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Abstract 
 

In this paper four theorems are stated: the first one is on expressions for a power signal 

in which the definition of the associated power (𝛱) is introduced. The second one is on 
the uniqueness of impedances underlying an electrical power signal. The third one is on 
some properties of the power signal with respect to the active power 𝑃 and the reactive 
power 𝑄. The fourth one deals with the conservation of power in a cicuit. Numerical 
examples provided illustrate the scope of the theorems. 

 
 
 

Theorem 1 
Let 𝑢(𝑡) ≔ |𝑈| ∙ cos(𝜔 ∙ 𝑡 + arg(𝑈)) and 𝑖(𝑡) ≔ |𝐼| ∙ cos(𝜔 ∙ 𝑡 + arg(𝐼)) be a voltage signal and a 

current signal respectively, in which the complex-valued voltage 𝑈 and the complex-valued current 𝐼 are 
related through the impedance 𝑍 = 𝑈/𝐼. 
 
Then the power signal 𝑝(𝑡) ≔ 𝑢(𝑡) ∙ 𝑖(𝑡) can be expressed as: 
 

(1)  𝑝(𝑡) = Re(𝑆 + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) 

       where 𝑆 ≔
1

2
∙ 𝑈 ∙ 𝐼∗ =

1

2
∙ |𝐼|2 ∙ 𝑍 and 𝛱 ≔

1

2
∙ 𝑈 ∙ 𝐼 =

1

2
∙ 𝐼2 ∙ 𝑍  

 
or 
 

(2) 𝑝(𝑡) = Re (𝑆 ∙ (1 − 𝑒2∙𝑗∙ 𝜔∙(𝑡−𝑡0))) 

      where 𝑡0 ≔
𝑇

4
∙ (1 +

1

𝜋
∙ arg (

𝑆

𝛱
)) ∈ [0,

1

2
𝑇]  ,    𝑝(𝑡0) = 0  
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Proof  

𝑝(𝑡) = 𝑢(𝑡) ∙ 𝑖(𝑡) = |𝑈| ∙ cos(𝜔 ∙ 𝑡 + arg(𝐼) + arg(𝑍)) ∙ |𝐼| ∙ cos(𝜔 ∙ 𝑡 + arg(𝐼)) 

          =
1

2
∙ |𝑈| ∙ |𝐼| ∙ (cos(arg(𝑍)) + cos (2 ∙(𝜔 ∙ 𝑡 + arg(𝐼)) + arg(𝑍)))  

          = |𝑆| ∙ (cos(arg(𝑆)) + cos (2 ∙(𝜔 ∙ 𝑡 + arg(𝐼)) + arg(𝑆))) 

        = Re(𝑆 + 𝑆 ∙ 𝑒2∙𝑗∙(𝜔∙𝑡+arg(𝐼))) 

          = Re(𝑆 + 𝑒2∙𝑗∙ 𝜔∙𝑡 ∙ 𝑆 ∙ 𝑒2∙𝑗∙ arg(𝐼)) 

          = Re (𝑆 + 𝑒2∙𝑗∙ 𝜔∙𝑡 ∙
1

2
∙ 𝑈 ∙ 𝐼∗ ∙ 𝑒2∙𝑗∙ arg(𝐼))  

          = Re (𝑆 + 𝑒2∙𝑗∙ 𝜔∙𝑡 ∙
1

2
∙ 𝑈 ∙ 𝐼)  

          = Re(𝑆 + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡)  

 

𝑝(𝑡0) = Re (𝑆 + 𝛱 ∙ 𝑒
2∙𝑗∙

2𝜋
𝑇

∙
𝑇
4

∙(1+
1
𝜋

∙arg(
𝑆
𝛱

))
) = Re (𝑆 + 𝛱 ∙ 𝑒

𝑗∙ 𝜋∙(1+
1
𝜋

∙arg(
𝑆
𝛱

))
) 

            = Re (𝑆 + 𝑒𝑗∙ 𝜋 ∙ 𝛱 ∙ 𝑒
𝑗∙ 𝑎𝑟𝑔(

𝑆

𝛱
)) = Re (𝑆 − 𝛱 ∙

𝑆

𝛱
) = Re(𝑆 − 𝑆) = 0  

 
 
We will call the new complex-valued quantity 𝛱 the “associated” power. 
 
