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SQUARE INTERVALS AND DIVISORS Mm 
Elementary theory of the discipline of natural numbers 

which regulates the distribution of prime numbers 
Filippo Giordano 

 

ABSTRACT 

The infinite set of natural numbers is formed by infinite subsets of pairs of quadratic 

intervals [n(n-1)+1, n2], [n2+1, n(n+1)]. Each of these pairs of intervals is formed by 

increasing quantities of elements, all governed by their divisor, of value ≤ n, closest to 

n. By bringing together these individual divisors of each element, a scale is formed for 

each interval, including all values included in the interval [1, n]. By assigning the name 

Mm (Major than minor) to these particular divisors, we note that between the 

elements and their divisors Mm, there is a one-to-one group correspondence which 

always allows for each quadratic interval the presence of at least one element having 

the trivial divisor 1 , i.e. the presence of at least one prime number, as noted by 

Oppermann's conjecture of 1882. 

By extending Fermat's method of factoring natural numbers, through quadratic 

number lines, it is confirmed that each of the divisors Mm finds group correspondence 

with at least one of the elements of the quadratic intervals. The mathematical law that 

regulates the distribution of prime numbers, therefore, is expressed through the 

divisors Mm which, from time to time, depending on the occurrences of each quadratic 

interval, observe some fundamental rules common to all quadratic intervals. 

Furthermore, by observing the quadratic intervals arranged inside the Spiral of Ulam, 

one has the opportunity to observe that, in a fascinating way, Nature places all the 

quadratic intervals, assembling them according to their four different typologies, each 

in a different cardinal direction: quadratic intervals A of odd n, quadratic intervals B of 

odd n, quadratic intervals A of even n, quadratic intervals B of even n.    

--------------------- 
Warning 

for reasons of tabular graphic synthesis, I have taken the liberty of representing the 

divisors Mm by placing them as a subscript of each natural number; therefore, when 

present, the juxtaposition of the small numbers placed to the right of the natural 

numbers always represents, only and exclusively, the indication of the specific divisor 

Mm of this natural number placed to its left. For the correct identification of the Mm 

divisors, I refer to the explanation contained on pages 2 and 3, as well as to the others 

which, occasionally, elaborate on some of their characteristics.   

--------------------------- 
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I 
 

Quadratic intervals and Oppermann's conjecture 
 
 
In 1882 Ludwig Oppermann noticed that between every perfect square and its 

successor there are at least two prime numbers and conjectured that this phenomenon 

extends to infinity. Delimiting Opperman's conjecture in the limited and closed 

intervals [n(n-1)+1, n2], which is given the name of SQUARE INTERVALS A, and in the 

limited and closed intervals [(n2+1), n(n+1)] which is given the name of SQUARE 

INTERVALS B, we obtain a pair of consecutive intervals formed by elements all 

different from each other, each of which is composed of a quantity of elements equal to 

the value of n. Since each new perfect square increases its value by one unit with 

respect to the previous perfect square, it follows that the elements of the two pertinent 

intervals delimiting the quadratic rooms A and B also constantly grow by one unit 

each. 

 

By analyzing the divisors of the elements of each quadratic interval A and B belonging 

to any perfect square, it is evident that by identifying with the name of Mm (acronym 

of Major of minors) that particular divisor of each natural number constituted by the 

largest among the minors of all the numerical pairs which divide each natural number 

and distinguishing the various possible cases as follows: 

 

a) All natural numbers are always divisible by one or more pairs of numbers. 

Composite numbers always have two or more pairs of divisors. For example, the factor 

pairs of the number 12 are three: 

1x12, 

2x6, 

3x4. 

Taking care to arrange, in such pairs, always the smallest divisor first, it is easy to 

identify among them the greatest divisor among the minors, which, in this case, is 3 

(therefore the divisor Mm is 3). 

 

b) In the case of elements corresponding to square numbers, their divisor Mm always 

corresponds to its square root. For example, the pairs of divisors of the quadratic 

number 16 are three: 

1x16, 

2x8, 

4x4. 

Among these three pairs it is easy to identify that the major divisor among the minors 

is 4, square root of 16, therefore divisor Mm. 
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c) Prime numbers always have only one pair of divisors, one of which is made up of the 

number itself and the other made up of the number 1. For example, the pair of divisors 

of the number 17 is 

1x17, 

therefore the divisor Mm is 1. 

 

we have that each of the elements included in the two intervals considered can be 

factored by one of the divisors Mm included between 1 and n, given that between three 

consecutive multiples of n, [n(n-1), n2, n(n+1)] of which the second is constituted by 

the perfect square of the same n, each element included between the two extremes 

always has a divisor Mm between 1 and n. 

 

Example: for n = 5:  

Quadratic interval A: 21, 22, 23, 24, 25,  

21:3 = 7;  

22:2= 11;  

23:1 = 23;  

24:4 = 6;  
25:5 = 5.  
Divisors Mm of the elements of the quadratic interval A = 1, 2, 3, 4, 5. 
 
Quadratic interval B: 26, 27, 28, 29, 30.  
26:2 = 13;  
27:3 = 9;  
28:4 = 7;  
29:1 = 29;  
30:5 = 6.  
Divisors Mm of the elements of the quadratic interval B: 1, 2, 3, 4, 5. 
 
Example: for n = 11:  
Quadratic interval A: 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121  
111:3 = 37;  
112:8 = 14;  
113:1 = 113;  
114:6 = 19;  
115:5 = 23;  
116:4 = 29;  
117:9 = 13;  
118:2 = 59;  
119:7 = 17;  
120:10=12;  
121:11=11.  
Divisors Mm of the elements of the quadratic interval A: 1, 2, 3, 4, 5, 6, 7,,8, 9, 10, 11. 
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Quadratic interval B: 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132;   
122:2 = 61;  
123:3 = 41;  
124:4 = 31;  
125:5 = 25;  
126:6 = 21;  126:7=18;  126:9=14; 
127:1 = 127;  
128:8 = 16;  
129:3 = 43;  
130:10=13;  
131:1= 131;  
132:11=12.  
Divisors Mm of the elements of the quadratic  interval B: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. 
In the quadratic interval B of n=11, since the divisors Mm 6 and 9, which are prime to 

each other, instead of in two different elements both converge in the same element 

126, being the greatest common divisor of 6 and 9 =3, then this common divisor 3 also 

becomes the divisor Mm of another element of the same quadratic interval and so in 

the quadratic interval B of n=11, instead of a single element with divisor Mm=3 there 

are two: 123 and 129. Furthermore, since the divisor Mm 7 (which is of the form 

6k+1), is also a divisor of the element 126 which is an even number (of the form 6k); 

then, since all elements of the form 6k±1 always have divisors of the same form and 

since in the case of this quadratic interval [122, 132] the elements of this form are 125, 

127, 131, while the divisors of the same form are 1 , 5, 7, 11, the number 5 being the 

only divisor Mm that aligns with the dividend of equal form (125), while 127 and 131 

are divisible neither by 7 nor by 11, then the only remaining possible divisor of these 

elements is the trivial 1. 

