   . 

Since it is not a positive integer solution, so we get 4 3p n . 

From the analysis of a) to d), a conclusion (conclusion (c)) can be concluded: any path number 

when keep doing operations starting with 3n , is not equal to itself when 2t  . 

 

4.4 Comparisons 4n with four path numbers 

a) Let 1 4p n ，then we have 

6 5 8 1t t   .                               (4.22) 

From equation (4.22), we can get 2t   , since it is not a positive integer solution, so

1 4p n . 

b) Let 2 4p n ，then we have 

12 7 8 1t t   .                              (4.23) 

From equation (4.23), we can get 

3

2
t  . 

 Since it is not a positive integer solution, so we get 2 4p n . 

c) Comparison 4n with 3p . Here, we also take the maximum value 3 1t  of 3p , and we have  

4 8 1n t  .                                (4.4)  

Analyzing 3 1t  and8 1t  , it is not difficult to see that, 8 1t  is greater than 3 1t  for any

1t  , so 3 4p n . 

d) Let 4 4p n ，then we have 

12 1 8 1t t   .                            (4.24) 

From equation (4.24), we get 0t  ，so 4 4p n . 

From the analysis of a) to d), a conclusion (conclusion (d)) can be concluded: any path number 

when keep doing operations starting with 4n , is not equal to itself.  

From the analysis of 4.1 to 4.4 and conclusions (a) to (d) above, now a conclusion (conclusions 

(4)) can be drawn: to do continuous operation starting from any given odd, every path number is 
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unique, that is, there is no cycles in a forward operation path which may include similar numbers 

except the cycle 1-4-2-1, and therefore the path number either tends towards infinity or regresses 

to 1, and it means that a biggest odd will continue to appear in the path if it tends towards infinity, 

and on the contrary, a minimum odd will continue to appear in the final path. 

  

5. Analysis of the principle of the inverse operations 

The forward operation of the proposition is reversible for non-triples. Now, to do one reverse 

operation for formula (2.1), then we have 

               
2 1

3

k p
n


 ,                                   (5.1) 

or  

3 2 1kn p  .                                   (5.2) 

Where k N , and p takes non-triples (conclusion (2)). 

Here, formula (5.1) or (5.2) is called the inverse formula of the proposition, 2k
 is called a 

multiplier, and n  is called the inverse path number of the given forward path number p . The 

formula (5.1) and (5.2) are used in reverse to find the inverse path number n .  

Here, we firstly analyze some cases of particular path numbers p . 

a) Let 1p  , from the formula (5.1), then we have  

2 1

3

k

n


 .                                   (5.3) 

As it is analyzed in section 3.1, if k is even, 2 1k  is a triple, then n  has its positive 

integer solutions in equation (5.3); if k is odd, it hasn’t any positive integer solution. From 

this, we can find the inverse path numbers such as 1, 5, 21, 85…, that is the number 1 set 

of similar numbers (see Tab.1). Here, it contains 1 itself in the inverse path numbers and 

there is a cycle 1-1-1. 

b) Let n p and 1p＞ , from the formula (5.1), then we have 

2 1

3

k p
p


 . 

That is  

1

2 3k
p 


.                               (5.4) 

As it can be seen that equation (5.4) has only one positive integer solution 1p  when
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2k  . Since 1p＞ , so we can draw a conclusion (conclusion (5)): the inverse path number 

isn’t equal to the given forward path number, or n p when 1p＞ .  

c) Let 3p t , that is, p takes triples, where t N . From formula (5.1), then we have  

                    
 2 3 1 1

2
3 3

k

kt
n t


   .                           (5.5) 

Obviously, there is no positive integer solution to equation (5.5), so we can draw a 

conclusion (conclusion (6)): for any triple, it hasn’t any inverse path number.  

By analyzed in section 2.1 and here, we had known that, there be an infinite number of inverse 

path numbers, each of them constitutes the source of the known path number p , i.e., p is 

sourced from the infinite of inverse path numbers.  

Next, we analyze the properties of the inverse operations. 

