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Section - Abstract

This is a mathematical analysis of everything Collatz. I've come up with a revolutionary way of 
representing the natural counting numbers as an infinite set of equations. From these I am able to make some 
provable connections that not only show that all counting numbers are used once in the Collatz Tree structure; 
but where additional loops originate; among other cool observations. I also show that there can only be one 
unbroken chain of continuous “3n+1 / 2”  growing to infinite number sizes approaching infinity but never 
actually getting there. This would be the 'only' counter-example that is possible and as odds would have it, it 
does not pan out. That only possible counter example is not to be.

Using the induction method where we show that x = 1 is true (elementry, since it is part of the initial 
loop); from there we assume that x from 1 to k are also true building on the x=1 being true; then k+1 is also 
true. That is a complicated way of saying that if we know and assume all numbers from 1 to k are true, then the 
very next number k+1 is also true in as much as we apply the two rules correctly so the number reduces to one 
that is already in the proven set!

The first three equations of my infinite set of equations are easy to apply this induction to and cover 
87.5% of the counting number set. I change things up a bit for the upper level equations. I am able to prove 
through the same induction method that any number that is not a multiple of 3 ( falling in these 
levels/equations ) is also provable.  Stepping outside the usual method of this proof I investigate the multiples 
of three separately to prove they are all following a similar induction proof. And they do. All said and done I am
able to prove that 100% are provable. (4x+1) is important in this proof as well the application of (3x+1)/2. Read
on to find out what I mean.

I've covered off on the loop issue part of the proof by showing how additional loops come about in the 
Collatz Tree structure. There is only one loop in Collatz ( positive counting numbers ) and that is the trivial { 1 
– 4 – 2 } loop. No others are possible no matter how close to infinity one gets and all numbers will reduce to 
this trivial loop.

The detailed discussion of how I arrived at these different conclusions is outlined below. I apologize if 
some sections are difficult to follow. I am not a mathematician by nature or profession. I do love mathematics 
though. I hope you enjoy my self awakening process on this subject as I continued to explore. As my expertise 
improved other intuitive aspects became readily useful in the proof.

This is an updated version of my original document with a new section near the end that gets into the 
details of the proof. The remainder of the original report remains intact for the most part but does have 
additional details and concepts introduced and dispersed therein.

This is the third version where I have solved the outstanding subset of multiples of 3. I believe you will 

Collatz Conjecture Explored Page: 1 of 45



find that method eye-opening since it involves some under the sheets number manipulation by multiple 
applications of (3x+1)/2. I also introduce the 'duality' nature of some even numbers (if not all) that remain 
hidden in the Collatz tree structure... and that is that those even numbers can behave as if they were odd 
numbers; (Odd*3)+1=Even; (Even*3)+1=Odd; (4*Even)+1=Odd.

This detailed analysis has led me to a complete proof.

Section 1 - Introduction

The Collatz conjecture is a sequence of numbers generated by applying two rules; if the number is Odd 
multiply it by 3 and add 1 ( 3n+1 ); if the number is even then divide by 2 ( n/2 ). So the Collatz sequence is 
{ 3n+1 ; n/2 }.

The conjecture states that if you start at any number from 1 to infinity ( positive natural counting 
numbers) you will eventually end up in a { 1 – 4 – 2 } loop.

Sounds simple enough. The concept is, but proving that this is infact true over the entire set of natural 
counting numbers is quite difficult. Apprently, folks have been searching for a proof for close to 100 years.

My attempt is to approach the proof from a slightly different angle and look at the natural counting 
numbers in a more confined fashion. This will allow for the observation that something fundamental is 
occuring. That will become clear in the following sections.

I am not a mathematician per say... but a computer scientist… and we all know computers are just large 
computational devices that rely on mathematics and logic. I do not have access to a mathematical addon for 
publishing in the correct format so I will make due with what I can get off the keyboard ( symbol wise ). My 
terminology may also be lacking, but I am confident you will comprehend it just fine.

I've created this report in a fashion where you can follow my maturation process as I studied the Collatz 
Conjecture. I ask myself questions and then go about determining if they are something I can use towards a 
proof. 

Section 2 – Infinite Sequence of Equations to Create ALL Counting Numbers ( Primes )

The basis of my observations and subsequent conclusion is the understanding that all the natural 
numbers ( 1 to infinity ) can be represented by the following infinite set of equations. 

• 0 + 2x     { 0 + (2^1)x }  { (((2^1) / 2) -1) + (2^1)x }
• 1 + 4x     { 1 + (2^2)x }  { (((2^2) / 2) -1) + (2^2)x }
• 3 + 8x     { 3 + (2^3)x }  { (((2^3) / 2) -1) + (2^3)x }
• 7 + 16x   { 7 + (2^4)x }  { (((2^4) / 2) -1) + (2^4)x }
• …
• (((2^y) / 2) -1) + (2^y)x
• …
• (((2^infinity) / 2) -1)  + (2^infinity)x

As seen above this is an infinite sequence of equations and it will cover all the natural numbers ( 1 to 
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infinity ). Each individual counting number exists only ONCE in this set of equations. I've expanded out the 
first ten equations to show how they are formed. Note that 'powers of 2' play a very important role. Now, there 
is an unexpected reality to these equations in that 0 + 2x contains all the even numbers ( a subset that contains 
exactly half (½) of the natural number set ). For example { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, … }. The next 
equation 1 + 4x spawns the following subset: { 1, 5, 9, 13, 17, 21, … } This subset contains exactly one quarter 
(¼)  of the entire natural number set. So the first 2 equations account for (¾) of the natural number set. You will
find that the next equation subset will contain only (1/8) of the natural numbers: { 3, 11, 19, 27, … }. And the 
following equation has (1/16) of the natural numbers { 7 + 16x } { 7, 23, 39, 55, … }. Do you see a pattern 
here? The subset for any equation contains (1/2^y): { (½) for 2^1; (¼) for 2^2; (1/8) for 2^3; … }. As we 
approach the infinity power of 2 we find that the subset contains only (1/infinity) elements...a very tiny number.
So just for kicks, let's calculate how what proportion of the natural number set are included with the first 10 
equations (½) + (¼) + (1/8) + (1/16) + (1/32) + (1/64) + (1/128) + (1/256) + (1/512) + (1/1024) = (1023/1024). 
Interesting, indeed. The vast majority of all the natural numbers can be created using only the first 10 equations.
We will come back to this point later. Here's the above discussion in the form of a chart for easier visualization:

{ 0+2x } 1/2 50% of the entire natural counting number set
{ 1+4x } 1/4 25%
{ 3+8x } 1/8 12.5%
{ 7+16x } 1/16 6.25%
{ 15+32x } 1/32 3.125%
{ 31+64x } 1/64 1.5625%
{ 63+128x } 1/128 0.78125%
{ 127+256x } 1/256 0.390625%
{ 255+512x } 1/512 0.1953125%
{ 511+1024x } 1/1024 0.09765625%
{ 1023+2048x } 1/2048 0.048828125%

Just so we are all on the same page I've listed the first several equations with the numbers they create:

{ 0 + 2x } →  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, ...
{ 1 + 4x } →  1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, ...
{ 3 + 8x } →  3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107, 115, 123, 131, 139, 147, 155, ...
{ 7 + 16x } →  7, 23, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, …
{ 15 + 32x } →  15, 47, 79, 111, 143, 175, 207, 239, 271, 303, 335, 367, ...
{ 31 + 64x } →  31, 95, 159, 223, 287, 351, 415, 479, ...
{ 63 + 128x } →  63, 191, 319, 447, 575, 703, 831, ...
{ 127 + 256x } →  127, 383, 639, 895, 1151, 1407, 1663, ...
{ 255 + 512x } →  255, 767, 1279, 1791, 2303, ...
{ 511 + 1024x } →  511, 1535, 2559, 3583, ...