 

In this regard it is observed that, generally, in quadratic intervals the quantity of 

elements of the form 6k±1 is equal to that of the divisors of the same form 6k±1, and 

this allows the divisor Mm 1, which has the form 6k+1, to always be the exclusive 

divisor of at least one element of shape 6k±1. It is also observed that all quadratic 

intervals B of the form 6k±1 (5, 7, 11, 13, 17, 19, …) although they always have one 

element of the form 6k±1 less than the divisors of the same form, since l their last 

element coincides with an even number, whose divisor Mm coincides with the value of 

n, then the quantity of elements (of the form 6k±1) remaining in the interval (of the 

form 6k±1) is equivalent to the quantity of the divisors Mm of forms 6k±1, and this 

ensures that the divisor Mm 1 is always the exclusive divisor Mm of at least one 

element of each interval.  
 

Examples: 

Quadratic interval B of n=5; elements [26, 30]; dividers Mm 6k±1 →1, 5; 

combinations of dividers Mm of shape 6k±1 → 29-1 – 30-5 
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Quadratic interval B of n = 7; elements [50, 56]; dividers Mm 6k±1 →1, 5, 7; 

combinations of dividers Mm of shape 6k±1 → 53-1 – 55-5 – 56-7 

 

Quadratic interval B of n = 11; elements [122, 132]; dividers Mm 6k±1 →1, 5, 7, 11; 

combinations of dividers Mm of shape 6k±1 → 127-1 – 125-5 – 131-1 – 126-7 – 132-11 

 

Quadratic interval B of n=13; elements [170, 182]; dividers Mm 6k±1 →1, 5, 7, 11, 13; 

combinations of dividers Mm of shape 6k±1 → 173-1 – 175-5-7, 179-1 -176-11-8 – 182-13 

In fact whenever in the quadratic intervals A or B, there are elements with different 

divisors Mm which converge there, then other elements of the same quadratic room 

assume divisors Mm which are greatest common divisors of the divisors Mm which 

converge in the same element. For example, in the quadratic interval B of n=10 formed 

by the elements included in the interval [101, 110], since in the element 105 the 

divisors Mm 3, 5, 7 converge, prime among them, then other elements of the same 

quadratic room assume the divisor Mm 1 as the greatest common divisor of the 

numbers 3, 5, 7. Moreover, since this quadratic room has an element of shape 6k±1 

more (101, 103, 107, 109) than the divisors Mm of the same shape (1, 5, 7), then in 

this quadratic interval 4 elements are formed which have their exclusive divisor Mm 1, 

i.e. the prime numbers 101, 103, 107, 109.  

 

This is the first precious rule common to all quadratic intervals, since the elements 

that form part of it have an overall discipline which guarantees the presence of all 

divisors Mm, from 1 to n, in all quadratic intervals (like a football or rugby team which 

guarantees the presence of all roles). When some element sometimes concentrates 

different roles on itself (ie has several prime divisors) then the team leaves more room 

for the prime elements. In practice, thanks to the phenomenon of the repeated 

confluence of some divisors Mm with single elements belonging to each quadratic 

interval, a sort of non-one-to-one correspondence is established between single 

elements and single divisors Mm, but a one-to-one group correspondence between all 

the elements and all divisors (all elements put together guarantee the presence of all 

divisors Mm between 1 and n). 

 

If the one-to-one correspondence between each element of the quadratic intervals 

with a different divisor Mm were perpetual (and therefore the phenomenon of 

confluences of different divisors Mm in some elements did not exist) then, the 

phenomenon of rarefaction of prime numbers be more rapid, being the single presence 

of prime numbers in each quadratic interval constantly double that of perfect squares 

(one prime element in range A and one prime element in range B) since including 1 as 

divisor Mm of the only prime number of each quadratic interval, would cause a linear 
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ratio of presence of prime numbers to natural numbers equal to 

1+1+1/2+1/2+1/3+1/3 +1/4+1/4+ … +1/n+1/n and this would mean that for 

each oblong number n(n+1) there would always be counted a quantity of prime 

numbers equal to 2n (example, for n=20, then from 2 to 420 there would be only 39 

prime numbers (apart from 1), instead of 81, while for n=100 from 2 to 10100 there 

would be only 199 prime numbers, instead of 1240. 

Instead, to this natural tendency must be added the other natural tendency of the 

confluences which are the cause of the replicas of the prime numbers; trend, the latter, 

which, despite being fluctuating, remains constant and being generated by repetitive 

mathematical phenomena allows Gauss's formula, which splendidly quantifies the 

rarefaction of prime numbers, to always remain valid even for the regions of natural 

numbers still today unexplored.   

 
 

II 
SQUARE NUMBER LINES 

mathematical extensions of Pierre de Fermat's factoring method 
 

Quadratic number lines are mathematical structures that collimate and extend Pierre 

de Fermat's factorization method which is based on the representation of a number as 

the difference between two squares. In fact, quadratic number lines use and extend 

Fermat's idea in a methodical and extensive way by associating it with quadratic 

intervals. The quadratic number lines have their birth point (corresponding to the zero 

point of the line) each in a different perfect square, so that, since the perfect squares 

are infinite, the quadratic lines that form from them are also infinite. Their function, 

strictly connected to that of the quadratic intervals, is to filter ordered sequences of 

numbers, all placed at quadratic distances from the respective zero point, whose 

divisors Mm, starting from each perfect square, follow one another in perfect scalar 

order from n (with n having value corresponding to the root of the perfect square). 

 

Below is a diagram of the first 110 natural numbers grouped according to the 

quadratic intervals A and B of n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

 
QUADRATIC INTERVAL  A  QUADRATIC INTERVAL  B 

                       

                       
N=1          1 -           2 

N=2         3 4 -          5 6 

N=3        7 8 9 -         10 11 12 

N=4       13 14 15 16 -        17 18 19 20 

N=5      21 22 23 24 25 -       26 27 28 29 30 

N=6     31 32 33 34 35 36 -      37 38 39 40 41 42 

N=7    43 44 45 46 47 48 49 -     50 51 52 53 54 55 56 

N=8   57 58 59 60 61 62 63 64 -    65 66 67 68 69 70 71 72 

N=9  73 74 75 76 77 78 79 80 81 -   82 83 84 85 86 87 88 9 90 

N=10 91 92 93 94 95 96 97 98 99 100 -  101 102 103 104 105 106 107 108 109 110 

       Highlighted in red: Perfect squares                  Highlighted in red: Oblong numbers 
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Since n is the divisor always identified with a perfect square element = n2, applying the 

divisibility method of Pierre de Fermat, we have that: 

the elements placed at a distance n2-1 from the perfect square, since 1 =12, the 

divisors of these elements are (n-1), (n+1). 

Example: n2 =100; 

n= 10, 

100 – 1= 99; 

99 = (10-1)(10+1) = 9x11; 

 

the elements placed at distance n-4 from the perfect square, since 4 =22, the divisors 

of these elements are (n-2), (n+2). 