 

5.1 The relationship between the inverse path numbers 

From formula (5.1) or (5.2), it can be seen that the inverse path numbers are directly related to 

the value of k  in the multiplier 2k , and therefore, we use the parity property of the values of k  

to analyze the relationship between the inverse path numbers. Apparently, for any non-triple p , 

we can’t at the same time get an integer in formula (5.1) when k  takes the minimum odd 1 and 

the minimum even 2; for k  and 2k  , they are the same as an odd or even. 

Let p be a non-triple, 1n be the inverse path number, according to formula (5.1), then we have 

1

2 1

3

k p
n


 .                                (5.6) 

Where .k N  
To multiply with 4 for two sides in formula (5.6), then we obtain 

2 2

1

2 1 2 4 2 1
4 4 1

3 3 3

k k kp p p
n

    
    

 
. 

That is 

2

1

2 1
4 1

3

k p
n

 
  .                              (5.7) 

Comparing formula (5.7) with the similar number formula (3.6), it is not difficult to see, that the 

right of formula (5.7) is the next similar number of 1n , marked 2n , that is  

2

2 1

2 1
=4 1=

3

k p
n n

 
  

That is 
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2

2

2 1
=

3

k p
n

 
.                              (5.8)

 

It’s generated by added 2 to k  in the multiplier, that is, when k takes the next odd or even, we 

can get the next similar number 2n of 1n .  

Again, to multiply with 4 for two sides in formula (5.8), then we have 

+2 2+2 2+2

2

2 1 2 4 2 1
4 4 1.

3 3 3

k k kp p p
n

    
    

 
 

That is  

2+2

2

2 1
4 +1

3

k p
n

 
 .                            (5.9) 

As it can be seen in formula (5.9), that the right is the next similar number of 2n , and marked 3n . 

That is  

2+2

3 2

2 1
=4 +1

3

k p
n n

 
 .                         (5.10) 

In the same way, we can find other similar numbers when k takes again next odd or even. As 

the value of k increases, there are an infinite number of similar numbers
 
of 1n .  

For an odd number n , to 3 +1n , it must be an even and can be divided by 2 one time or more 

times. 

Now, a conclusion (conclusion (7)) can be drawn by the analysis above: in formula (5.1), for a 

non-triple p , if k takes the smallest odd number 1 ( the smallest multiplier is 2), we can get an 

inverse path number, then k takes the rest odds greater than 1, we can also get an infinite of 

number of inverse path numbers, and all the inverse path numbers are similar to each other; if, 

when k takes the smallest odd number 1, we can’t get an inverse path number, then k takes the 

smallest even number 2 (the smallest multiplier is 4) and any even number greater than 2, we 

can get an infinite of number of inverse path numbers definitely, and they are also similar 

numbers to each other. 

Obviously, all the inverse path numbers constitutes a set of similar numbers. 

When k takes the smallest odd 1 or even 2, i.e., multiplier 2k takes the smallest 2 or 4, the 

inverse path number is called here the first inverse path number. 

 

5.2 The properties of the first inverse path numbers 

Suppose, there are two adjacent similar numbers 1n
 
and 2n  in a set, where 2n  is known, and

2 1n n＞ , i.e., 1n  is the previous similar number of 2n , according to formula (5.1), then we have  

2

2 1

3

k p
n


 . 
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According to formula (3.7), we have  

4

12
1




n
n .                                (5.11) 

To substitute 2n in formula (5.11), then we have
 

1

2 1
1

2 1 3 2 13

4 12 12 3

k

k k

p

p p
n




 
   

.               (5.12) 

Next, we take the smallest multiplier 2 and 4 in formula (5.12) for analysis respectively, 

a）when taking 2 

1

2 1 1 2

12 3 6 3 6

p p p
n


     , 

b）when taking 4 

1

4 1 1 1

12 3 3 3 3

p p p
n


     . 

