PROOF OF π and e is irrational number by its transcendence Lee Yiu sing

January 2023

Abstract. I will show how to prove π and *e* are irrational numbers with the fact that they are transcendental numbers.

Lemma 1. All transcendental numbers are irrational numbers. Proof: Let x be a transcendental number. Assume x is a rational number. $x = \frac{a}{b}$, where a and b are integers with $b \neq 0$. However, bx - a = 0 and so x is an algebraic number, which contradicts the assumption. Therefore, x is an irrational number.

Lemma 2. Product of two algebraic numbers is also algebraic. This can easily be proved by the resultant of the polynomial.

Theorem. (Lindemann–Weierstrass theorem) If $a_1, a_2, ..., a_n$ are distinct algebraic numbers, then $e^{a_1}, e^{a_2}, ..., e^{a_n}$ are linearly independent over the algebraic numbers. [1]

Corollary 1. e^a is a transcendental number if *a* is a nonzero algebraic number. This can easily be proved by Lindemann–Weierstrass theorem.

Proposition. π is an irrational number.

Proof. First, we want to show π is a transcendental number.

Assume π is an algebraic number. Since *i* is an algebraic number, from lemma 2, πi is an algebraic number. From corollary 1, $e^{\pi i}$ is a transcendental number. However, by Euler's identity, $e^{\pi i} = -1$ which clearly is an algebraic number. Therefore, the assumption leads to a contradiction. Therefore, π is a transcendental number. By lemma 1, π is an irrational number.

Proposition. *e* is an irrational number.

Proof: Put a = 1 into corollary 1. We can immediately get e is a transcendental number. By lemma 1, we can deduce that e is an irrational number.

REFERENCE

[1] Alan Baker. Transcendental Number Theory, Cambridge University Press, 1990