Example: n2 =100; 

n= 10, 

100–4 = 96; 

96 = (10-2)(10+2) = 8x12; 

 

the elements placed at distance n-9 from the perfect square, since 9 =32, the divisors 

of these elements are (n-3), (n+3). 

Example: n2 =100; 

n= 10, 

100–9 = 91; 

91 = (10-3)(10+3) = 7x13; 

 

the elements placed at distance n-16 from the perfect square, since 16 =42, the 

divisors of these elements are (n-4), (n+4). 

Example: n2 =100; 

n= 10, 

100–16 = 84; 

84 = (10-4)(10+4) = 6x14; 

 

thus continuing up to n-(n-1), [example: 10-(10-1)=1], bearing in mind that the 

corresponding elements up to n-(10-2) are always composite numbers, example:   

[10-(10-2)=10-8=2] with consequent divisors: [(10-8)(10+8)=2x18=36] while, 

instead, the elements corresponding to n-(n-1), can coincide with composite numbers 

or be prime numbers [example: 10-(10-1)=10-9=1] with consequent divisors         

(10-9)(10+9) =1x19. 

 

Example: n2 =100;  

n= 10,   
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100 – 81= 19; 

19 = (10- 9) (10+9) = 1x19.  

 

Of each of the pairs of divisors of the elements placed at quadratic distances from the 

respective perfect squares which fall within the sphere of the elements of the 

quadratic intervals, between the two, the one having value ≤ n assumes the function of 

divisor Mm. 

Within the elements placed in each quadratic interval A of the previous table, all 

divisors Mm of each interval which have distance 1 from n, are aligned in a single 

vertical column; in the same way, in the fourth column preceding the perfect square, 

the divisors Mm of the elements placed at a distance of 22 from the perfect square are 

aligned; and so on also the other divisors placed at a distance of 9, 16, 25, …, m2 from 

the respective perfect squares. 

 
D i v i s o r s   Q U A D R A T I C  INTERVALS    A  

 n-3     n-2   n-1 n - 
 ↓     ↓   ↓ ↓ - 
          1-1 - 
         3-1 4-2 - 
        7 8-2 9-3 - 
       13 14 15-3 16-4 - 
      21-3 22 23 24-4 25-5 - 
     31 32-4 33 34 35-5 36-6 - 
    43 44 45-5 46 47 48-6 49-7 - 
   57 58 59 60-6 61 62 63-7 64-8 - 
  73 74 75 76 77-7 78 79 80-8 81-9 - 
 91-7 92 93 94 95 96-8 97 98 99-9 100-10 - 

111 112-8 113 114 115 116 117-9 118 119 120-10 121-11 - 
The numbers placed in subscript represent the divisors Mm of the elements 

 

Given that through this procedure the other quadratic distances m are placed outside 

the quadratic intervals, in order to find the exact location of the divisors Mm of all the 

elements that form the quadratic intervals, an integrative method is applied. 

Continuing in decreasing order the search for the divisors Mm smaller than those 

already found, using the same method, first the elements external to the quadratic 

intervals are found and, subsequently, from this element one proceeds in the opposite 

direction, adding several times to the external element found, the value of the 

corresponding divisor, until, falling within the quadratic interval, all the elements of 

the interval which fall within the cadence of the divisor are reached.  
 

Once these elements have been reached, it is necessary to proceed with the exact 

placement of the divisor Mm to the relevant element bearing in mind that, when the 

divisor Mm odd within the quadratic interval finds two of its consecutive multiples, of 

which obviously one is even and the other is odd , the natural allocation of the divisor 
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Mm is to refer to the odd element, since the even element is naturally destined to 

assume an even divisor Mm.  

However, if the divisor Mm finds as its multiple a single element that is multiple of its 

even form then it is to be assigned to this even element, albeit in conjunction with 

another even divisor of the element itself. Example: quadratic interval of n=11, 

elements [111, 121]. Considering that the 4 largest divisors Mm of the interval (11, 10, 

9, 8) have already been found, we proceed with the search for the element having the 

next decreasing divisor Mm, 7. The relevant element outside the interval is the number 

105 since corresponding to 112 – 42. In fact 105 is divisible by 7. By adding the value of 

the divisor 7 to the element 105 we obtain the value 112, which is part of the quadratic 

interval A of n=11 and, by adding 7 again, we obtain the value 119. However, since 

112 is an even number which already has the divisor Mm =8, and since 119 is odd and 

is not divisible by numbers greater than 7, then 7 is the natural divisor Mm of 119. The 

proof is that the other divisor of 119 is 17, which, like 7, is also a prime number.  

 

Proceeding to scale, the other out-of-range elements that form part of the quadratic 

number line of n = 121 are: 96 with divisor 6; 85 with divisor 5; 72 with divider 4; 57 

with divisor 3; 40 with divider 2. Subsequently, adding to 96 (element outside the 

quadratic interval of n = 11, placed at a distance of -25 from 121) several times the 

divisor Mm 6, (96+6+6+6) one reaches element 114 of the interval quadratic which, 

is not already combined with another divisor Mm greater than 6 and, therefore, the 

divisor Mm of 114 is 6.  

Subsequently, adding to 85 several times the divisor Mm 5, (85+5+5+5+5+ 5+5) the 

element 115 of the quadratic interval is reached which, is not already combined with 

another divisor Mm greater than 5.  

Subsequently, by adding the divisor Mm 4 to 72 several times, the element 116 of the 

quadratic interval is reached which, is not already associated with another divisor Mm 

greater than 4.  

Subsequently, by adding the divisor Mm 3 to 57 several times, one reaches 'element 

111 of the quadratic interval which, is not already matched to another divisor Mm 

greater than 3.  

Subsequently adding the divisor Mm 2 to 40 several times, one reaches the element 

118 of the quadratic interval which, is not already matched to another divisor Mm 

greater than 2. Finally, since the element 113 has not been reached by any of the 

divisors Mm greater than 1, then it is prime number element. 
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402 573 724 855 966 1057  111 1128 113 114 115 116 1179 118 119 12010 12111 
↓ ↓ ↓ ↓ ↓ ↓+7  →        7 → → → → → → 1197   

↓ ↓ ↓ ↓ →+6 →  → → → 1146        

↓ ↓ ↓ →+5 → →  → → → → 1155       

↓ ↓ →+4 → → →  → → → → → 1164      

↓ →3 → → → →  1113  →         

→2 →  →  →  →  →  →  → 1182    

                  

                  
       3 8 1 6 5 4 9 2 7 10 11 

 

With the same procedure, proceeding to scale, following the same rules applied in the 

quadratic interval A, the divisors Mm are combined from the quadratic interval A to 

the quadratic interval B. 