Obviously, 2p  is an odd, 1p  is an even above, so, neither of these two equations can get an 

integer, thus, there is no similar number less than 2n , that is, 1n doesn’t exist. Therefore, it can 

be concluded (conclusion (8)): the first inverse path number must be the generating number of a 

similar number set (i.e., 2n is the first here). 

Definition 5  

(a) When doing the reverse operations according to formula (5.1), we changed the names, 

called the non-triple p given originally as a primitive number; called the first inverse 

path number as a source number of p ; 

(b) Doing one time of reverse operation is called one time of reverse tracing, tracing for short; 

times of tracing is called continuous tracing. 

According to definition 5, one time of tracing is to find out the first source number of a primitive 

number. Since the rest inverse path numbers of a primitive number are similar to the source 

number (conclusion (7)), they can be found in turn by using the similar number formula (3.6), 

and therefore, here we defined only the first of them. 

 

5.3 Analysis of the multipliers of two continuous primitive numbers 

As stated in 3.3, for the continuous series of odd numbers, there are only two consecutive 

non-triples between two adjacent triples, only non-triples are the primitive numbers.  

Let 3p  be a triple, where p  is an odd, so, in terms of the increasing value, the first primitive 

number adjacent to 3p  is3 2p  , and the second is 3 4p . Next, we take the multiplier 2 and 

4 for analysis respectively. 

5.3.1 Take 2 

According to the formula (5.2), we have an equation as fallow 

 3 2 1n p  .                               (5.13) 

a) Put the first primitive number 3 2p   into equation (5.13), and then we have 
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 3 2 3 2 1 6 3n p p     . 

That is  

2 1n p  .                              (5.14) 

Obviously, there is an integer solution in equation (5.14), and it is the source number of first 

primitive number. 

b) Put the second primitive number 3 4p  into the equation (5.13), and then we have 

 3 2 3 4 1 6 6 1n p p      . 

That is 

1
2 2

3
n p   .                          (5.15) 

Obviously, the equation (5.15) hasn’t any integer solution.  

5.3.2 Take 4 

According to the formula (5.2), we have an equation as fallow 

3 4 1n p  .                           (5.16)               

a) put the first primitive number 3 2p   into equation (5.16) , then we have 

 3 4 3 2 1 12 6 1n p p      . 

That is  

1
4 2

3
n p   .                         (5.17) 

Obviously, the equation (5.17) hasn’t any integer solution. 

b) put the second primitive number 3 4p  into equation (5.16) , then we have  

 3 4 3 4 1 12 15n p p     . 

That is 

4 5n p  .                          (5.18) 

Obviously, there is an integer solution in equation (5.18), and it is the source number of the 

second primitive number. 

Thus, based on the analysis of 5.3.1 and 5.3.2, it can be concluded (conclusion (9): in the 

continuous series of odd numbers, for two continuous primitive numbers, the multiplier of the 

first is to take 2 and the second is to take 4 definitely.  

And as a result, for their two source numbers, the first gets smaller, the second gets larger (be 

similar to conclusion (3)). 

Here, we called the formula (5.13) and (5.16) as the formulas of source numbers. 

 

5.4 Analysis of the multiplier of three consecutive odd numbers 
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5.4.1 The setting of the multiplier of a triple  

Since formula (5.1) doesn’t hold for the triples (conclusion (6)), therefore, the multiplier of a 

triple is set as 0, which means that there is no source number for the triples. Thus, for two 

consecutive primitive numbers and a triple, i.e. three consecutive odd numbers, as derived from 

conclusion (9), their multipliers in order are 2, 4 and 0. 

5.4.2 A special determinant of odds  

According to the conclusion (9), the continuous odd numbers can be arranged in a special 

determinant in tabular form, and then the special regular of multipliers can be shown. See Tab. 2 

Table of multipliers.  