This is likely as good a spot as any to show how primes work into my equations. The negative natural 
numbers shown is subsequant sections work in the same fashion. I'm going to list off the first 21 equations:

{ 0 + 2x }                         →   0                                      + 2x
{ 1 + 4x }                         →   1                                      + 4x
{ 3 + 8x }                         →   3                                      + 8x
{ 7 + 16x }                       →   7                                      + 16x
{ 15 + 32x }                     →   5 * 3                                + 32x
{ 31 + 64x }                     →   31                                    + 64x
{ 63 + 128x }                   →   7 * 3 * 3                          + 128x
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{ 127 + 256x }                 →   127                                  + 256x
{ 255 + 512x }                 →   17 * 5 * 3                        + 512x
{ 511 + 1024x }               →   73 * 7                              + 1024x
{ 1023 + 2048x }             →   31 * 11 * 3                      + 2048x
{ 2047 + 4096x }             →   89 * 23                            + 4096x
{ 4095 + 8192x }             →   13 * 7 * 5 * 3 * 3            + 8192x
{ 8191 + 16384x }           →   8191                                + 16384x
{ 16383 + 32768x }         →   127 * 43 * 3                    + 32768x
{ 32767 + 65536x }         →   151 * 31 * 7                    + 65536x
{ 65535 + 131072x }       →   257 * 17 * 5 * 3              + 131072x 
{ 131071 + 262144x }     →   131071                            + 262144x
{ 262143 + 524288x }     →   73 * 19 * 7 * 3 * 3 * 3    + 524288x
{ 524287 + 1048576x }   →   524287                            + 1048576x
{ 1048575 + 2097152x } →   41 * 31 * 11 * 5 * 5 * 3  + 2097152x

The important thing to notice here is that the first part of every equation is simply some  {2^x – 1 } and 
that each of them in turn is formed by nothing but PRIME factors. The ultra important realization is that starting
at 3 every second equation after that is comprised of factors that contain at least one factor of 3. All the other 
equations do not include that factor of 3. This makes every second equation a 'multiple of 3' equation? At the 
bare minimum those equations start with a multiple of 3. All of the equations contain multiples of 3. This 
observation likely plays into the process but at this point I'm not convinced it can be used to formulate a proof. 

We will see that any odd number that is a multiple of 3 can not form further branches; it is a 'dead-end' 
row. I love how primes have made an appearance, but anyone involved with number theory knows that any 
number is created by nothing but prime factors. Later we will see the appearance of 3^x = 2^y +1 and how it 
can be used to explain the formation of additional loops. Again a connection with powers of 3 and powers of 2. 
Note there are only two cases where this is true; 3^1 =  2^1 + 1 and 3^2 + 2^3 +1. The above primes discussion 
play with 2^x – 1. Quite a coincidence, isn't it? Every second equation is the same as saying add 3 multiplied by
' 4 ' or ' 2^2 '. 0+(3*1)=3; 3+(3*4)=15; 15+(3*16)=63; 63+(3*64)=255;... Note that as we jump to the next 
equation we are multiplying by 4 more...3*4; 3*4*4; 3*4*4*4;... This is how we skip over every other equation 
and why we see branches separated by ' 4 ' or ' 2^2 '.  You obviously see this is not the complete picture. The 
other subset of equations do something very similar. 1+(3*2)=7; 7+(3*8)=31; 31+(3*32)=127; 
127+(3*128)=511. Again we are multiplying by 4 (2*2). This allows us to skip over every other equation. 
Combining the two cover all my equations.

Now, another item that may be important to explore here before going futher is the relationship between 
3 and 2. This relationship fits in with how the Collatz tree propagates. If you multiply a number ( say 1 ) by 
three and add one ( 3n+1 ) you are in effect doing 3+1=4. 4 is simply 2+2=4. 4 is an important transition point 
in the tree. Let's do another iteration of 3n+1 but not by multiplying but simply adding the effect. 3n+1+3n+1 = 
3+3+2 = 8. Can we mirror this with 2? Yes, 2+2+2+2 or 4+4 =8. 3, 6 and 2, 4 are all an important numbers 
when building tables for Collatz:

Odd number 3n+1 n/2
1 4 2
3 10 5
5 16 8
7 22 11
9 28 14
11 34 17
13 40 20
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15 46 23
17 52 26
19 58 29
21 64 32

See that the Odd number column is separated by 2 in each step up ( +2). 3n+1 is ( +6 ) in each step up. 
And just for kicks, n/2 is ( +3 ) in each step up. Interesting INDEED! Not really... (+6)/2=(+3)! So there is a 
definite link between 3n+1 and n/2; that is 3 and 6.

 What happens on the third iteration is very important to note. This is an important transition step. 
3n+1+3n+1+3n+1 = 3+3+3+3 = 12. So the excess 1's give an even 3 after 3 iterations. That is important 
because it becomes evenly divisible by 3. And it's connection to 2 is 2+2+2+2+2+2 = 12 or 6+6. or 4+4+4. This
is not needed for the proof I outline below. At least not in this fashion.

You are likely saying we can't use this and you are likely right but it was a stepping stone to show what I
really intended. Again, suppose n=1 for ease of understanding. 3n+1 if n=1 is 4. Now apply 3n+1 to that and do 
it a second time ending up with 3(3(3n+1)+1)+1 or 27n+13. This is just three iterations of 3n+1. Lets rearrange 
27n+13 to 27n+9+4 and factor out 9 giving 9(3n+1)+4 and since 4 is actually 3n+1, replace the 4 giving 
9(3n+1)+(3n+1). This is the case so long as we keep n=1. You can now note that we actually have 10(3n+1). 
This means that after 3 consecutive iterations of 3n+1 we should be able to divide out an extra 2 ( n/2). BUT, 
actually what is happening is (3n+1)/2. So to complicate things a tad bit what happens if we add in the n/2 each 
iteration. Should be nothing, really. First yields (3n+1)/2. Next yields (3((3n+1)/2)+1)/2. And the third gives 
(3((3((3n+1)/2)+1)/2)+1)/2. Multiplied through we get (27n+19)/8. If we try to do like above to factor out 9 we 
get (9(3n+1)+10)/8. Separate out a 4 from the 10 to give (9(3n+1)+(3n+1)+6)/8 or (10(3n+1)+6)/8. And we can 
still mathematically strip out a 2 as follows: 2(5(3n+1)+3)/8. In essence we continue to get an extra n/2 every 
three iterations. This observation must provide statistical advantage to increase the overall number of (n/2). 
Something similar must be happening when n is other than 1. I am unable to make that leap at this point. 
 

I will come back to this connection later in this discussion when I formulate the proof. It is very useful 
in proving a subset of multiples of 3.

Why have I discussed any of this in the first place. It was to show that all natural counting numbers are 
included in the tree structure. None are missed. As well, it is to show how powers of 2 and 3 play an important 
role in the construction of this tree. Since all odd numbers are in the tree implies that all even numbers are as 
well ( since any even number can be formed by multiplying an odd number by two or another even number by 
2). Again, this is a multiple of 2 ( 2^1 ).

Section 3 – Cascading Effect

You are likely asking why I am about to point out the cascading effect. That's where this gets very 
interesting. The structure of the tree is dictated by the odd number at any of the nodes; a 'node' being designated
by it's location in the tree – in this case anywhere where you can go right by multiplying by two and up by 
multiplying by three and adding one. There are only two paths. Other nodes with two paths contain only two 
multiply by 2. So I call them connector nodes. I also call all other nodes with 3 paths connector nodes; they 
have a 'minus one and divide by three' and a 'divide by two' and a 'multiply by two'.  
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“node”

{even number = node * 3 + 1}
           |
{       node      } –  {    node * 2  }

“connector node”

{ connector node / 2 } – { connector node } – { connector node * 2 }

“connector node (all other nodes)”

{ connector node / 2 } – { connector node } – ( connector node * 2}
|

{      node       }

1 – 2 – 4 – 8 – 16 – …
                         |
                        05 – 10 – 20 – 40 – ...
                                 |                 |
                                 |               13 – 26 – 52 – ...
                                 |                                 |
                                 |                                17 – 34 – 68 – ...
                                 |                                          |
                                03 – 06 – 12 – …               11 – 22 – 44 – ...
                                                                                     |
                                                                                    07 – 14 – 28 – ...
                                                                                                     |
                                                                                                    09 – 18 – ...

1, 5, 3, 13, 17, 11 – nodes ( 1 is included as a node because it loops back to 4 )
2, 4, 8, 16, 10, 20, 40, 6, 12, 26, 52, 34, 68, 22, 44, 14, 28, 18 – connector nodes

If a node contains an odd number from say { 7 + 16x } … the very next odd number will be (3n+1)/2 
and will be a number contained in { 3 + 8x } … with the very next odd number a further (3n+1)/2 and it will 
fall in { 1 +4x } … till it finally falls into { 0 + 2x }. This is the case no matter what subset you were to start at. 
If you started at {511 + 1024x } it would cascade uninterupted through each prior equation one-by-one till it 
gets to { 0 + 2x }.

Note that any odd number that is a multiple of '3' is a starting node. No other node can migrate through it
on it's way back to the { 1 – 4 – 2 } loop. 3 and 9 shown above in red are such nodes. Do you see why this is the
case? Any multiple of 3 can not be arrived at by applying 3n+1 to another odd.