Continuing to give the examples with the quadratic interval B of n = 11, 11 is added to 

the element 121 (perfect square with divisor Mm 11) and the last element of the 

quadratic room B is reached, 132 (oblong number) attributing to it the divisor itself 

mm 11;  

to the element 120, which has divisor Mm 10, we add 10 and we reach the element of 

the quadratic interval B = 130 by attributing equal divisor 10; 

to the element 117, which has divisor Mm 9, we add 9 and we reach the element of the 

quadratic interval B = 126, attributing equal divisor 9; 

to element 112, which has divisor Mm 8, one adds 8+8 (because adding only one 8 one 

would remain in the quadratic interval a) and one reaches the element of the quadratic 

interval B =128, attributing to it divisor 8; 

to the element 119, which has divisor Mm 7, we add 7 and we reach the element of the 

quadratic interval B =126 attributing to it, (although 126 is already matched with the 

divisor Mm=9) the divisor 7 since this divisor Mm, neither before nor after the 

element 126 finds other elements that are multiples of it positioned in the same 

quadratic interval B, given that 126+7=133, an element outside the quadratic interval 

B of n=11. In this case the divisor 7, finding only one element of the quadratic interval 

B its multiple (126) which already has another divisor greater than 7, is defined as the 

"confluent" divisor Mm. 

to the element 114, which has divisor Mm 6, one adds 6+6 (because adding only one 6 

one remains in the quadratic interval a) and one reaches the element of the quadratic 

interval B =126, attributing equal divisor 6. Not the position 126+6=132 is 

considered since this element already has divisor Mm =11, root of the perfect square 

121; also the divisor Mm 6, for the same reason as the divisor 7, is defined as the 

divisor Mm confluent. 
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to the element 115, which has divisor Mm 5, one adds 5+5 (because adding only one 5 

one remains in the quadratic interval a) and one reaches the element of the quadratic 

interval B =125, attributing divisor 5. Not consider the position 125+5=130 since this 

element already has a divisor Mm =10, multiple of 5; 

to element 116, which has divisor Mm 4, one adds 4+4 (because adding only one 4 one 

remains in the quadratic interval a) and one reaches the element of the quadratic 

interval B =124, attributing divisor 4. Not they consider the positions 124+4=128 

since this element already has a divisor Mm =8, multiple of 4, and not even 

124+4+4=132, since this element has a divisor Mm= 11, root of the perfect square 

121; 

to element 111, which has divisor Mm 3, one adds 3+3+3+3 (because adding 3 once, 

twice, three times, one remains in the quadratic interval a) and one reaches the 

element of the quadratic interval B =123, attributing equal divisor 3. The position 126 

is not considered, since this element already has both 6 and 9 as its divisors which are 

both multiples of 3. Instead, the element 123+3+3=129 is considered since it does not 

combined with other Mm dividers, being only a multiple of 3; 

to the element 118, which has divisor Mm 2, one adds 2+2 and thus the element of the 

quadratic interval B = 122 is reached, attributing equal divisor 2. The positions 124, 

126, 128, 130, reachable, are not considered by the divisor Mm 2, since these elements 

already have other different divisors Mm all multiples of 2. The element 132 is not 

considered because it is an oblong number which always has as its divisor Mm the root 

of the perfect square of reference (11). 

Having concluded the search for all divisors Mm >1, (2, 3, 4, 5, 6, 7, 8, 9, 10, 11) the 

remaining elements (127, 131), not reached by these divisors, are certainly prime 

numbers since the divisor Mm=1 is the only one among all the divisors that reaches all 

the elements one after the other, therefore the only one capable of reaching the 

elements that are not multiples of numbers greater than 1. In summary, the divisors 

Mm of the elements of the interval [122, 132] are those registered as subscripts of the 

elements. 

122-2 123-3 124-4 125-5 126-6-7-9 127-1 128-8 129-3 130-10 131-1 132-11 

 

The one-to-one group correspondence between elements and divisors Mm assigns 

three different divisors confluent in element 126 (6, 7, 9). The divisors Mm 6 and 9, 

placed on the same element 126, since they are both multiples of the divisor 3 and 

because they are positioned on the same element, cause the replication of their 

common divisor 3 on another element of the group and therefore the divisor 3, as well 

as on the normal its element, it is positioned on another element (123 and 129). 
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The divisor Mm 7, also positioned on the element 126, since it is a divisor of the shape 

6k±1 positioned on the element of the shape 6k, leaves empty an element of the shape 

6k±1 of the interval which is therefore occupied by the single divisor of shape 6k±1 

capable of reaching all elements of any shape, i.e. the divisor Mm 1. Therefore the 

divisor Mm 1, in addition to its guaranteed element of shape 6k±1, also becomes a 

divisor of another element of the same shape. So that the two excesses of divisors of 

the element 126 (7, 9) are compensated by the double presence of the divisors 1 and 3, 

respectively submultiples of 7 and 9. 

These are the main rules governing the distribution of the divisors Mm within the 

quadratic intervals A and B, however there are still others, including two other 

different methods for the search for the Mm factors integrating those obtainable with 

the Pierre de Fermat method, to which a study of several other dozens of pages has 

been dedicated which are not listed here in order not to weigh down this theoretical 

synthesis. 

Here is a summary table of the first 11 quadratic intervals A including the Fermat 

divisors placed at quadratic distances m from the roots n, which coincide with the 

divisors Mm, and the other divisors Mm obtained with the integrative method. 

 

     D i v i s o r s  of quadratic intervals A  

 n-3     n-2   n-1 n - 

 ↓     ↓   ↓ ↓ - 

          1-1 - 

         3-1 4-2 - 

        7-1 8-2 9-3 - 

       13-1 14-2 15-3 16-4 - 

      21-3 22-2 23-1 24-4 25-5 - 

     31-1 32-4 33-3 34-2 35-5 36-6 - 

    431 444 45-5 462 471 48-6 49-7 - 

   573 582 591 604-5-6 611 622 63-7 64-8 - 

  731 742 755 764 77-7 786 791 80-8 81-9 - 

 91-7 924 933 942 955 96-8 971 982 99-9 100-10 - 

1113 112-8 1131 1146 1155 1164 117-9 1182 1197 120-10 121-11 - 

 

 

And here is a summary table of the divisors Mm of the elements of the first 11 

quadratic intervals A and B, arranged according to the natural order of their elements. 

