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Abstract 

In 1637 the Toulouse lawyer Pierre de Fermat enunciated a conjecture in 

number theory which denied the possibility of dividing the nth power of an 

integer into the sum of two nth integer powers when natural exponents greater 

than or equal to three are considered. 

This is the famous "Fermat's last conjecture", now elevated to a theorem thanks 

to the proof given by Prof. A. Wiles in 1995. 

In other words, the Diophantine equation  𝒙𝒏 + 𝒚𝒏 = 𝒛𝒏 with n ≥ 3 does not 

admit integer, primitive and non-trivial solutions. In my article, I set out my 

observations on a particular case of this theorem. The "admirable proof" which 

Fermat claimed to have was never found, except for the one in which n = 4 and 

which the French genius demonstrated with a new method coined by himself 

and known as the "method of infinite descent". The latter follows the same logic 

as the already known "ab absurdum reasoning" even if it is articulated with 

slightly more demanding algebraic procedures. 

In this article I report my proof of the case n = 4 with the use of an elementary 

algebraic procedure which, avoiding Fermat's "infinite descent", brings the 

equation in question back to that of the well-known quadratic equation : 

 

                                               𝒙𝟐 + 𝟐𝒚𝟐 = 𝒛𝟐  

 

for which all the primitive, non-trivial solutions in the set of integers have 

already been parameterized. 

The peculiarity of my method lies in transforming Fermat's quartic equation into 

a quadratic equation well studied by number theorists and whose solutions are 

already known. With this strategy it is possible to prove the thesis. 
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∎ My observations on the Diophantine equation proved by 

                                     P. de Fermat 

Fermat's "big" theorem was amply proved by Professor Prof. A.Wiles in 1995 

with the help of many professionals in the field. This gives an idea of how 

complex and tortuous the path followed was, often characterized by the use of 

new mathematical techniques, obviously unknown not only to Fermat, but to all 

eighteenth-century mathematicians. Suffice it to recall the "Kolyvagin-Flach 

method" used by the English scholar to associate its modular form with a 

particular elliptic equation (Frey's equation). It is therefore wholly improbable 

that the lawyer from Toulouse (Pierre de Fermat) was in possession of the 

"admirable proof" he speaks of when expounding his conjecture, given that he 

limited himself to making known only that in the particular case in which the 

exponents of the indeterminates are all equal to four. 

 P. de Fermat demonstrated that the equation  𝒙𝟒 + 𝒚𝟒 = 𝒛𝟒does not admit 

primitive and non-trivial solutions in the integers, using, as already mentioned, a 

method coined by himself which he calls "infinite descent" . This is a special 

kind of proof "by contradiction", in which a given Diophantine equation is 

assumed to admit a "minimal integer primitive solution". If we arrive at the 

existence of a new primitive solution smaller than the hypothesized one, 

obviously we fall into an absurdity, for which we must consider the starting 

equation impossible in the integers . Revisiting UTF (Fermat's Last Theorem) in 

the special case n = 4 , I wondered if the equation  𝒙𝟒 + 𝒚𝟒 = 𝒛𝟒 could be 

studied without using Fermat's "infinite descent", but by adopting an ordinary 

algebraic procedure, i.e. one based on elementary algebra and on consolidated 

results in the field of "number theory". 

I thus found a profound connection between Fermat's equation for n = 4 and 

the well-known quadratic equation: 

                                                   𝒙𝟐 +  𝟐𝒚𝟐 =  𝒛𝟐 , 

of which all its primitive and non-trivial solutions in the ring of integers are 

known. 

It is very easy to demonstrate, with suitable changes of variables and 

rearrangements of terms, that the quadratic equation mentioned above can be 

reduced to an even more famous equation already known in Fermat's time. 
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In fact, we learn from the historical documentation that he himself was the first 

to propose it to B.Frenicle de Bessy and in 1657 to many other mathematicians. 

In this case, Pell's equation as defined by Euler ,falls into the wider range of 

rational numbers, i.e. Q, but I will not use it here. 