A cascade is in the form:

E – E 
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|
O – E – E 
        |
       O – E – E
               |
              O – E – E
                      |
                      O – E – E 

Using O=odd and E=even we see an unbroken O – E – O – E – O – E – O...
7 – 22 – 11 – 34 – 17 – 52 – 26  is such a chain... 7 is level 4; 11 is level 3; 17 is level 2; and 26 is level 1. If 
there are two evens side by side in the chain is not a cascade. 17 – 52 – 26 – 13 – 40 – 20 – 10... O – E – E – O 
– E – E – E. The following paragraphs point other important features of the tree structure.

This may be an appropriate place to point out another mathematical oddity that occurs in this tree. A 
node ( all nodes are Odd ) will also cover itself times 4 plus 1. 4*(Odd Node) + 1... and that new node will have
the same applied to it and so forth all the way though the tree for all nodes with the exception of multiple of 3 
nodes.

1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 
             |           |                |    
             |           |               21 – 42 - 84
             |           |
             |          05 – 10 – 20 – 40 – ...
             |                   |                 |
             1                  |               13 – 26 – 52 – ...
                                 |                                 |
                                 |                                17 – 34 – 68 – ...
                                 |                                          |
                                03 – 06 – 12 – …               11 – 22 – 44 – ...
                                                                                     |
                                                                                    07 – 14 – 28 – ...
                                                                                                     |
                                                                                                    09 – 18 – …

Drawn slighty different with the '1' hanging where it should be you can see this... 1, 5, 21, … or 1*4+1 =
5; 5*4+1=21; etc. 3, 13,  53, … or 3*4+1 =13; 13*4+1 = 53; etc. All nodes display this feature. This occurs 
because of the way the tree is constructed and branches form...namely that after the first branch on any row is 
formed, 2^2 or multiply by 4 to get the next branch on the row. An example is 10 and 40 on that row. 10*2*2 = 
40. The branch at 10 gives a node of 3. The branch at 40 gives a node of 13. And the next branch at 160 
( 40*2*2 = 160) will give a node of 53 which is 53*3+1 = 160! And 53 is 13*4+1. All rows that can have 
branches do this indefinately.

You will notice that this 4x+1 plays prominantly in the Collatz structure. Every backbone ( except those 
that start with multiples of 3 ) spawn limbs that have this 4x+1 applied over and over...except of course those 
backbones that start with multiples of 3.

Looking a little deeper into this we see the following:

2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 1024 - …
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       |             |              |                  |                     |
      1            5            21               85                341

The above is a snippet of the '2' backbone. It starts with the only even node in the entire tree which is a 
special case because it is actually the '1' backbone which is odd too. I've drawn the 1 hanging off of 4 to make 
this 4x+1 easier to spot. All other nodes will follow this feature without question. Notice how each of 1, 5, 21, 
85, 341, display this feature:

1 → 4(1)+1=5
5 → 16(1)+5=21
21 → 64(1)+21=85
85 → 256(1)+85=341
...

Now you can see how multiplying by 4 ( 2 followed by 2 ) gives rise to these. It's convenient that 
1+4=5; 5+16=21; 21+64=85;... This is exactly the same as saying 4x+1... 4(1)+1=5; 4(5)+1=21; 4(21)+1=85; 
4(85)+1=341...

This exact same thing occurs with all the non-multiple of 3 nodes. For example let's show '5'.

5 – 10 – 20 – 40 – 80 – 160 – 320 - 640 …
        |               |                |                   |
       3             13             53               213

3 → 4(3)+1=13
13 → 16(3)+5=53
53 → 64(3)+21=213
…

Let's do one more to hammer this point home; let's do '11':

11 – 22 – 44 – 88 – 176 – 352 – 704 – 1408 …
          |               |                   |                    |
         7             29              117               469

7 → 4(7)+1=29 
29 → 16(7)+5=117
117 → 64(7)+21=469

So all nodes with the exception of the multiples of 3 will do this. This is the 4x+1 rule and will prove 
invaluable in the following proof.

Something important to mention is that there are special occurances where an even number (all even 
numbers) will give the same result as an odd multiplied by 3 and then add one. They behave like; but instead of 
giving an even number one gets an odd number. But the 4x+1 rule stands. Example:

07 – 14 – 28 – 56 – 112 – 224 - 448 ...
                  |                |                  |
02            09             37              149      
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2 → 4(2)+1=9
9 → 16(2)+5=37
37 → 64(2)+21=149

That's very cool...but it is invisible when drawing the tree. And all even numbers display this feature. 
Let's do a couple more to show this:

13 – 26 – 52 – 104 – 208 – 416 – 832 – 1664 …
                  |                  |                   |
 4             17               69               277

4 → 4(4)1=17
17 → 16(4)+5=69
69 → 64(4)+21=277

And how about 6:

19 – 38 – 76 – 152 – 304 – 608 – 1216 – 2432 …
                             |                   |                    |

 6             25              101               405

6 → 4(6)+1= 25
25 → 16(6)+5=101
101 → 64(6)+21=405

This is the case for 'all' even numbers. They will make an invisible presense in the tree.

The first snippet from the Collatz structure with 2 placed in there does show the point. The even number 
when multiplied by 4 and add one gives the odd 9. (2*4)+1=9. Also note that that same even number when 
multiplied by 3 and add one gives another odd number very closely related to 9. (2*3)+1=7.

13 – 26 – 52 – ...
      |

 04            17 – 34 – 68 – ...

This can only happen where you have that opening available. That appears to be whereever a level 2 
(1+4x) starts. No other levels can do this because they collapse or cascade directly down to level 1 (0+2x). This 
is very important to remember. When we visit the prood later, we'll see situations where an odd number can be 
passed though reverse 4x+1 and give these evens. These do not mess up the Collatz structure and shows the 
inter-connectivity between the different backbones. These special even number play dual roles, not only can 
they have the n/2 rule for being even; they also fit into the structure (invisibly) where they are also 3x+1 and 
4x+1 rules.

Section 4 – Validating the Cascade Mathematically

Now I will take a moment to show how this works. Let's start with { 7 + 16x }. Any number created 
from this equation will be odd so one must apply the 3n+1 followed by n/2.

( 3 ( { 7 + 16x } ) + 1 ) / 2
( 21 + 48x + 1 ) / 2

Collatz Conjecture Explored Page: 9 of 45



( 22 + 48x ) / 2
11 + 24x
3 + 8 + 24x
3 + 8 ( 1 + 3x )  or { 3 + 8x since 1+3x is actually an 'x' after applying 3n+1 }

 
So as you can see from the above the very next odd number will fall in the prior equation { 3 + 8x }.  

Since it falls in this subset it is automatically an odd and can't be further divided by 2. Replace 1+3x with the 
new x and run this new odd again:

( 3 ( { 3 + 8x } ) + 1 ) / 2
( 9 + 24x + 1 ) / 2
( 10 + 24x ) / 2
5 + 12x
1 + 4 + 12x
1+ 4 ( 1 + 3x )  or { 1 + 4x since 1+3x is actually an 'x' after applying 3n+1 }

And this continues uninterupted until you get to the very first equation,  which are the even numbers:

( 3 ( { 1 + 4x } ) + 1 ) / 2
( 3 + 12x + 1 ) / 2
( 4 + 12x ) / 2
2 + 6x
2 ( 1 + 3x )
2 ( 1 + 3x )  or { 0 + 2x since 1+3x is actually an 'x' after applying 3n+1 }

Now this is an even number which can be divided at least once more by 2. Continully dividing by 
additional 2's will give us another odd number eventually. This odd number will fall into an upper equation but 
we have no way of knowing which one...we can not predetermine as far as I can tell. This will cause another 
uninterupted cascade down to the { 0 + 2x } equation. All cascades behave in this fashion and since the tree is 
nothing but cascades, the entire tree is one giant cascade.