The divisors obtainable with Fermat's method are those indicated in red. 
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Divisors  quadratic  intervals     A  Divisors  quadratic intervals       B 

 n-3     n-2   n-1 n -     n-2    n-1  N 

 ↓     ↓   ↓ ↓ -     ↓    ↓  ↓ 

          1 -           1 

         1 2 -          1 2 

        1 2 3 -         2 1 3 

       1 2 3 4 -        1 2-3 1 4 

      3 2 1 4 5 -       2 3 4 1 5 

     1 4 3 2 5 6 -      1 2 3 4-5 1 6 

    1 4 3-5 2 1 6 7 -     2-5 3 4 1 6 5 7 

   3 2 1 4-5-6 1 2 7 8 -    5 6 1 4 3 2-7 1 8 

  1 2 5 4 7 6 1 8 9 -   2 1 4-6-7 5 2 3 8 1 9 

 7 4 3 2 5 6-8 1 2 9 10 -  1 6 1 8 3-5-7 2 1 4-9 1 10 

3 8 1 6 5 4 9 2 7 10 11 - 2 3 4 5 6-7-9 1 8 3 10 1 11 

 

The numbers appearing in the table reflect the divisors Mm of the elements of the first 

11 pairs of quadratic rooms in the strict order of appearance of their dividing elements 

which, starting from 1, reach 132 following their horizontal order. Thus the numbers 

lined up under the letter n of the quadratic rooms A and B indicate the specific name of 

the quadratic rooms which each time corresponds to the root of the corresponding 

element that we virtually have to see lined up under the first n (1, 4, 9, 16, 25, 36, 49, 

64, 81, 100, 121) while the same vertical sequence of the divisors Mm placed under 

the second n refer to the extreme elements of the quadratic rooms B, i.e., respectively, 

2, 6, 12, 20, 30, 42 , 56, 72, 90, 110, 132. 

From which it can be deduced that Quadratic intervals, divisors Mm and numerical 

quadratic lines, elementary mathematical entities hitherto unknown, synergistically 

allow to obtain the divisors Mm of all the composite numbers that are part of each 

"square interval" and consequently, by exclusion, also of prime numbers. Furthermore, 

since each natural number is part of a single set called "square interval", it can be 

deduced that the synergy of the three entities allows the automatic factorization of 

each natural number. 

It is obvious that, dealing with large numbers, the mathematical logic that regulates 

the distribution of prime numbers is one thing and the computational difficulty of 

correct combinations between elements and divisors Mm is another thing. Currently 

humanity does not have computers capable of performing these tasks quickly but 

when it does, it will know which path to use. 

The following table shows a map of the quadratic intervals A and B where all the 

elements of the first 11 values of n alternate. The subscript numbers of the elements 

represent the divisors Mm of the elements. In each of these intervals the one-to-one 

correspondence of the group between elements and divisors Mm is noted since all the 

divisors Mm, comprised between 1 and n, are distributed in all the elements that form 

the intervals. 
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1-1           1-A 

2-1           1-B 

3-1 4-2          2-A 

5-1 6-2          2-B 

7-1 8-2 9-3         3-A 

10-2 11-1 12-3         3-B 

13-1 14-2 15-3 16-4        4-A 

17-1 18-2-3 19-1 20-4        4-B 

21-3 22-2 23-1 24-4 25-5       5-A 

26-2 27-3 28-4 29-1 30-5       5-B 

31-1 32-4 33-3 34-2 35-5 36-6      6-A 

37-1 38-2 39-3 40-4-5 41-1 42-6      6-B 

43-1 44-4 45-3-5 46-2 47-1 48-6 49-7     7-A 

50-2 51-3 52-4 53-1 54-6 55-5 56-7     7-B 

57-3 58-2 59-1 60-4-5-6 61-1 62-2 63-7 64-8    8-A 

65-5 66-6 67-1 68-4 69-3 70-2 71-1 72-8    8-B 

73-1 74-2 75-5 76-4 77-7 78-6 79-1 80-8 81-9   9-A 

82-2 83-1 84-4-6-7 85-5 86-2 87-3 88-8 89-1 90-9   9-B 

91-7 92-4 93-3 94-2 95-5 96-6-8 97-1 98-2 99-9 100-10  10-A 

101-1 102-6 103-1 104-8 1053-5-7 106-2 107-1 108-4-9 109-1 110-10  10-B 

111-3 112-8 113-1 114-6 115-5 116-4 117-9 118-2 119-7 120-10 121-11 11-A 

122-2 123-3 124-4 125-5 1266-7- 9 127-1 128-8 129-3 13010 131-1 132-11 11-B 

 
 
It should be noted that the sum of the divisors Mm of each quadratic interval, taken 

individually, i.e. not considering any duplications, always corresponds to the triangular 

number corresponding to the value of each n, i.e. to the root of the perfect square 

corresponding to the intervals. For example, the sum of the divisors Mm of the 

elements forming the quadratic interval A of n= 6 (root of the perfect square 36) is 1+ 

2+ 3+ 4+ 5+ 6 =21 (which is the sixth triangular number)  

 
Quadratic  
intervals 

Elements Sum of divisors Mm Triangular number   
corresponding 

    1 – A  1                   1               1 
    1 – B   2                  1               1 
    2 – A 3, 4                1+2                3 
    2 – B 5, 6                1+2               3   
    3 – A  7, 8, 9             1+2+3                   6 
    3 – B    10, 11, 12             1+2+3               6 
    4 – A   13, 14, 15, 16           1+2+3+4                10 
    4 – B  17, 18, 19, 20           1+2+3+4                 10 
    5 -  A 21, 22, 23, 24, 25         1+2+3+4+5              15 
    5 – B  26, 27, 28, 29, 30         1+2+3+4+5              15    
    6 – A 31, 32, 33, 34, 35, 36       1+2+3+4+5+6               21 
    6 – B  37, 38, 39, 40, 41, 42        1+2+3+4+5+6              21 
    7 – A   43, 44, 45, 46, 47, 48, 49     1+2+3+4+5+6+7              28 
    7 – B  50, 51, 52, 53, 54, 55, 56     1+2+3+4+5+6+7              28 

Numbers in red are elements with duplicate divisor Mm, not considered for the sum 
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If in any quadratic interval the prime number, which has divisor Mm=1, were missing, 

then the sum of the divisors Mm of the elements would not coincide with the 

triangular number and, consequently, the sum of the divisors of the interval containing 

their numbers doubled , lacking the element having divisor Mm 2 = 2p equally it 

would not coincide with a triangular number and so on for prime numbers tripled, 

quadrupled, etc. 

 

--- 

Growth trend of the quantity of prime numbers thanks to the phenomenon of the 

confluences of the divisors Mm in some elements. 

 
N values of the 
quadratic intervals 

 Intervals 
considered  
From…  to… 

In the first column, quantity of prime numbers if the 
phenomenon of confluences of divisors were not present.          
Alongside, the effective quantity of prime numbers 
existing in the intervals. 

    
Da 01  a  05    2    –    30         5x2 =  10                           5x2 = 10  
da 06  a  13    31   –   182             8x2 =  16                           8x4 =  32 
da 14  a  24  183 –   600           11x2 =22                         11x6 = 66 (+1) = 67  
da 25  a  36  601 –   1332          12x2 =24                         12x9 = 108  
Da 37  a  48   1333 – 2352        12x2 =24                         12x11=132      
Da 49  a  60 2353 – 3660         12x2 =24                         12x13,5 =162 
Da 61  a  72 3661 – 5256      12x2 =24                         12x15,5= 186   
Da 73  a  84 5257 – 7140         12x2 = 24                        12x18 (+1)  = 217  
Da 84  a  96 7141 – 9312               12x2 = 24                        12x20 (-2) =238    

 
This key to understanding the distribution of prime numbers in the context of the 

natural numbers, while obviously not altering their objective constant rarefaction, 

offers us a more precise picture of the real mathematical dynamics affecting all natural 

numbers starting from their set aggregations within the quadratic intervals initially 

organized through a one-to-one correspondence between elements and divisors Mm 

and which, proceeding towards large numbers, by virtue of the natural confluences of 

the divisors in some elements, favor the emergence of an increasing mass of numbers 

first which considerably slows down the rarefaction to which they would be destined. 