In my work I will first of all present a proof that leads to the parametrization of 

the primitive (non-trivial) integer solutions of the equation 

 𝒙𝟐 + 𝟐𝒚𝟐 =  𝒛𝟐 , after which I will focus on my observations about the 

connection between this and the UTF equation for n = 4, showing how  

knowledge of the solutions of the former is useful for arriving at proof of the 

irresolvability of Fermat's great theorem in the special case treated here, without 

using the method of infinite descent. Now follow three "lemmas" which prove 

what I said: 

Lemma (1) 

The quadratic equation: 

(1)  𝒙𝟐 + 𝟐𝒚𝟐 =  𝒛𝟐 

admits infinitely many integer, primitive and non-trivial solutions in Z + 

parametrizable as follows: 

(x, y, z) = (a2-2b2; 2ab; a2 + 2b2) with a, b ∈Z^+: ab> 0 ∧ (a, b) = 1, 

                                                      a> b√2 

The proof of this lemma will be carried out using a "geometric method" known 

in the literature as the "Method of the bundle of Klein lines", valid for all 

conics, but generally for all second order curves. 

 If z ≠ 0, dividing both sides of equation (1) by z2 and working with the 

homogeneous coordinates X = x / z and Y = y / z, we arrive at the equation of a 

centered ellipse, having foci on abscissa axis, of unit semimajor axis and 

semiminor axis equal to 1 / √2: 

                                        (2) X2 + 2Y2 = 1 

A rational point of the curve is certainly P (-1; 0), therefore the equation of the 

proper bundle of Klein lines centered in P is given by: 

                                    (3) Y = m (X + 1) with m ∈Q 

From solving the system between (2) and (3) we arrive at the equation: 

                         (4) (2m2 + 1) X2 + 4m2 X + 2m2 -1 = 0 

 

Whose solutions are X = -1 (not to be considered) e 

                 X = (1-2m2) / (1 + 2m2) hence Y = 2m / (1 + 2m2) 
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Now I set m = b / a ∈Q with a, b∈Z ab ≠ 0 (a, b) = 1 and a > b√2 

(x, y, z) = (a2 - 2b2 , 2ab, a2 + 2b2) with (x, y, z) = 1, because  

                                         (a, b) = 1.                                                    

Lemma (2) 

The quartic equation: x4 + y4 = z4 does not admit primitive and non-trivial 

solutions in Z. 

 

∎Proof 

I reason by contradiction, i.e. I establish that: 

 

∃𝒙𝟎 , 𝒚𝟎, 𝒛𝟎 ∈ 𝒁 + : (𝒙𝟎𝒚𝟎,𝒛𝟎≠ 0) ∧ (𝒙𝟎, 𝒚𝟎) = (𝒙𝟎, 𝒛𝟎) = (𝒚𝟎,, 𝒛𝟎) = 1 : 

                                                 𝒙𝟎
𝟒 + 𝒚𝟎

𝟒 = 𝒛𝟎
𝟒  

Therefore (𝒙𝟎
𝟐, 𝒚𝟎

𝟐, 𝒛𝟎
𝟐)∈ Tpp (primitive Pythagorean triple), from which it 

follows that: 

.𝒛𝟎∈ 𝑫 e 𝒙𝟎 ≢  𝒚𝟎 𝒎𝒐𝒅𝟐   . I   assume  𝒙𝟎∈ D.  

∎ D = set of odd numbers; 

∎ P = set of even numbers. 

Now : 

           𝒙𝟎
𝟒 + 𝒚𝟎

𝟒 = 𝒛𝟎
𝟒   (𝒙𝟎

𝟐 + 𝒚𝟎
𝟐)2 − 2𝒙𝟎

𝟐𝒚𝟎
𝟐 = 𝒛𝟎

𝟒   

 

             (𝒙𝟎
𝟐 + 𝒚𝟎

𝟐)2 = 2𝒙𝟎
𝟐𝒚𝟎

𝟐 +  𝒛𝟎
𝟒  

 

and, operating the following substitution of the variables, we obtain: 

 

                                    {

𝒛𝟎
𝟐 = 𝑿𝟎 ∈  𝐃

𝒙𝟎 𝒚𝟎  =  𝐘𝟎  ∈  𝐏

𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 =  𝐙𝟎  ∈  𝐃

  

                                    

 Thus the above equation becomes: 

                                         𝑿𝟎
𝟐 + 𝟐𝒀𝟎

𝟐 = 𝒁𝟎
𝟐         

                               

of which (𝑿𝟎, 𝒀𝟎,𝒁𝟎) constitutes a primitive solution in the ring of positive 

integers. It is clear that (𝑿𝟎, 𝒀𝟎) = 1, but it is easy to prove that the remaining 

pairs are also coprime: (𝑿𝟎, 𝒁𝟎) = (𝒀𝟎, 𝒁𝟎 ) = 𝟏 . If indeed it were 

(𝑿𝟎,𝒁𝟎) =p ∈ D > p | 2𝒀𝟎 from which it would immediately follow that  
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p|𝑿𝟎 ∧ 𝒑| 𝒀𝟎, so it turns out that p = 1. 