 
 
 

The following theorem states that a power signal determines the underlying impedance up to conjugacy 
and a real-valued scaling factor 𝜌. 
 

Theorem 2 
Let 𝑝(𝑡) ≔ Re(𝑆 + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) and 𝑝(𝑡) ≔ Re(�̃� + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡). If 𝑝(𝑡) = 𝑝(𝑡), then 
 

(1) 

Re(�̃�) = Re(𝑆)   ∧    𝛱 = 𝛱  
 

(2) Let �̃� ≔ 𝜌2 ∙ 𝑍∗, 𝜌 ∈ ℝ\{0}, then 
 

{
𝐼 =

1

𝜌
∙ 𝐼 ∙

𝑍

|𝑍|
   

�̃� = 𝜌 ∙ 𝑈 ∙
𝑍∗

|𝑍∗|

      

(3) Let �̃� ≔ 𝜌2 ∙ 𝑍, 𝜌 ∈ ℝ\{0}, then 
 

{
𝐼 =

1

𝜌
∙ 𝐼

�̃� = 𝜌 ∙ 𝑈
      

 

Proof 
𝑝(𝑡) = 𝑝(𝑡) 
⇔  Re(�̃� + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) = Re(𝑆 + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) 

⇔  Re(�̃� − 𝑆) + Re ((𝛱 − 𝛱) ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) = 0 

⇔  Re(�̃� − 𝑆) = 0   ∧    𝛱 − 𝛱 = 0  

⇔  Re(�̃�) = Re(𝑆)   ∧    𝛱 = 𝛱  
 

  



𝛱 = 𝛱 
⇔   𝐼2 ∙ �̃� = 𝐼2 ∙ 𝑍 

⇔   𝐼2 = 𝐼2 ∙
𝑍

�̃�
  

 

Re(�̃�) = Re(𝑆) 

⇔   Re (|𝐼|
2

∙ �̃�) = Re(|𝐼|2 ∙ 𝑍) 

⇔   Re (
�̃�

|�̃�|
) = Re (

𝑍

|𝑍|
) = Re (

𝑍∗

|𝑍∗|
)  

⇔   𝜌2 ≔
�̃�

𝑍
=

|�̃�|

|𝑍|
    ∨    𝜌2 ≔

�̃�

𝑍∗ =
|�̃�|

|𝑍∗|
,   𝜌 ∈ ℝ\{0}   

⇔   �̃� = 𝜌2 ∙ 𝑍   ∨     �̃� = 𝜌2 ∙ 𝑍∗  

⇔   𝐼2 =
𝐼2

𝜌2
        ∨     𝐼2 =

𝐼2

𝜌2
∙

𝑍2

|𝑍|2
   

⇔   𝐼 =
1

𝜌
∙ 𝐼       ∨     𝐼 =

1

𝜌
∙ 𝐼 ∙

𝑍

|𝑍|
  

⇔   �̃� = 𝜌 ∙ 𝑈    ∨     �̃� = 𝜌 ∙ 𝑈 ∙
𝑍∗

|𝑍∗|
  

 
 

 
 
The following theorem provides some properties of the power signal with respect to the active power 𝑃 
and the reactive power 𝑄. 
 