 

The analysis of the recurrences that determine the constant growth of the prime 

numbers is confirmed by the tests carried out on hundreds of consecutive quadratic 

intervals, as well as, on a sample basis, for even greater values of n which show a 

slightly fluctuating trend between consecutive but homogeneous values of n when 

compared to larger distances; mathematical phenomenon that arises from 

misalignments between the dividend elements of the shape 6k±1, whose quantity 

remains constant, and their divisors Mm of the same shape 6k±1 whose quantity of 

the same shape is equal to that of the dividends but whose misalignment between the 
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parts is due to the increasing quantity of prime numbers present for each quadratic 

interval. However, it is evident that the constant growth of the presence of prime 

numbers within the quadratic intervals, given the constant and linear increase of the 

composite elements, reflects a proportion between primes and compounds which 

tends to a continuous rarefaction of the prime numbers. 

 
In other words, the natural phenomenon of rarefaction, which is caused by the 

multiples of prime numbers (if all numbers of the form 6k±1 were always prime, the 

ratio between primes and composites would always be equivalent to 1/3, as effectively 

occurs in the interval 1, 24) undergoes two opposite tendencies: on the one hand the 

natural overall rarefaction and on the other the equally natural tendency of the 

constant growth of the quantity of prime numbers within the quadratic rooms. From 

which it can be deduced that the second tendency, which extrinsics a constant increase 

of the prime numbers within the quadratic rooms, slows down the first. 

 

Dwelling on particular aspects of the quadratic intervals A and B, one realizes that they 

can be divided into typologies depending on the quantity of elements from which they 

are formed. The in-depth analysis of these typologies allows us to verify that in them 

mathematical phenomena are cyclically repeated which cause the recurrence of the 

confluences of the divisors Mm and the consequent growth of the presence of prime 

numbers in their respective quadratic intervals. These reiterated characteristics, 

differently articulated, which affect the twelve different types of quadratic rooms 

(already described in a large separate study entitled: "Quadratic rooms and divisors 

Mm, the unknown discipline of natural numbers that regulates the distribution of 

prime numbers") since they cannot be summarized in a few lines, they are obviously 

excluded from this summary. To give an example: all quadratic intervals B [n2+1, 

n(n+1)] of n even, with n>2 (i.e. the quadratic intervals B of n=4, 6, 8, 10, etc.) always 

have at least two prime numbers. The motivation is caused precisely in the 

mathematical reiterations of confluences of divisors Mm. 
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Quantity of prime numbers within quadratic intervals 

 

Value of n Prime numbers in A Prime n. in B Value of n Prime n. in A Prime numbers  in B 

1 1 1 2 1 1 

3 1 1 4 1 2 

5 1 1 6 1 2 

7 2 1 8 2 2 

9 2 2 10 1 4 

11 1 2 12 2 2 

13 3 3 14 2 2 

15 2 4 16 2 4 

17 3 1 18 4 2 

19 4 3 20 3 3 

21 4 4 22 3 4 

23 3 2 24 4 4 

25 5 4 26 6 4 

27 3 4 28 4 4 

29 5 4 30 4 4 

31 4 5 32 5 5 

33 4 6 34 4 4 

35 5 5 36 5 7 

37 2 3 38 6 6 

39 6 6 40 5 8 

41 4 5 42 6 5 

43 4 7 44 5 4 

45 7 6 46 7 7 

47 3 6 48 7 7 

49 8 6 50 4 6 

51 5 5 52 10 9 

53 7 7 54 5 7 

55 6 6 56 5 7 

57 5 7 58 10 6 

59 7 8 60 8 8 

61 8 7 62 6 7 

63 10 8 64 7 9 

65 5 11 66 5 7 

67 8 8 68 7 10 

69 7 8 70 5 11 

71 6 8 72 7 7 

73 8 7 74 10 10 

75 7 11 76 7 12 

77 10 4 78 10 9 

79 9 11 80 12 6 

81 7 9 82 11 9 

83 10 10 84 10 8 

85 9 9 86 7 8 

87 13 11 88 11 8 

89 10 8 90 10 9 

91 11 10 92 10 8 

93 11 13 94 10 10 

95 11 9 96 12 10 

97 11 14 98 8 12 

99 11 12 100 9 11 
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From the analytical reading of table 2 (Amount of prime numbers within the quadratic 

intervals) it can be seen that up to the value of n=17 in all quadratic intervals both A 

and B there is a constant presence of prime numbers which oscillates from one at four; 

starting from the quadratic interval A of n = 18 the prime numbers always become at 

least two; fluctuating again upwards until finally becoming at least three starting from 

the interval B of the value of n= 37; at least 4 from interval B of n=47, at least 5 from 

interval A of n=51, and at least 8 from interval B of n=86. 

 

Thus, fluctuating, the prime numbers present in the quadratic intervals A and B of n = 

1000, (table 3) composed of one thousand + one thousand elements, become 65 in the 

interval A and 75 in the interval B, while, still rising to the value of n =10,000 become 

533 in interval A and 551 in interval B, with an average proportion equal to 5.42% 

which highlights the fact that, despite the continuous growth of prime numbers 

present in the respective quadratic intervals, the effective proportion of prime 

numbers compared to the totality of natural numbers tends to decrease, which is quite 

obvious since everything is related to the increasingly massive presence of natural 

numbers within quadratic intervals. 

 
Value of n Prime numbers in A Prime n. in B Value of n Prime n. in A Prime numbers in B 

150 13 15    200 20 20 

250 19 22    300 22 32                                                                                                                                                                                                                                                                                         

350 31 29    400 35 33 

450 33 36    500 40 33 

550 33 50    600 39 41 

650 47 52    700 55 56 

750 55 65    800 58 60 

850 63 65    900 72 69 

950 61 67      1.000 65 75 

     1.500             102 88      2.000        133             137 

     2.500             157        166      3.000        187             164 

     3.500             210        205      4.000        251             228 

     4.500             255        269      5.000         271             315 

   10.000             533        551    20.000      1029             986 

 

As explained above, i.e. due to the increasing presence in the quadratic intervals of the 

confluences of divisors Mm, which cause the increasing presence of prime numbers in 

the quadratic intervals, I believe that Oppermann's conjecture can be considered 

proved also because Oppermann's conjecture is limited to affirm that in each of the 

intervals that precede and follow the perfect squares there is always the presence of at 

least one prime number, while the growing phenomenon of the confluences of the 

divisors Mm and the consequent replicas of the prime numbers demonstrates the 

natural tendency of the prime numbers to a constant growth of their quantity, within 

the quadratic intervals (see tables 2 and 3). 
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Furthermore, in the light of the internal properties of the Sets called Quadratic 