If also (𝒀𝟎, 𝒁𝟎 ) = 𝒒 ∈ 𝒁> q | 𝑿𝟎 , but this also implies that :  

q | 𝒀𝟎 ∧ 𝒒 |𝒁𝟎 ,then (𝑿𝟎, 𝒀𝟎) > 1. In this way I proved that : 

                       (𝑿𝟎, 𝒀𝟎) = (𝑿𝟎,𝒁𝟎) = (𝒀𝟎, 𝒁𝟎 ) =1 .  

From lemma 1 it follows that:     

                          ∃a,b ∈ 𝒁 : ab>𝟎 ∧ (a,b)=1 , a>b√𝟐 : 

        {
𝑿𝟎 = 𝒂𝟐 − 𝟐𝒃𝟐

𝒀𝟎 = 𝟐𝒂𝒃
𝒁𝟎 = 𝒂𝟐 + 𝟐𝒃𝟐 

               {

𝒛𝟎
𝟐 = 𝒂𝟐 − 𝟐𝒃𝟐

𝒙𝟎𝒚𝟎 = 𝟐𝒂𝒃

𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 = 𝒂𝟐 + 𝟐𝒃𝟐 

 

 

If 𝒀𝟎 = 𝟐𝒂𝒃 then 𝒙𝟎𝒚𝟎 = 𝟐𝒂𝒃 and 𝒁𝟎 ∈ 𝑫 it is not difficult to prove 

(lemma 3) that (𝒙𝟎, 𝟐𝒃) = 𝟏 and (𝒂, 𝒚𝟎) = 𝟏, remembering that 𝒙𝟎 ∈ 𝑫 it 

follows that we can immediately posit : 

 

                                     𝒙𝟎 = 𝒂 ∧ 𝒚𝟎 = 𝟐𝒃  

 

                                     𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 = 𝒂𝟐 + 𝟐𝒃𝟐       

         𝒂𝟐 + 𝟒𝒃𝟐 =𝒂𝟐 + 𝟐𝒃𝟐   𝟐𝒃𝟐 =0  b=0   

This condition implies that the system admits only trivial solutions as we 

wanted to demonstrate. 

Ultimately, Fermat's equation for n = 4 is impossible in the ring of integers, just 

as we wanted to prove without using "infinite descent". It is also interesting to 

note that a quadratic equation such as: X2 + 2Y2 = Z2 can be reduced to 

Fermat's biquadratic equation through the following substitutions: 

 

                                   𝑿 = 𝒛𝟐 , 𝒀 = 𝒙𝒚 , 𝒁 = 𝒙𝟐 + 𝒚𝟐 

                                   z4 + 2x2y2 = x4 + y4 + 2x2y2  

                                    (z2)2 + 2(xy)2 = (x2 + y2 )2  

                                                    x4 +y4 =z4, 

 which is just the UTF equation for n = 4. 

 

Lemma 3 : 

             The following system defined on integers: 
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                                     {

𝒙𝟎𝒚𝟎 = 𝟐𝒂𝒃

 𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 = 𝒂𝟐 + 𝟐𝒃𝟐 

(𝐱𝟎𝐲𝟎 )  =  (𝐚, 𝐛)  =  𝟏 

 

 

                     con  𝒙𝟎, 𝒂  ∈ D   ꓥ    𝒚𝟎, 𝒃 ∈ 𝑷 

 

              admits only trivial solutions in 𝑍+  .                                 

 

 ∎ Proof 

 

My assumption is that: 

  (𝒙𝟎 , 𝒃 ) = 𝒅𝟏 𝒆  (𝒚𝟎, 𝒂) = 𝒅𝟐  ∶   𝒅𝟏, 𝒅𝟐 ∈ 𝑫.. 