 

Tab. 2                          Table of multipliers ( 2k ) 

row 

h  

con-t

ent 

column l  

1 2 3 4 5 6 7 8 9 10 11 12 

 2k  2 4 0 2 4 0 2 4 0 2 4 0 

1 

odd 

          1 3 

2 5 7 9 11 13 15 17 19 21 23 25 27 

3 29 31 33 35 37 39 41 43 45 47 49 51 

4 53 55 57 59 61 63 65 67 69 71 73 75 

5 77 79 81 83 85 87 89 91 93 95 97 99 

6 101 103 105 107 109 111 113 115 117 119 121 123 

7 125 127 129 131 133 135 137 139 141 143 145 147 

8 149 151 153 155 157 159 161 163 165 167 169 171 

…              

h   n             

notes 

1. This table shows consecutive odds in rows and columns; there are 1 and 3 in first row and the 

multipliers of them are corresponding to 4 and 0; from second row, there are twelve odds in 

each, and the multipliers of them are corresponding to 2, 4 and 0 four times in order; 

2. The triples are with shadows, and they form four columns, the remaining 8 columns are 

primitive numbers. 

 

In the table, the multipliers for each row are repeated four times in the order of 2, 4 and 0. Next, 

we use this table to analyze the method of taking the multipliers. 

5.4.3 Location analysis of an odd number in Tab. 2  

a）Row number h    

Let n  be an odd given arbitrarily, then, according to the odd number arrangement in the 

table, its row number h  is given by the following formula  

   
4

1
24

n
h


  .                                (5.19) 

Where, h takes an integer approach large.  

Here, we called formula (5.19) the row number formula.  

b）Column number l  

Let the row number h  be known, and then the column number l  of the odd number n  
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in the table is given by the following formula 

   
 4 24 2

2

n h
l

  
 .                                         (5.20) 

Where, l takes an integer approach large also. 

Here, we called formula (5.20) the column number formula.  

According to the column number l  in the table, we can cross-reference to get the multipliers, 

that is, 

When l equals to 1, 4, 7, 10, the odd is a primitive number, and its multiplier is 2; 

When l equals to 2, 5, 8, 11, the odd is a primitive number, and its multiplier is 4; 

When l equals to 3, 6, 9, 12, the odd is a triple, its multiplier is 0. 

 

Now, by analysis in 5.4.2 and 5.4.3, it can be concluded (conclusion (10)): for any given odd 

number n  (it may be a primitive number or a triple), its multiplier 2k is obtainable. 

As it can be seen from conclusion (10) that the multiplier can be determined by the primitive 

number its self. Thus, the source number of any primitive number can be found out by using 

formula (5.13) or (5.16), and an infinite number of similar numbers of the source number can 

also be found out by using formula (3.6).  

In a limited range of odds, there is a simple way to find the source numbers. Firstly, we use 2 

directly in formula (5.1) to try to find out the source number n . If n  is an integer, so 2 is its 

multiplier, and p is a primitive number, the integer n  is its source number. If n  isn’t an 

integer, then use 4 to try secondly, if neither of n  is an integer, then p must be a triple, and it 

has no source numbers.  

For two multipliers, more simply，we can determine firstly whether p is a triple (odd), that is, if

/ 3p is not an integer, then to 2p , if ( 2) / 3p  is also not an integer, then 4p must be a 

triple, thus we can get the multipliers of two adjacent primitive numbers by the order of 2, 4 

and 0 (conclusion (9)).  

 

6. Analysis of the continuous inverse operations paths  

6.1 The continuous tracing path  

According to conclusion (10), source number n can be obtained by tracing for a primitive 

number p . Obviously, if n isn’t a triple, then n can be regarded as another primitive number for 

tracing again. Over and over again, primitive number p with one or more of its source numbers 

forms a continuous tracing path. For a given primitive number p , if its tracing path hasn’t an 

end of a triple (conclusion (6)), then it will tend towards infinity because the number of odds 

smaller than p is limited when the path tends to small odd, thus the path will either end at a 

triple or tend towards infinity. For example, tracing for 1, 1 can be traced itself; tracing for the 

similar number 5 of 1, we can get the minimum triple 3 (the forward path number of 3 is 5), so 

there has two odds in this path, and as the same, for the odd 445, 17 times of tracings are 

required to obtain the triple 27, there are 18 odds in this path. The path from 5 to 3 or from 445 
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to 27 is a complete successive tracing path, and in the opposite direction, it is a complete 

narrow path (see section 2.3). Here, we didn’t prove that all odds end at a triple when tracing 

because it does not affect the final conclusion.  