Intervals, assumed by virtue of the divisors Mm, it does not seem rash to me to 

consider that they are to all intents and purposes to be considered perpetual sub-

orders of the natural numbers of which they constitute ever larger intervals , 

autonomously governed by the divisors Mm, which, among other things, reveal the 

arcane law that regulates the distribution of prime numbers. In this regard it is 

important to grasp a particular aspect, namely that the present "elementary theory" is 

not to be understood as an evolution of modern mathematics but as its basis, being the 

mathematical edifice that houses the natural numbers so far suspended on a cultural 

void that has always left unsatisfied the question: "Is there a mathematical law that 

regulates the distribution of prime numbers?" A cultural void that the theory of 

quadratic intervals and Mm” divisors fill. A basis supported by elementary 

mathematical reasoning which, for this specific reason, could have been understood 

several centuries ago, since it is not necessary for its demonstration to resort to the 

modern evolutions of mathematics, being, on the contrary, necessary to make a 

historical regression such as that of quadratic system used by Nature, compared to the 

decimal system subsequently introduced by man. 

 

By virtue of the elementary mathematical logic that within the Sets called quadratic 

rooms always distributes elements having the trivial 1 as their natural and exclusive 

divisor, these being natural Sets appendages of each perfect square and the perfect 

squares being infinite, it becomes elementary to conceive the idea of the mathematical 

reason why prime numbers are consequently destined to be infinite too. 
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III 
Spiral of Ulam, "squared intervals" topography 

 
A different view of the Spiral of Ulam, compared to the common view of it that has 

been recorded up to now by those who have studied it, shows a formidable 

confirmation of the validity of the theory of quadratic intervals and of the divisors Mm, 

which, like tesserae of a mosaic, fit perfectly into the grid randomly created by the 

Polish mathematician and physicist Stanislaw Ulam in 1963.  

A new and original key to reading the natural numbers, which decodes the 

extraordinary map of natural numbers that is obtained from it thanks to the particular 

properties that the Sets of quadratic intervals acquire which are functional to them. 

Observing the Spiral of Ulam, segmented into four equal parts by the four different 

background colours, one can notice all the quadratic intervals which branch out in an 

orderly manner in the four cardinal directions, starting from the south center of the 

table with the first two intervals, composed of a single element each (1, 2) and 

successively covering, in continuous rotation, the four cardinal directions and turning, 

always following the same order, at each interval: 

 

north: 3, 4, (interval elements A of n=2);  

west: 5, 6, (interval B elements of n=2);  

south: 7, 8, 9, (interval A elements of n=3);  

ext: 10, 11, 12 (interval B elements of n=3);  

 

north: 13, 14, 15, 16, (interval elements A of n=4);  

west: 17, 18, 19, 20, (interval B elements of n=4);  

south: 21, 22, 23, 24, 25, (interval elements A of n=5);  

est: 26, 27, 28, 29, 30, (interval B elements of n=5); 

 

north: 31, 32 ,33, 34, 35, 36, (interval elements A of n=6); 

west: 37, 38, 39, 40, 41, 42, (interval B elements of n=6); 

south: 43, 44, 45, 46, 47, 48, 49, (interval elements A of n= 7); 

est: 50, 51, 52, 53, 54, 55, 56, (interval B elements of n=7)… 

 

and so on to infinity, 

      

so: 

all intervals A of even n lie north, 

all intervals B of even n lie to the west, 

all intervals A of odd n lie to the south, 

all intervals B of n odd lie to the south.   
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The Spiral of Ulam 
 

324 323 322 321 320 319 318 317 316 315 314 313 312 311 310 309 308 307 

 

257 256 

 

255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 306 

258 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 

 

240 305 

259 198 145 

 

144 143 142 141 140 139 138 137 136 135 134 133 182 239 304 

260 199 146 

 

101 100 099 098 097 096 095 094 093 092 091 132 181 238 303 

261 200 147 

 

102 065 064 063 062 061 060 059 058 057 090 131 180 237 302 

262 201 148 

 

103 066 037 036 035 034 033 032 031 056 089 130 179 236 301 

263 202 149 

 

104 067 038 017 016 015 014 013 030 055 088 129 178 235 300 

264 203 150 

 

105 068 039 018 005 004 003 012 029 054 087 128 177 234 299 

265 204 151 

 

106 069 040 019 006 001 002 011 028 053 086 127 176 233 298 

266 205 152 

 

107 070 041 020 007 008 009 010 027 052 085 126 175 232 297 

267 206 153 

 

108 071 042 021 022 023 024 025 026 051 084 125 174 231 296 

268 207 154 

 

109 072 043 044 045 046 047 048 049 050 083 124 173 230 295 

269 208 155 

 

110 073 074 075 076 077 078 079 080 081 082 123 172 229 294 

270 209 156 

 

111 112 113 114 115 116 117 118 119 120 121 122 171 228 293 

271 210 157 

 

158 159 160 161 162 163 164 165 166 167 168 169 170 227 292 

272 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 291 
 

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 

 

 
This interpretation of the Spiral of Ulam, in my personal way of seeing the universe of 

natural numbers, is a beacon that illuminates the foundations of the mathematical 

edifice since, properly investigated, it reveals itself to be a mine of information 

regarding various aspects of the factorization of numbers and, among these aspects, 

emerges the possibility of generalizing Fermat's factorization method through 

continuous, uninterrupted lines of factorizable numbers, which cross the table of the 

Spiral of Ulam which, obviously, is represented here only for the first values but which 

can be extended, with suitable means, up to where one wants.  

The following table traces a network of numbers of the Ulam Spiral which 

conveniently brings together the elements that can be factorizable with divisors Mm 

using Pierre de Fermat's method within each quadratic interval A (because each of 

these intervals refers to the perfect square, placed as the last element of the range 
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itself). These divisors Mm can be formulated a priori since they are always placed on 

elements of the intervals placed at fixed distances from the perfect squares. 
 