Theorem 3 

Let 𝑡0 ≔
𝑇

4
∙ (1 +

1

𝜋
∙ arg (

𝑆

𝛱
)).  Then 

 

(1) Let 𝑡1 ≔ 𝑡0 +
𝑇

4𝜋
, then 

�̇�(𝑡0) ∙ (𝑡1 − 𝑡0) = 𝑄 

(2) Let 𝑡2 ≔ 𝑡0 +
𝑇

8
, then 

𝑝(𝑡2) = 𝑃 + 𝑄 

(3) Let 𝑡3 ≔ 𝑡0 +
𝑇

4
, then 

𝑝(𝑡3) = 2 ∙ 𝑃 
 
 

Proof  

Using part (2) of Theorem 1 
 

�̇�(𝑡) = 2 ∙ 𝜔 ∙  Im(𝑆 ∙ 𝑒2∙𝑗∙ 𝜔∙(𝑡−𝑡0)),   𝜔 ≔
2𝜋

𝑇
  

 

�̇�(𝑡0) ∙ (𝑡1 − 𝑡0) =
𝑇

4𝜋
∙ 2 ∙

2𝜋

𝑇
∙ Im(𝑆 ∙ 𝑒2∙𝑗∙ 𝜔∙0) = Im(𝑆 ∙ 1) = 𝑄  

 

𝑝(𝑡2) = Re (𝑆 ∙ (1 − 𝑒
2∙𝑗∙

2𝜋

𝑇
∙
𝑇

8)) = Re (𝑆 ∙ (1 − 𝑒
𝑗∙

𝜋

2)) = Re(𝑆 ∙ (1 − 𝑗)) = 𝑃 + 𝑄       

 

𝑝(𝑡3) = Re (𝑆 ∙ (1 − 𝑒
2∙𝑗∙

2𝜋

𝑇
∙
𝑇

4)) = Re (𝑆 ∙ (1 − 𝑒𝑗∙ 𝜋)) = Re(𝑆 ∙ (1 + 1)) = 2 ∙ 𝑃  

 
 
 



Example 

Given the source voltage signal 𝑢(𝑡) ≔ 100 ∙ cos (1000𝑡 + arccos (
−1

√5
)) V and the impedances 

𝑍1 ≔ 3 Ω,  𝑍2 ≔ 4𝑗 Ω of the circuit shown in Figure 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
The equivalent impedance of the circuit equals 
 

𝑍 ≔ 𝑍1 + 𝑍2 = 3 + 𝑗 ∙ 4 = 5 ∙ 𝑒𝑗∙ arccos(0.6) Ω 
 
The complex-valued source voltage equals 

𝑈 = 100 ∙ 𝑒
𝑗∙(arccos(

−1

√5
))

 V 
 
The complex-valued source current equals 
 

𝐼 =
𝑈

𝑍
= 20 ∙ 𝑒

𝑗∙ arccos(
1

√5
)
 A  

 
The source current signal equals 
 

𝑖(𝑡) ≔ 20 ∙ cos (1000𝑡 + arccos (
1

√5
)) A  

 
The source voltage signal and the  source current signal of the circuit shown in Figure 1 are displayed in 
Figure 2 and Figure 3 respectively 

  

𝑍1 + 

𝑢(𝑡) 

- 

𝑖(𝑡) 

𝑍2 

Figure 1  
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The complex-valued source voltage and equivalent impedance of the circuit shown in Figure 4 are 
constructed from part (2) of Theorem 2 for 𝜌 = 1   
 
 
 
 
 
 
 
 
 
 
 
 
 

�̃� ≔ 𝜌 ∙ 𝑈 ∙
𝑍∗

|𝑍∗|
= 100 ∙ 𝑒

𝑗∙ arccos(
1

√5
)
 V  

 

�̃� ≔ 𝜌2 ∙ 𝑍∗ = 3 − 𝑗 ∙ 4  Ω 
 

Remark: note that �̃� = 𝑍1 + 𝑍2 for the given impedances 𝑍1 ≔ 3 Ω,  𝑍2 ≔ −4𝑗 Ω 
 

The source voltage signal equals 
 

�̃�(𝑡) = 100 ∙ cos (1000𝑡 + arccos (
1

√5
)) V  

 
The complex-valued source current equals 
 

𝐼 ≔
�̃�

�̃�
= 20 ∙ 𝑒

𝑗∙ arccos(
−1

√5
)
 A  

 

The source current signal equals 
 

𝑖̃(𝑡) = 20 ∙ cos (1000𝑡 + arccos (
−1

√5
)) A  

 
The source voltage signal and the  source current signal of the circuit shown in Figure 4 are displayed in 
Figure 5 and Figure 6 respectively 
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Figure 5 Figure 6 