Section 5 – Observations from Cascading

This a good place to point out an obvious fact. Starting at any level equation, it must then continually 
and directly cascade to the first level { 0 + 2n }. So for each number in a given level it cascades directly to level
{ 0 + 2n } through it's very own path. This implies that the same number of entries in the preceding cascade are 
acounted for. So if { 7 + 16x} has a finite number of say 8 entries; and the preceding level { 3 + 8x } has twice 
as many to start; 16; then 8 of those are automatically accounted for. If level { 1 + 4x } has double that again; 
32; and 8 of those are accounted for; leaving 24. And so on and so forth. But remember that all entries in the { 3
+ 8x } also cascade uninterupted to first level...so only half of the prior levels entries are left in play... meaning 
that at level { 0 + 2x } only half remain in play? ( that means ½ of the entire natural counting numbers set ). The
rest fall on/within some predetermined path from higher levels? As seen the following chart level { 0+2x } 
behaves a bit differently in that only 1/3 of it's members are part of upper level cascading stacks. Right? That's 
because each level spreads out in multiples of 3...and it's only when you reach level ( 0+2x ) that this becomes 
obvious

Let's see if I can show this concept in a chart:

{0+2x} 2   4   6   8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52
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{1+4x} 1             5              9                13              17              21              25              29              33
{3+8x}                3                                 4               11                                 8               19
{7+16x}                                                                    7                                                     6

                                                                   2
Duality 2 (2*3+1=7) 8 → 25 14 → 43 20 → 61 26 → 79

4 (4*3+1=13) 10 → 31 16 → 49 22 → 67 28 → 85
6 (6*3+1=19) 12 → 37 18 → 55 24 → 73 30 → 91

So you can now see how all the odd numbers are covered and consumed in a stack that leads/cascades 
back to level { 0+2x }. I've included dualities of even numbers to show that they do not impact our thoughts and
only show up at the start of already existing cascade stacks. Only 1/3 of the even numbers are consumed. But 
remember the other rule n/2 allows us to consume any even that is double ( 2*odd ); example 1*2=2; 3*2=6; 
5*2=10; 7*2=14; 9*2=18; 11*2=22; 13*2=26... Shown in red below. Remember that the terminus of stacks 
accounts for 1/3 shown in blue. There is some overlap between the red and blue. You can begin to imagine how 
the entire tree is held together by those even numbers. The remainder of the even numbers are simply double 
some other even already covered (shown in green).

{0+2x} 2 4 6 8 10 12 14 16 18 20 22 24 26
{1+4x} 1 5 9 13 17
{3+8x} 3 11
{7+16x} 7

{ 0 + 2x }  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, …
{ 1 + 4x }  1, 5, 9, 13, 17, 21, 25, 29, …
{ 3 + 8x }  3, 11, 19, 27, 35 …
{ 7 + 16x } 7, 23, 39, …

So for the above all 3 number shown in subset for { 7 + 16x } cascade through each prior level 
consuming one number  in each of those levels. And there's a pattern that forms. Taking 7; it translates to 
(7*3+1)/2 = 11. 23 translates to 35 in the prior level. So the first entry ( smallest ) ends up tranlating to the 
second entry in the prior level. The next translates to the third item past 11 in the prior level – 35; and the next 
to three items past 35; as so on. If we start in the prior level with that first item 3; it translates to 5 in the prior 
level...11 translates to to three past 5 or 17...and so on. When jumping to the first (evens) level it does not 
translate to the second but the first...so 1 translates to 2 which is the first item in { 0 + 2x }. But each additional 
item hits 3 items higher after that; 5 translates to 8 – 9 translates to 14. 

It may not be so obvious at this point but all the odd entries ( all odd number in the natural number set) 
are accounted for. All the entries are already accounted for in all levels above { 0 + 2n }. That implies that any 
of the evens when divided by the appropriate number of 2s will spill to an odd number in a higher level that has 
already been acounted for. So without taking a leap of faith we can be confident that each and every natural 
number is included in the tree. Right?

Section 6 – Trivial Loop Jumps Out

This is a good place to point out the trivial loop and how it comes into being:

{ 0 + 2x } 2, 4, 6, 8, 10, …
{ 1 + 4x } 1, 5, 9, 13, …
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See how this happens? With these equations it jumps right out the page.

Section 7 – Putting it Together

The next leap comes when you accept that no matter how much bouncing around it does, this process 
will eventually lead down to the trivial loop { 1 – 4 – 2 }. But I don't expect you to accept this blindly. If every 
third item in { 0 + 2x } is accounted for; that is 2, 8, 14, 20, 26, … let's do some quick number crunching... 2 
reduces to the trivial; 8 also reduces to the trivial loop; infact all powers of 2 which are included in this subset 
will do just that. I call these the 'backbone collapse to trivial'. This is the obvious part. The final not so obvious 
is in the tree structure itself as I have drawn it. The power of 2s backbone is across the very top and the only 
possible direction in that row is left to '1' by dividing by 2 over and over. The next level down is where any 
possible backbone entry less a 1 is divisible by 3...example (5*3)+1 = '16'. Now 5 can grow to the right by 
multiplying by 2 consecutively – 10, 20, 40, … or it can go up if multiplied by 3 and one added. 

1 – 2 – 4 – 8 – 16 – …
                         |
                        05 – 10 – 20 – 40 – ...
                                 |                 |
                                 |               13 – 26 – 52 – ...
                                 |                                 |
                                 |                                17 – 34 – 68 – ...
                                 |                                          |
                                03 – 06 – 12 – …               11 – 22 – 44 – ...
                                                                                     |
                                                                                    07 – 14 – 28 – ...
                                                                                                     |
                                                                                                    09 – 18 – …

Once the tree is built it should be obvious that you can only proceed left and up. Going left and up will 
eventually lead to the backbone. Right? So the rest of those evens that are not exact powers of 2 will be found 
somewhere else in this tree structure where it can only go up or left and approach the backbone. Maybe 
someone has a better way to explain this. I sure hope that made sense!

I'm not too worried about the rest of the structure because I am ultimately trying to show there is at least 
one case where this cascade will be infinite and hence unending ( or continually growing ). This is the only case
where the tree can grow forever...it has to be an infinite cascade. So how does this play into it?

As one approaches infinity the ultimate number of steps in the cascade I discussed above approaches 
infinity as well. At infinity the process breaks. Infinity will enter an infinite number of steps in this cascade. So 
is this not a counter example? To disprove the conjecture?

I am thinking NOT. Since this happens at the very endpoint we can likely use this to show that the only 
case where it can grow infinitely is at that endpoint of infinity and since we can never get to the endpoint of 
infinity; there are no other situations where it is possible so long as { n < infinity }. All numbers from 1 up to 
but not including infinity will reduce to the ultimate loop { 1 – 4 – 2 }.

This is an aside that may useful to point out at this time. And it is likley to play an important role in an 
inductive proof. Notice how going right and down will allow us to realize a smaller ending number than the 
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beginning number in most cases. If you include the duality concept I will introduce later all of these will be able
to do just that. Put this on the back burner for now. 

Section 8 – Exploring the Negative Numbers in the Sequence { 3n-1 ; n/2 }

I found it interesting in that if one uses the negative natural counting numbers from -1 to -infinity in the 
{ 3n-1 ; n/2 } instead of the above Collatz { 3n+1 ; n/2 } one gets the exact same tree as outlined above...except 
it contains nothing but negative numbers; and instead of going left and up as seen in Collatz it goes right and 
up. It changes direction which is expected. The magnitude remains the same. The same trivial loop occur except
it is { -1 – -4 – -2 }.

My special set of equations are slightly different but the same rules apply ( Negatized ).

• -0 + 2x     { -0 + (2^1)x }  { -(((2^1) / 2) -1) + (2^1)x }
• -1 + 4x     { -1 + (2^2)x }  { -(((2^2) / 2) -1) + (2^2)x }
• -3 + 8x     { -3 + (2^3)x }  { -(((2^3) / 2) -1) + (2^3)x }
• -7 + 16x   { -7 + (2^4)x }  { -(((2^4) / 2) -1) + (2^4)x }
• …
• -(((2^y) / 2) -1) + (2^y)x
• …
• -(((2^infinity) / 2) -1)  + (2^infinity)x

{ -0 + 2x }  -2, -4, -6, -8, -10, -12, -14, -16, -18, -20, -22, -24, -26, …
{ -1 + 4x }  -1, -5, -9, -13, -17, -21, -25, -29, …
{ -3 + 8x }  -3, -11, -19, -27, -35 …
{ -7 + 16x } -7, -23, -39, …

See the same trivial loop { -1 – -4 – -2 } and it jumps out as well. The rest of the argument is exacly the 
same  for the negative natural counting numbers in the sequence { 3n-1 ; n/2 }.

Do my formulas show a convergence as well:

( 3 ( { -7 + 16x } ) - 1 ) / 2
( -21 + 48x - 1 ) / 2
( -22 + 48x ) / 2
-11 + 24x
-3 - 8 + 24x
-3 + 8 ( -1 + 3x )  or { 3 + 8x since -1+3x is actually an 'x' after applying 3n-1 }

And this is the case for all these equations.