Elements: (n2-12) → Divisors Mm: (n-1).  
Example  : 172–12 = Element 288, divisor 16    
 
Elements: (n2-22) → Divisors Mm: (n-2).  
Example: 172–22 =   Element 285, divisor 15    
 
Elements: (n2-32) → Divisors Mm: (n-3).  
Example:   172–32 = Element  280, divisor 14    
 
Elements: (n2-42) → Divisors Mm: (n-4).  
Example: 172–42  =  Element 273, divisor 13     
 
 
484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 467 466 465 464 463 

 

401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 
 

462 
 

402 325 
 

324 323 322 321 320 319 318 317 316 315 314 313 312 311 310 309 308 307 380 461 

403 326 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 
 

306 379 460 

404 327 258 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 
 

240 305 378 459 

405 328 259 198 145 144 143 142 141 140 139 138 137 136 135 134 133 182 
 

239 304 377 458 

406 329 260 199 146 101 100 099 098 097 096 095 094 093 092 091 132 181 
 

238 303 376 457 

407 330 261 200 147 102 065 064 063 062 061 060 059 058 057 090 131 180 
 

237 302 375 456 

408 331 262 201 148 103 066 037 036 035 034 033 032 031 056 089 130 179 
 

236 301 374 455 

409 332 263 202 149 104 067 038 017 016 015 014 013 030 055 088 129 178 
 

235 300 373 454 

410 333 264 203 150 105 068 039 018 005 004 003 012 029 054 087 128 177 
 

234 299 372 453 

411 334 265 204 151 106 069 040 019 006 001 002 011 028 053 086 127 176 
 

233 298 371 452 

412 335 266 205 152 107 070 041 020 007 008 009 010 027 052 085 126 175 
 

232 297 370 451 

413 336 267 206 153 108 071 042 021 022 023 024 025 026 051 084 125 174 
 

231 296 369 450 

414 337 268 207 154 109 072 043 044 045 046 047 048 049 050 083 124 173 
 

230 295 368 449 

415 338 269 208 155 110 073 074 075 076 077 078 079 080 081 082 123 172 
 

229 294 367 448 

416 339 270 209 156 111 112 113 114 115 116 117 118 119 120 121 122 171 
 

228 293 366 447 

417 340 271 210 
 

157 158 159 160 161 162 163 164 165 166 167 168 169 170 227 292 365 446 

418 341 272 211 
 

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 291 364 445 

419 342 273 
 

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 363 444 

420 343 
 

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 443 

421 
 

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 
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The quadratic intervals A and B give shape to a dress (the spiral of Ulam) which, up to 
now, despite the multiple trails of prime numbers identified in it, has not been 
adequately understood. In fact, the numerical body of the Spiral of Ulam, in addition to 
the trails of prime numbers, which represent a marginal phenomenon, contains a heart 
that pulsates within the Sets A and B made up of quadratic intervals and by pulsating it 
always supplies new life to other new Sets. The new lymph is constituted by the prime 
numbers which, being born in each Set, constitute the origin of their respective 
multiples. So that each new Set always includes a complete chain of divisors which, 
starting from the trivial 1, arrives at the value of n. 
 
The study of the Spiral of Ulam, following the filter of the divisors Mm of the quadratic 
intervals, allows us to discover further characteristics concerning the natural location 
of these dividers within each of the four sections of the Spiral. Proceeding from the 
inside of the Spiral outwards, a line of numerical elements rises from each of the 
sections (highlighted in green) whose respective divisors represent the average of the 
divisor value of the elements of the Set to which they belong.  
 

In the case of Sets that refer to N of even value, the median element of the Sets forming 
part of the ordinate vertical line is divisible by a number equal to n/2 (if n=4 the 
median element of the Set is divisible by 2 ; if n=6 the median element of the Set is 
divisible by 3, etc.). In the case of Sets that refer to n of odd value, when the elements 
of the ordinate vertical line that crosses them belong to Sets A then the value of the 
divisor of the considered elements corresponds to (n-1)/2 (if n=5 l median element of 
the Set is divisible by (5-1)/2 = 2; if n=7 the median element of the Set is divisible by 
(7-1)/2 = 3, etc. When the elements belong to Sets B then the divisor of the elements 
considered corresponds to (n+1)/2 (if n=5 the median element of the Set is divisible 
by (5+1)/2 = 3; if n = 7, the median element of the Set is divisible by (7+1)/2 = 4. 
 
So that of the numerical lines of the following table highlighted in green, arranged 
vertically with respect to Sets A and arranged horizontally with respect to Sets B, the 
respective divisors are: 2, 3, 4, 5, 6, ,7 ,8, 9, 10, etc. 
 
10-2 – 27-3 – 52-4 – 085-5 – 126-6 – 175-7 – 232-8 – 297-9 – 370-10 – 451-11 – ecc.   

14-2 – 33-3 – 60-4 – 095-5 – 138-6 – 189-7 – 248-8 – 315-9 – 390-10 – 473-11 – ecc.  

18-2 – 39-3 – 68-4 – 105-5 – 150-6 – 203-7 – 264-8 – 333-9 – 410-10 – 495-11 – ecc.  

22-2 – 45-3 – 76-4 – 115-5 – 162-6 – 217-7 – 280-8 – 351-9 – 430-10 – 517-11 – ecc. 
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484 483 482 481 480 479 478 477 476 475 474 473 472 471 470 469 468 467 466 465 464 463 

 

401 400 399 398 397 396 395 394 393 392 391 390 389 388 387 386 385 384 383 382 381 
 

462 
 

402 325 
 

324 323 322 321 320 319 318 317 316 315 314 313 312 311 310 309 308 307 380 461 

403 326 257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 
 

306 379 460 

404 327 258 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 
 

240 305 378 459 

405 328 259 198 145 144 143 142 141 140 139 138 137 136 135 134 133 182 
 

239 304 377 458 

406 329 260 199 146 101 100 099 098 097 096 095 094 093 092 091 132 181 
 

238 303 376 457 

407 330 261 200 147 102 065 064 063 062 061 060 059 058 057 090 131 180 
 

237 302 375 456 

408 331 262 201 148 103 066 037 036 035 034 033 032 031 056 089 130 179 
 

236 301 374 455 

409 332 263 202 149 104 067 038 017 016 015 014 013 030 055 088 129 178 
 

235 300 373 454 

410 333 264 203 150 105 068 039 018 005 004 003 012 029 054 087 128 177 
 

234 299 372 453 

411 334 265 204 151 106 069 040 019 006 001 002 011 028 053 086 127 176 
 

233 298 371 452 

412 335 266 205 152 107 070 041 020 007 008 009 010 027 052 085 126 175 
 

232 297 370 451 

413 336 267 206 153 108 071 042 021 022 023 024 025 026 051 084 125 174 
 

231 296 369 450 

414 337 268 207 154 109 072 043 044 045 046 047 048 049 050 083 124 173 
 

230 295 368 449 

415 338 269 208 155 110 073 074 075 076 077 078 079 080 081 082 123 172 
 

229 294 367 448 

416 339 270 209 156 111 112 113 114 115 116 117 118 119 120 121 122 171 
 

228 293 366 447 

417 340 271 210 
 

157 158 159 160 161 162 163 164 165 166 167 168 169 170 227 292 365 446 

418 341 272 211 
 

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 291 364 445 

419 342 273 
 

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 363 444 

420 343 
 

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 443 

421 
 

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 

 

In addition to these highlighted lines, there are many other lines with the same 
characteristics, i.e. uninterrupted lines of elements whose divisors Mm follow each 
other in perfect ascending order. These lines are discovered gradually as, by enlarging 
the Spiral in the four cardinal directions, the quadratic intervals contain more and 
more elements and proceeding outwards, new lines of elements are always discovered 
which have their divisors Mm in an orderly natural sequence. 
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