The source power signals of the circuits shown in Figure 1 and Figure 2 are according to Theorem 2 
equal to 

 𝑝(𝑡) ≔ 𝑢(𝑡) ∙ 𝑖(𝑡) =                                                                                      
𝑝(𝑡) ≔ �̃�(𝑡) ∙ 𝑖̃(𝑡) =                                                                                     

2000 ∙ cos (1000𝑡 + arccos (
1

√5
)) ∙ cos (1000𝑡 + arccos (

−1

√5
))  W  

 

The source power signal 𝑝(𝑡) = 𝑝(𝑡) is displayed in Figure 7. 
 
The time instance 𝑡0 for which 𝑝(𝑡0) = 0 VA can be computed applying Theorem 3 
 

𝑆 =
1

2
∙ |𝐼|2 ∙ 𝑍 = 600 + 𝑗 ∙ 800  VA             

 

𝛱 =
1

2
∙ 𝐼2 ∙ 𝑍 = −1000 + 𝑗 ∙ 0  VA                   

 

𝑡0 ≔
𝑇

4
∙ (1 +

1

𝜋
∙ arg (

𝑆

𝛱
)) = 0.0004636 s  

 
𝑃 = Re(𝑆) = 600 W                                   

       
𝑄 = Im(𝑆) = 800 VAR                                

 
�̇�(𝑡0) ∙ (𝑡1 − 𝑡0) = 𝑄 = 800 VAR                           

 
𝑝(𝑡2) = 𝑃 + 𝑄 = 1400 VA                                       

 
𝑝(𝑡3) = 2𝑃 = 1200 W                                              

 
An example of the time instances 𝑡0, 𝑡1, 𝑡2 and 𝑡3 introduced in Theorem 3 is displayed in Figure 7. 
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Figure 7: The power signal of the circuits shown in Figure 1 
and Figure 4. The time instances 𝑡1, 𝑡2 and 𝑡3 with their 
corresponding values expressed through the active power 𝑃 
and the reactive power 𝑄. By definition 𝑝(𝑡0) = 0. 



The complex-valued source power 𝑆 equals the sum of the powers of the underlying impedances in a 
circuit 

𝑆 = ∑ 𝑆𝑛

𝑛

 

 

The domain of the real-valued variables 𝑈 and 𝐼 can be extended to the complex plane, to obtain an 
analytic continuation of the real-valued function 𝑈 ∙ 𝐼. Therefore, the complex-valued power 𝛱 is an 

analytic continuation to the complex plane of the real-valued function 
1

2
∙ 𝑈 ∙ 𝐼. Then, similar to the 

complex-valued source power 𝑆 

𝛱 = ∑ 𝛱𝑛

𝑛

 

 

 
The following theorem states a similar property on conservation for power signals in a circuit. 
 

Theorem 4 
Let 𝑝(𝑡) a source power signal and let 𝑝1(𝑡), 𝑝2(𝑡), … the power signals of the underlying impedances in 
a circuit, then  

𝑝(𝑡) = ∑  𝑝𝑛(𝑡)

𝑛

 

 

Proof 

∑ 𝑝𝑛(𝑡)

𝑛

= ∑ Re(𝑆𝑛 + 𝛱𝑛 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡)

𝑛

 

                  = Re (∑(𝑆𝑛 + 𝛱𝑛 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡)

𝑛

) 

                  = Re (∑ 𝑆𝑛

𝑛

+ 𝑒2∙𝑗∙ 𝜔∙𝑡 ∙ ∑ 𝛱𝑛

𝑛

) 

                  = Re(𝑆 + 𝛱 ∙ 𝑒2∙𝑗∙ 𝜔∙𝑡) 

                  = 𝑝(𝑡) 

 
 
 
 

Acknowledgement 
The authors acknowledge the support of Charlotte Creusen and Ad Klein both affiliated with the 
Department of Engineering of Zuyd University of Applied Sciences. 