Let's try the cascade to { 0 + 2x }:

( 3 ( { -1 + 4x } ) - 1 ) / 2
( -3 + 12x - 1 ) / 2
( -4 + 12x ) / 2
-2 + 6x
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-0 - 2 + 6x
-0 + 2 ( -1 + 3x )  or { 0 + 2x since -1+3x is actually an 'x' after applying 3n-1 }

They behave exactly the same way as the positives. So I will not bore you by showing more of them in 
detail. Once was quite enough to prove the point.

Here is the only tree with negative number in {3n-1; n/2}

-1 – -2 – -4 – -8 – -16 – …
                                |
                             -05 – -10 – -20 – -40 – ...
                                         |                 |
                                         |               -13 – -26 – -52 – ...
                                         |                                     |
                                         |                                  -17 – -34 – -68 – ...
                                         |                                              |
                                       -03 – -06 – -12 – …              -11 – -22 – -44 – ...
                                                                                                 |
                                                                                              -07 – -14 – -28 – ...
                                                                                                                   |
                                                                                                                -09 – -18 – …

But, lets consider if 4x+1 holds true in this tree. No it does not. Here it must be altered to 4x-1. (-1*4)-1 
=-5. (-3*4)-1=-13. We will likely see the same thing occur in the following sections where 3 trees (loops) 
become possible.

Section 9 – Exploring the Negative Numbers in the Collatz Sequence { 3n+1 ; n/2 }

Placing the negative numbers in my original equations ( they have been negatized ) yeilds the following:

• -0 + 2x     { -0 + (2^1)x }  { -(((2^1) / 2) -1) + (2^1)x }
• -1 + 4x     { -1 + (2^2)x }  { -(((2^2) / 2) -1) + (2^2)x }
• -3 + 8x     { -3 + (2^3)x }  { -(((2^3) / 2) -1) + (2^3)x }
• -7 + 16x   { -7 + (2^4)x }  { -(((2^4) / 2) -1) + (2^4)x }
• …
• -(((2^y) / 2) -1) + (2^y)x
• …
• -(((2^infinity) / 2) -1)  + (2^infinity)x

{ -0 + 2x }  -2, -4, -6, -8, -10, -12, -14, -16, -18, -20, -22, -24, -26, …
{ -1 + 4x } -1, -5, -9, -13, -17, -21, ...
{ -3 + 8x }  -3, -11, -19, -27, -35 …
{ -7 + 16x } -7, -23, -39, …

I had to make a slight change to my equations to cover all the negative natural numbers but for all 

Collatz Conjecture Explored Page: 14 of 45



intents and purpose the same levels pop out valid.

Now what does the tree structure look like:

-1 – -2 – -4 – -8 – -16 – -32 – …
                        |                |
                        |              -11 – -22 – -44 – -88 – -176 – …
                        |                                    |                   |
                        |                                    |                 -59 – -118 – -236 – ...
                        |                                    |                                         |
                        |                                    |                                      -79 – -158 – ...
                        |                                    |
                        |                                  -15 – -30 – -60 – ...
                       -3 – -6 – -12 – ...

This first tree has the loop at the very top left before any branching begins. The loop is { -1 – -2 }. Keep 
that in mind for the following two loops. Seems this tree does not include -5 so lets start a new tree with -5 as 
part of the loop:

-5 – -10 – -20 – -40 – -80 – -160 – …
                    |                  |    
                    |                -27 – -54 – -108 – ...
                    |   
                    |   
                  -7 – -14 – -28 – -56 – ...
                             |  
                           -5

Seems this loop is { -5 – -14 – -7 – -20 – -10 }. Also note that this being a loop for the second tree does 
in fact start at the top left and works it way down the first possible branch

And finally there is yet a third tree with it's own loop that covers the remainder of ( 1/3 ) of the natural 
counting numbers. And I'm taking an educated guess that it is -16-1 = -17 because the last loop was -4-1 = -5 
and the very first loop was just -1. So my thinking was -(0)-1 = -1 is the { -1 – -2 } loop; -(2^2)-1 = -5 is the { 
-5 – -14 – -7 – -20 – -10 } loop; -(2^4)-1 = -17 is the next loop. Interesting, ehh? Also note that this loop as well
begins at the upper left and proceeds down the second possible branch. I have not been able to show why this is 
the case but an educated guess would indicate it definitely has something to do with the 0; 2^2 and 2^4. It's also
interesting that all three start numbers for each of the trees originates from { -1 + 4x } =  -1, -5, -9, -13, -17, -21,
-25, …And it is not a coincidence. Another way to look at it is simply 1+0; 1+4; 1+16 or 1+0; 1+2^2; 1+2^4. 
Powers of 2 still play an important role. It's going to take more work to determine exactly what is happening... 
the joy of number theory!

The following discussion is a fitting guess on what is happening and how these powers of 2 play into it. 
Directly following this I get into how to divide the natural counting numbers into 3 sets because 3n in the 3n+1 
dictates that much. It takes a little leap of faith to notice that in Collatz a power of three comes into play at two 
critical jump points ( to new separate trees ). Here is a table layout of the odd numbers applied to both 3n+1;n/2 
& 3n-1;n/2:

Note that I have highlighted the odd numbers that can potentially jump off into their own tree which of 
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course are given by 1; 1+2^2; 1+2^4 – 1, 5, 17. See above. And because we are dealing with multiples of 3 and 
three groupings/sets where we have { multiples of 3 }; { multiples of 3 + 1}; { multiples of 3 +2 }. Seems 3 
plays a critical role.

So in Collatz we see what happens when we look at the three jump points 1, 5 and 17.  1 starts the 
natural loop { 1 – 4 – 2 }. At 5 we have the potential to jump off to a new tree but because 5 goes to 5 + 3 = 8 it 
stays in the original tree. It's also interesting that 8 = 2^3. Anything other than the addition of a power of 3 
would have caused it to form it's own tree. Now with 17 we can see that again it goes to 
17 + 3*3 = 26. Now again there was the potential of jumping off to a new tree had this number been created 
using a power of 3. The power of 3 kept it in the original loop. So in the case of Collatz and 1, 5, 17 all three 
stay in the same 1 – 4 – 2 loop.

Now see what happens when we look at the jump points 1, 5, 17 in the 3n-1;n/2 sequence. { 1 – 2 – 1 } 
is the natural first base loop. In the case of 5 it gives 5 + 2 = 7. This is adding a power of 2...not three. So 5 can 
break clean of the original loop because it has no way ( needed to add a power of 3 to fall into the original 
loop ) of entering the { 1 – 2 } loop.

The same thing happens with 17 in the 3n-1;n/2 sequence. Instead of adding a multiple of 3 to enable it 
access to the original loop it has a multiple of 2 ( specifically 2 ^ 3 = 8 ). Note as well that 3 = 2+1 and 3*3 = 
2*2*2+1. I point this out because we are actually dealing with 3n-1; so I would expect at these jump points to 
see a number that is one less than what it would've been in Collatz. Now I suspect that the jump points 5 and 17 
are the only two points where we can have 3^? = 2^? +1. I've seen this at play elsewhere I think in the a^x = 
b^y + 1; where x <> y ( not equal ).

How's that for some obscure reasoning?

Odd number 3n+1 n/2 3n-1 n/2
1 4 2 2 1
3 10 5 8 4
5 16 8 (5+'3') 14 7 (5+'2')
7 22 11 20 10
9 28 14 26 13
11 34 17 (11+3*2') 32 16 (11+'5')
13 40 20 38 19
15 46 23 44 22
17 52 26 (17+'3*3') 50 25 (17+'2*2*2')
19 58 29 56 28
21 64 32 62 31

Another interesting observation is that the set of all natural counting numbers can be subdivided into 
three distinct groupings. This provides ammunition and goes hand in hand with what I was dicussing above 
regarding only three possible trees.

Lets look at the number line and logically break into three groups. This will make more sense as we look
at it in detail.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, …

Starting at 0; add 3 consecutively to isolate all the multiples of 3. This is one third of the entire set:
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0, 3, 6, 9, 12, 15, 18, 21, 24, … and leaves:

1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, …

Next, starting at 1, add 3 consecutively and strip out that third. This is the subset that is any multiple of 3
plus 1.

1, 4, 7, 10, 13, 16, 19, 22, … and leaves the final sub group:

2, 5, 8, 11, 14, 17, 20, 23, …

So starting at 2 and adding 3 consecutively gives us all the remaining numbers of the final sub-group. 
This final sub-group is simply a multiple of 3 plus 2! There are no more multiples of 3 plus anything that will 
result in a fourth sub-grouping.