Thus I can write that: 

   𝒙𝟎 = 𝒅𝟏𝑿 ,  𝒚𝟎 = 𝒅𝟐𝒀  

𝒂 = 𝒅𝟐𝑨  , 𝒃 = 𝒅𝟏𝑩 

 

from which it follows that: 

                                         (𝑑1, 𝑑2) = (X,B)=(Y,A)=(A,B) =1 

Also, if 

                                        𝒙𝟎𝒚𝟎 = 𝟐𝒂𝒃    XY =2AB   

from which it follows that: 

                                              X=A and Y= 2B 

In this way it can be written that: 

                                                 𝒙𝟎 = 𝒅𝟏𝑨 ,  𝒚𝟎 = 𝟐𝒅𝟐𝑩   

                                                  𝒂 = 𝒅𝟐𝑨  , 𝒃 = 𝒅𝟏𝑩          with 

 

      𝒅𝟏, 𝒅𝟐, 𝑨 ∈ 𝑫  Ʌ  𝑩 ∈ 𝑷 

 

 

 

Thus, replacing everything in the relationship   : 

 

                                               𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 = 𝒂𝟐 + 𝟐𝒃𝟐 , 

it is obtained that: 

                                        𝒅𝟏
𝟐𝑨𝟐 + 𝟒𝒅𝟐

𝟐𝑩𝟐 = 𝒅𝟐
𝟐𝑨𝟐 + 𝟐𝒅𝟏

𝟐𝑩𝟐   
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   (𝒅𝟏
𝟐−𝒅𝟐

𝟐)𝑨𝟐 = (𝟐𝒅𝟏
𝟐 − 𝟒𝒅𝟐

𝟐)𝑩𝟐 

 

Now the two GCD 𝒅𝟏, 𝒅𝟐 are both odd and for them only the following two 

cases can occur: 

 

                             𝟏)    𝒅𝟏 ≠ 𝒅𝟐 Ʌ  (𝒅𝟏, 𝒅𝟐 ) = 𝟏 ; 

                             2)     𝒅𝟏 = 𝒅𝟐 = 𝟏 . 

 

In the first case you can proceed as follows: 

 

                                      {
   𝒅𝟏

𝟐 − 𝒅𝟐
𝟐 = 𝒕 𝑩𝟐

𝟐𝒅𝟏
𝟐 − 𝟒𝒅𝟐

𝟐 = 𝒕𝑨𝟐 
      ,  

but   𝟐𝒅𝟏
𝟐 − 𝟒𝒅𝟐

𝟐 = 𝒕𝑨𝟐  

     𝒅𝟏
𝟐 − 𝟐𝒅𝟐

𝟐 =
𝒕

𝟐
𝑨𝟐       t/2 = s ∈ 𝑫       {

   𝒅𝟏
𝟐 − 𝒅𝟐

𝟐 = 𝟐𝒔 𝑩𝟐

𝒅𝟏
𝟐 − 𝟐𝒅𝟐

𝟐 = 𝒔𝑨𝟐 
 

                            𝒅𝟐
𝟐 = 𝒔(𝟐𝑩𝟐 − 𝑨𝟐 ) Ʌ   𝒅𝟏

𝟐 = 𝒔(𝟒𝑩𝟐 − 𝑨𝟐)  

but                         (𝒅𝟏, 𝒅𝟐 ) = 𝟏    s=1  . 

  

This leads to the following solution system: 

{
   𝒅𝟏

𝟐 − 𝒅𝟐
𝟐 = 𝟐 𝑩𝟐

𝒅𝟏
𝟐 − 𝟐𝒅𝟐

𝟐 = 𝑨𝟐 
 

which can also be written as: 

{
   𝒅𝟏

𝟐 = 𝒅𝟐
𝟐 + 𝟐 𝑩𝟐

𝒅𝟏
𝟐 = 𝟐𝒅𝟐

𝟐 + 𝑨𝟐 
 

As you can see the second equation is impossible since 𝒅𝟐∈D is not even as it 

should be! 

Among other things, substituting   𝒅𝟐
𝟐 =  𝒅𝟏

𝟐 − 𝟐 𝑩𝟐 in the second equation and 

performing simple calculations, we arrive at the following equation: 

                                                        𝒅𝟏
𝟐 + 𝑨𝟐 = 𝟒 𝑩𝟐 

It is impossible due to the already known properties of pythagorean triples. 

It can therefore be concluded that assuming the first case is valid,  

                                                 𝒅𝟏 ≠ 𝒅𝟐 Ʌ  (𝒅𝟏, 𝒅𝟐 ) = 𝟏  

It comes to an absurdity!! 

The only remaining possibility is that: 
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                                                          𝒅𝟏 = 𝒅𝟐 = 𝟏         

The direct implication of which is that: 

                                                      𝒙𝟎 = 𝒂    Ʌ   𝒚𝟎 = 𝟐𝒃        

with the conclusion that proves the theorem. 
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