 

6.2 The extended tracing paths 

When getting a triple, we take the next similar number (it’s not a triple, about the gap, see 

section 3.3) of the triple to trace again, and as the same, we take the next similar numbers of 

the rest source numbers to trace again (if it’s a triple, skip it, and again take the next), thus we 

can get some extended tracing paths by using these similar numbers as transitions. 

Obviously, we can do inverse operations starting with the odd 1. There are two kinds of 

operations, one is to find the next similar numbers, and the other is to find the source numbers 

of the primitive numbers in the similar number sets. Its order is, firstly to find the similar 

numbers of 1 one by one, that is, we get the number 1 set, then to trace source numbers of the 

primitive numbers in the set, such as we can get the odd 3 when tracing for the odd 5 of the 

next similar number of 1, and also we can get the rest similar numbers of 3 then we get the 

number 3 set. The inverse operations are repeated in this way, and there will be more and more 

paths spreading out like branches of a tree, and the following paths will all get longer and 

longer if there is no cycle.  

 

6.3 The analysis of the cycles in continuous inverse operations 

Forward operations can start from any odd, and each of its forward path numbers is unique and 

there hasn’t any cycle in the path (conclusion (4). Although some similar numbers were skipped 

in the forward path, but they can still be regarded as in the path because each of them can be as 

an operation starting odd. For example, the odd 3 has its similar numbers 13, 53 and so on, and 

theirs forward path numbers are all 5, obviously, we can do one time of forward operation for 3, 

13 and 53 respectively, that is, using each of them as the starting point, thus they had appeared 

in this path. When we do continuous inverse operations, all of the skipped odds can be found, 

such as tracing for 5, we can get its source number 3 and from 3 we can get one by one its 

similar numbers 13 and 53 and so on, that is, we can get number 3 set. From this way, it’s not 

difficult for us to come out that the odds both in the forward and inverse path, such as A to B 

and B to A, had a one-to-one correspondence, since the similar numbers we take increase in 

turn, thus we can introduce a conclusion (conclusion (11): there hasn’t any cycle in the tracing 

and extended paths when 1p  and all the extended tracing paths (or the odds in the branches) 

will tend towards infinity.  

Obviously, we can obtain an infinite number of odds when doing continuous inverse operations 

and if to do forward operations continuously for any odd obtained, it will be back to 1 
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definitely. 

 

6.4 Analysis of density of the odds obtained and the final conclusion 

Now, we analyze the density of the odds obtained when doing continuous inverse operations.  

Suppose, there is an odd n  in the series of odd numbers which hasn’t been traced on the paths 

starting from 1, that is, n  had been missed. It is obvious that we can do continuous inverse 

and forward operations for it. When doing inverse operations continuously, the inverse path 

numbers in the branches must all tend to infinity (conclusion (11)), and when doing forward 

operations continuously, the forward path number must also tend to infinity, because if its 

forward path numbers get smaller, it must eventually reach 1 (conclusion (4)), it shows that 

there must be a reverse tracing path between 1 and n . From this, for n , both inverse and 

forward operations path tend to infinity. However, the inverse operations are just the opposite 

direction based on the same kind of operational rules of the forward directions and the odds 

had a one-to-one correspondence, so there has only one direction, therefore, the assumption 

above doesn’t hold, thus the odd number n  must not only be in the range of the odds obtained 

by tracing, but it must also be regressed to 1 if doing forward operations for it.  

From this analysis, it can be concluded (conclusion (12)): finally, for any positive integer (an 

even number is transformed into an odd firstly), to do forward operations, it must along the 

inverse paths in the opposite direction and return to 1. So, the Collatz conjecture holds.  

In this paper, the basic operational principle of the conjecture is expounded.  
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