The three sub-groups are:

{ 1, 4 ,7, 10, 13, 16, 19, 22, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, … }

This shows the three evenly distributed groupings that contain exactly 1/3 of the original natural 
counting numbers set. It also shows that even deeper than that, half of each of these 3 sub-groupings is even 
numbers. These 3 sub-groupings are integral in the Colatz tree as well. 3n(+1) dictates that. Right?

I wonder if there is a conection to my original group of equations:

{ 0 + 2x }  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, …
{ 1 + 4x }  1, 5, 9, 13, 17, 21, 25, 29, …
{ 3 + 8x }  3, 11, 19, 27, 35 …
{ 7 + 16x } 7, 23, 39, …

And there is! Let's start with { 0 + 2x }:

{ 1, 4 ,7, 10, 13, 16, 19, 22, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, … }

What about { 1 + 4x }:

{ 1, 4 ,7, 10, 13, 16, 19, 22, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, … }

And { 3 + 8x }:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, … }
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And last for us to make the point { 7 + 16x }:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, … }

My original equations hit each of these three sub-groupings evenly and in a defined pattern. Notice that 
in { 0 + 2x } each entry in the subgroup is separated by 6; 4 + 6 = 10 + 6 = 16, … In the next { 1 + 4x } it is a 
separation of 12; 1 + 12 = 13 + 12 = 25, … And if I was a betting man I would wage a guess that the next { 3 + 
8x } is sepatated by 24; 11 + 24 = 35,... with each equation we multiply the difference by an additional 2 
( double it )... 6, 12, 24, 48, 96, … The original 6 in that sequence is the result of 3 * 2. Hmmm, multiples of 3 
and powers of 2! 3 * 2^1; 3 * 2^2; 3 * 2^3; ...

So the third loop looks like this:

-17 – -34 – -68 – -136 – -272
                     |                     |   
                     |                   -91 – -182 – -364 – ...
                     |                                |    
                     |                              -61 – -122 – -244 – ...
                     |                                           |
                   -23 – -46 – -92 – …           -41 – -82 – -164 – ...
                                        |                                           |
                                     -31 – -62 – -124 – …            -55 – -110 – ...  
                                                 |                                             |   
                                              -21 – -42 – -84 – …                -37 – -74 – ...
                                                                                                         |   
                                                                                                       -25 – -50 – -100 – ...
                                                                                                                    |   
                                                                                                                 -17

This loop is a little more involved: { -17 – -50 – -25 – -74 – -37 – -110 – -55 – -164 – -82 – -41 – -122 – 
-61 – -182 – -91 – -272 – -136 – -68 – -34 } 

Also of some interest is the length of these loops and how they appear to relate to the jump points they 
start from:

{ -1 - -2 }  - two steps 
{ -5 – -14 – -7 – -20 – -10 } - five steps
{ -17 – -50 – -25 – -74 – -37 – -110 – -55 – -164 – -82 – -41 – -122 – -61 – -182 – -91 – -272 – -136 – 

-68 – -34 } - eighteen steps

The first loop begins at -1; but you need at least two steps to form a loop so voila you have a two step 
loop. The second loop starting with -5 requires exactly five steps. And the third loop starting -17 requires 
exactly eighteen steps. Now remember the way these trees work, powers of 2 and branching. The first and the 
third loops require one more step than the starting numbers. The second loop only requires the original five 
steps.  This seems very coincidental, doesn't it? Too convenient! Now if I consider that in this case we are 
dealing with negative numbers ( treat the negative sign as direction only; the actual magnitude of the numbers 
are same no matter the sign ) then instead of adding '1' to the step count for the first and third loops I should've 
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indicated that we are actually adding '-1'. -1 + -1 = -2; -17 + -1 = -18.

Generally, I would say since 'three' is prominent in the way this sequence works, we will only find the 
three separate trees with their own single loop. And I would expect that the numbers are distributed evenly 
among the three; with half of that third evenly split between even and odd.

Someone else has already done the statistics that show this to be the case; there are only the three trees 
and they each contain a 1/3 of the entire natural number set. So I'm not going to rehash that here and simply 
accept it.

Do my formulas show a cascading convergence as well:

( 3 ( { -7 + 16x } ) + 1 ) / 2
( -21 + 48x + 1 ) / 2
( -20 + 48x ) / 2
-10 + 24x
-3 + 1 - 8 + 24x
1 - 3 - 8 + 24x
1 - 3 + 8 ( -1 + 3x )
-3 + 8 ( -1 + 3x ) +1

It does cascade to an odd number in the prior level but has 1 added to make it even ( or it ultimately 
jumps to { 0 + 2x } ).

It's a little difficult to explain. Suffice to say we do infact cascade back to the prior level but instead of 
the number remaining odd it has one added to make it even again and thus divisible once more by 2...but this 
actually brings us directly back to the first level { 0 + 2x }. This is holding true for all three of those loops. It 
does appear to be the case in other two trees with the other two loops? I'm going to have to investigate this 
further to see if I can determine what is happening there and explain it in mathematical terms. I will show in 
later sections how I was able to arrive at this conclusion which is true for all three loops.

So, No, they break down and can not show a step by step cascade! In the case of the first tree with the { 
-1 – -2 } loop the cascade is directly to level { -0 + 2x }. The other two trees do the same thing at least 
mathematically as we have shown by working these equations through 3n-1.

I Think we need to look specifically at what is happening at { -1 + 4x } level. It's likely buried but doing
the same cascade to { 0 + 2n } level.

( 3 ( { -1 + 4x } ) + 1 ) / 2
( -3 + 12x + 1 ) / 2
( -2 + 12x ) / 2
-1 + 6x
1 - 2 + 6x
1 + 2 ( -1 + 3x )
-0 + 2 ( -1 + 3x ) +1

It is doing the same thing. There is a hidden cascade to the prior level but it gets lost in translation and is
overidden to first even level { -0 + 2x }. So what this is ultimately saying is that all levels over { -0 + 2x } have 
all their elements cascade directly to level { -0 + 2x }. Luckily there are enough elements in { -0 + 2x} for a 

Collatz Conjecture Explored Page: 19 of 45



one-to-one match with all the elements combined from upper levels. Right?

So we can likely build on that fact like we did before. In this case all levels cascade directly to { -0 + 
2n }. So yes, all odd numbers will be accounted for and as a result all evens. Likewise, if magically have three 
evenly ( 1/3 ) distributed trees; that is 1/3 of all the natural number set falls in each of trees. The same odd and 
even as shown above will hold in each of these three trees as well.

Needless to say it is much easier to show with these three smaller trees that as n approaches infinity it is 
not creating a multi-level cascade that could reach infinity in steps...but instead have only a single cascade 
directly to level { 0 +2n }. So, there is NO situation where this sequence can grow indefinately and no quasi-
counter to use to prove by contradiction like we did above in earlier discussion. I don't think we need to.

It is easily shown after all this that there is one and only one loop for each of the three individual trees. 
The structure dictates that.

The Collatz trees each hold the 4x+1 rule we've seen in the above discussion. -3*4+1 = -11; -23*4+1 = 
-91.

Let's go back to these three subsets outlined above:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, … }

The three loops occur and contain only numbers from the first two subsets... the ones that are not a 
multiple of 3 ( the third subset ). So the first two subsets only. The { -1 – -2 } loop:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, … }

And the { -5 – -14 – -7 – -20 – -10 } loop:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, … }

And the { -17 – -50 – -25 – -74 – -37 – -110 – -55 – -164 – -82 – -41 – -122 – -61 – -182 – -91 – -272 – 
-136 – -68 – -34 } loop:

{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, … }

This makes sense since any row in the Collatz tree that starts with a multiple of 3 is a dead end row that 
can't spawn new branches so the loop items must not venture into that subset.

I wonder if there's a pattern here that me might pick up on if we overlay the three loops each in a 
different color:
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{ 1, 4 ,7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, … }
{ 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, … }
{ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, … }

I wonder what these loops look like in my equations:

{ 0 + 2x }           – 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, ...
{ 1 + 4x }           – 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, ...
{ 3 + 8x }           – 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, 83, 91, 99, 107, 115, 123, 131, 139, 147, 155, ...
{ 7 + 16x }         – 7, 23, 39, 55, 71, 87, 103, 119, 135, 151, 167, 183, 199, 215, …
{ 15 + 32x }       – 15, 47, 79, 111, 143, 175, 207, 239, 271, 303, 335, 367, ...
{ 31 + 64x }       – 31, 95, 159, 223, 287, 351, 415, 479, ...
{ 63 + 128x }     – 63, 191, 319, 447, 575, 703, 831, ...
{ 127 + 256x }   – 127, 383, 639, 895, 1151, 1407, 1663, ...
{ 255 + 512x }   – 255, 767, 1279, 1791, 2303, ...
{ 511 + 1024x } – 511, 1535, 2559, 3583, ...

That's interesting but doesn't tell us much except that the loops are confined to elements from { 0 + 2x },
{ 1 + 4x }, { 3 + 8x } and { 7 + 16x } only; with each loop starting on an element in { 1 + 4x } ONLY.

If I display the above observation in a slightly different fashion I'll be able to point out more easily some
items I mentioned above.

-2 -8 -14 -20 -26 -32 -38 -44 -50 -56 -62 -68 -74 -80
-1 -5 -9 -13 -17 -21 -25

-3 -11 -19 -27
-7 -23

-15

I would like you to note right here that level 2 (1+4x) equation items are not divisible by 4 after 
subtracting 1 ( none of them ); however all upper levels members are divisible by 4 after subtracting 1. This is 
the complete opposite of what I'll show you later for the positive numbers in Collatz where only the members of
level 2 ( 1+4x ) are 4x+1 rule ( all of them ) with no other upper levels having such members.

You can see from the above table that all upper levels ( levels 2 and up ) immediately jump to level 1 
( being even and all ). No cascading appears in these trees.

All three trees ( loops ) can be built using the jump points identified and the 4x+1 rule to glue the 
backbones together. I'm not going to go into any further detail on how all that works. It does though. Be sure to 
use the dual even numbers as explained above for cohension. They are invisible in the structures presented but 
can be drawn in for connectivity.

Section 10 – Exploring the Positive Numbers in the Sequence { 3n-1 ; n/2 }

Much like the previous section, placing the positive numbers in the { 3n-1 ; n/2 } sequence will generate
the exact same three loops only in this case all the numbers are positive and the direction of travel is left and up 
instead of right and up.
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We would use the original set of equation that have not been negatized.

• 0 + 2x     { 0 + (2^1)x }  { (((2^1) / 2) -1) + (2^1)x }
• 1 + 4x     { 1 + (2^2)x }  { (((2^2) / 2) -1) + (2^2)x }
• 3 + 8x     { 3 + (2^3)x }  { (((2^3) / 2) -1) + (2^3)x }
• 7 + 16x   { 7 + (2^4)x }  { (((2^4) / 2) -1) + (2^4)x }
• …
• (((2^y) / 2) -1) + (2^y)x
• …
• (((2^infinity) / 2) -1)  + (2^infinity)x

{ 0 + 2x }  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, …
{ 1 + 4x } 1, 5, 9, 13, 17, 21, ...
{ 3 + 8x }  3, 11, 19, 27, 35 …
{ 7 + 16x } 7, 23, 39, …

Now what does the tree structure look like:

1 – 2 – 4 – 8 – 16 – 32 – …
                  |                |
                  |              11 – 22 – 44 – 88 – 176 – …
                  |                                |                |
                  |                                |               59 – 118 – 236 – ...
                  |                                |                                   |
                  |                                |                                  79 – 158 – ...
                  |                                |
                  |                               15 – 30 – 60 – ...
                  3 – 6 – 12 – ...

This first tree has the loop at the very top left before any branching begins. Keep that in mind for the 
following two loops. Seems this tree does not include 5 so lets start a new tree with 5 as part of the loop:

5 – 10 – 20 – 40 – 80 – 160 – …
                |               |    
                |              27 – 54 – 108 – ...
                |   
                |   
                7 – 14 – 28 – 56 – ...
                        |  
                       5

Seems this loop is { 5 – 14 – 7 – 20 – 10 }. Also note that this being a loop for the second tree does in 
fact start at the top left and works it way down the first possible branch

And finally there is yet a third tree with it's own loop that covers the remainder of ( 1/3 ) of the natural 
counting numbers. And I'm taking an educated guess that it is 16+1 = 17 because the last loop was 4+1 = 5 and 
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the very first loop was just 1. So my thinking was 0+1 = 1 is the { 1 – 2 } loop; 2^2+1 = 5 is the { 5 – 14 – 7 – 
20 – 10 } loop; 2^4+1 = 17 is the next loop. Interesting, ehh? Also note that this loop as well begins at the upper
left and proceeds down the second possible branch. I have not been able to show why this is the case but an 
educated guess would indicate it definitely has something to do with the 0; 2^2 and 2^4. See above for further 
observations on this coincidence.

So the third loop looks like this:

17 – 34 – 68 – 136 – 272
                 |                   |   
                 |                 91 – 182 – 364 – ...
                 |                            |    
                 |                           61 – 122 – 244 – ...
                 |                                      |
                23 – 46 – 92 – …           41 – 82 – 164 – ...
                                  |                                       |
                                31 – 62 – 124 – …           55 – 110 – ...  
                                          |                                         |   
                                         21 – 42 – 84 – …              37 – 74 – ...
                                                                                             |   
                                                                                            25 – 50 – 100 – ...
                                                                                                      |   
                                                                                                     17

This loop is a little more involved: { 17 – 50 – 25 – 74 – 37 – 110 – 55 – 164 – 82 – 41 – 122 – 61 – 182
– 91 – 272 – 136 – 68 – 34 } 

Generally, I would say since 'three' is prominent in the way this sequence works, we will only find the 
three separate trees with their own single loop. And I would expect that the numbers are distributed evenly 
among the three; with half of that third evenly split between even and odd.

Again, someone else has already done the statistics that show this to be the case; there are only the three 
trees and they each contain a 1/3 of the entire natural number set. So I'm not going to rehash that here and 
accept it.

All of the exact same discussion remain true here for a proof as we have shown above in earlier  
sections.

Lets try a couple of the equations to make sure:

( 3 ( { 7 + 16x } ) - 1 ) / 2
( 21 + 48x - 1 ) / 2
( 20 + 48x ) / 2
10 + 24x
3 - 1 + 8 + 24x
-1 + 3 + 8 + 24x
-1 + 3 + 8 ( 1 + 3x )
3 + 8 ( 1 + 3x ) -1

and:
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( 3 ( { 1 + 4x } ) - 1 ) / 2
( 3 + 12x - 1 ) / 2
( 2 + 12x ) / 2
1 + 6x
-1 + 2 + 6x
-1 + 2 ( 1 + 3x )
0 + 2 ( 1 + 3x ) -1

As expected, instead of adding one to get even we subtract 1 to get even and back to level { 0 + 2x }. 
The mechanics are the same.

Also, the 4x+1 rule does NOT hold here as expected. This is the other situation where we need to use 
4x-1. 3*4-1 = 11; 15*4-1 = 59. Mirror images. Think about that.

1 – 2 – 4 – 8 – 16 – 32 – …
                  |                |
                  |              11 – 22 – 44 – 88 – 176 – …
                  |                                |                |
                  |                                |               59 – 118 – 236 – ...
                  |                                |                                   |
                  |                                |                20              79 – 158 – ...
                  |                                |
                  |               04            15 – 30 – 60 – ...
                 3 – 6 – 12 – ...

Remember how I pointed out even numbers could play a dual role in these trees. I've shown two 
examples above. Only in this case it makes use of 4x-1 and 3x-1 rules. 15+1=16/4=4; 4*3=12-1=11. Again, this
is the mollasses that holds the tree together.

Section 11 – Understanding the 'NOT so Random Jumps' Within the Collatz Tree

What appears to be random jumps is actually constrained. Let's explore what is happening at each of my 
equations starting with { 0 + 2x }.

{ 0 + 2x }  2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, ...

In the above illustration I have highlighted in different colors the sequences where you take the first x=2 
and multiply by 2 successively.. 2, 4, 8, 16, 32,... I left the very first number in this sequence un-hilighted which
will come in play later. The next available number is x=6 giving 6, 12, 24, 48, 96, … The next available number
is x=10 giving 10, 20, 40, 80, 160,... And the next is x=14 giving 14, 28, 56, … Then it's x=18 giving 18, 36, 
72, … Obviously there is a distinct pattern here and that is after rooting out all numbers that are multiples of '2' 
of a prior lower number we end up having every second number starting at 6 available for this operation... 6, 10,
14, 18, 22, …. So obviously, every number in this equation will end up in the Collatz Tree. Where it is in that 
tree is unimportant. Half of this set is divisible by at least 4. The other half is only divisible by 2 leading to an 
odd number that will fall somewhere else in the tree. I hope you can accept that.
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Let me show the next few equations expanded out:

{ 1 + 4x } 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, …
{ 3 + 8x } 3, 11, 19, 27, 35, 43, 51, 59, 67, 75, …
{ 7 + 16x } 7, 23, 39, 55, …
{ 15 + 32x } 15, 47, 79, …
{ 31 + 64x } 31, 95, ... 

There is a pattern to how every second base even number in { 0 + 2x } jumps to upper level equations. 
So for the sequence 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, … do the division by 2 and you get 1, 3, 5, 7, 9, 11, 
13, 15, 17, 19, 21, … Obviously 1, 5, 9, 13, 17, 21, … of this list all fall in the { 1 + 4x } equation. Note that 
this list is formed by adding 4 consecutively; 1+4=5+4=0+4=13... I'll be willing to bet that starting at 3 and 
adding 8 consecutively will give us a list that in the { 3 + 8x }... 3+8=11+8=19+8=27... 3, 11, 19, 27, … Then if
we take 7 which is the next available starting sequence you would add 16 consecutively giving 7, 23, 39, 55, … 
which is the { 7 + 16x } equation. The pattern should now be obvious.

Let's explore the cascading level effect starting with the { 3 + 8x } equation. If you pick 3 you will pass 
through to the prior level { 1 + 4x } and that is so. 3*3+1=10/2=5. The same happens to 11...3*11+1=34/2=17. 
And the next 19 does it as well 3*19+1=58/2=29. And it just so happens 5, 17, 29, … are separated by 12 ( 3 * 
4 or 3 * 2 * 2 ). This covers every number in { 3 + 8x }. The exact same thing happens if we investigate { 7 + 
16x }... 3*7+1=22/2=11; 3*23+1=70/2=35; 3*39+1=118/2=59; or 11, 35, 59, … separated by 24 ( 3 * 8 or 3* 2 
* 2 * 2 ). Looking at { 15 + 32x } we see similar 3*15+1=46/2=23; 3*47+1=142/2=71; 3*79+1=238/2=119; 23,
71, 119 are separated by 48 ( 3 * 16 or 3 * 2 * 2 * 2 * 2 ). Pattern has been established. Finally let's look at what
happens with level { 1 + 4x }. We can see from the above that only 5, 17, 29, .. are pass through from upper 
levels. All other points in this equation remain untouched from upper levels leaving 1, 9, 13, 21, 25, 33, 37, … 
Note that all those that are passed through from upper levels reduce to an odd number that is smaller than it 
started at. 5 reduces to 1; 17 reduces to 13; 29 reduces to 11; 41 reduces to31; 53 reduces to 5; 65 reduces to 49,
and so on. This is good because we can prove that given all numbers up to k are proven, then k+1 = 5 ends in a 
number that is less than 5 ( actually 1 ) and this is the case for all of these.

Let's continue on with this trend of thought. 1, 13, 25, 37, … is another sequence separated by 12 in {  1 
+ 4x } that has not been touched from pass through from upper levels. These behave the same way as the pass 
throughs seen above. They all reduce to a number smaller than the starting number; 1 reduces to 1 ( trivial ); 13 
reduces to 5; 25 reduces to 19; 37 reduces to 7; 49 reduces to 37; 61 reduces to 23. So with the same assumption
that for k all lower assume true; k+1 = some number from this list results in a number smaller than k that has 
already been proven.

This leaves the final multiple of 3 sequence ( again separated by 12 ) 9, 21, 33, 45, 57, 69, … And once 
again for the same agruement above all these reduce to numbers smaller than the original. 9 reduces to 7; 21 
reduces to 1; 33 reduces to 25; 45 reduces to 17; 57 reduces to 43; 69 reduces to 13; so if up to k assumed true; 
it is obvious that k+1 ends up smaller than k so it is true as well.

This may be an ackward way to prove all numbers are included and reduce to the trivial loop in the 
Collatz tree. It does seem to work though. That will all become apparent in the below discussion when I start to 
use these building blocks to formulate the proof. 

Section 12 – Putting It All Together (Formulation of a Proof)
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Expanding upon the first few sections in this report, I will show where my set of equations originated 
and this is an important observation in showing that all the natural numbers are contained in the union of these 
subsets.

2 4 6 8 10 12 14 16 18 20 22 24 26
1 5 9 13 17 21 25

3 11 19
7 23

15

Let me draw the above in a format that is a little cleaner to follow, noting that I will skip over all the 
even number not formed by successively adding 6 to 2...

2 8 14 20 26 32 38 44 50 56 62 68 74 80
1 5 9 13 17 21 25 29 33 37 41 45 49 53

3 11 19 27 35
7 23

15

There is a very unique pattern that makes it very easy to see that 'ALL' the natural numbers will be 
included. I've taken away any even number that does not grow 'stacks' back to smaller upper level members. 
This shows the cascading effect I've tried to explain above in other sections. Note how each upper level injects 
it's first member onto the stack resulting from the second member of the previous level. It's next member is is 
injected onto the thrid stack from the previous level...so each new member skips two prior level stacks before 
being injected. That is why I dropped two even numbers before creating stacks. It really jumps out now! Once 
you accept this you can see where my sequence of equations originated. And just in case you don't realize it, the
lowest number in a stack multiplied by 3 and add 1 then divide by 2 give the next up... continue (*3+1)/2 to 
next level up and so on. These are the basic rules for odd/even numbers in Collatz conjecture.

This realization also brought me to the idea that if this goes on toward infinity there should be '1' stack 
approaching infinity! Right? The farther right one goes the longer the stacks can grow. But no prior stack less 
than infinity can be in the same state...the next closest one is one level smaller half way back from infinity 
( infinity/2 ). Think about that for a moment. Remember that each upper level equation has half the members 
the previous one did... hence my halving infinity. This should be enough to show all numbers are infact 
included; it's a complete set.

The very first row of even numbers is 50% of the total natural number set. The second row is an 
additional 25% (¼) of the natural number set... the third is 12.5% (1/8) and so on and so forth. You can also see 
several patterns when written in this fashion. Each set contains only half as many members as the previous set. 
You will also note that starting at row 1; the first available odd numbers missed in prior levels ( even numbers 
row ) start those sets. So the second row uses 1 as its starting number with successive members formed by 
adding 4 over and over. The third row would begin with 3 since it was not already used in the two prior 
rows...and it's members are given by adding 8 successively over and over. The next row begins with 7 and it's 
members are separated by 16. And this continues on. As you can see every number will be used and only 
ONCE. I'm also going to point out that if you pick the first member of any row greater than 1 ( the even 
numbers row ) and apply the (3n+1)/2 rules you will go up one row and to the right! For example (1*3+1)/2=2. 
The next row is (3*3+1)/2 =5. The next row starting with 7... (7*3+1)/2=11; (11*3+1)/2=17. The next is 
(15*3+1)/2=23; (23*3+1)/2=35; (35*3+1)/2=53. That was the important stuff to take forward...
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I've shown above that only 3 loops can occur in the negative counting numbers under 3x+1; x/2 and only
1 loop using the positive counting numbers under 3x+1; x/2. So the existence of a second loop is not possible if 
following the original conjecture using only positive counting numbers under 3x+1; x/2. Two additional loops 
become possible only when using the negative counting numbers under 3x+1; x/2. There are two breakaway 
points, one at -5 and an additonal one at -17. The reasonaing as shown above plays with the -3+1=-2 & 
-3*3+1=-2*2*2 observation. The original loop as unstated would be -1*3+1=-2. As you can obviously see this 
gives rise to -1*3+1=-1*2 & -1*3*3+1=-1*2*2*2. I probably did a better job of showing this above. Needless 
to say the 3 jumping points ( or three loops ) start at -1; -5; and -17. You'll also note that -1+-2*2=-5 and -1+-
2*2*2*2=-17 or -1+-2*2=-3*2+1 and -1+-2*2*2*2=-3*3*2+1. This special state can not occur in the positive 
counting numbers so there is only one loop starting at 1. No other loops can exist. So part one of the proof is 
confirmed...only the main loop exists.

Now I can build the other part of the proof from above observations. I noted that these counting numbers
can be created using an infinite set of sequences; 0+2x; 1+4x; 3+8x; 7+16x; … The first sequence forms all the 
even numbers. The second sequence has half as many members all of which are odd and seperated by 4. The 
third sequence has half as many members as the second sequence with these being separated by 8...and so on 
and so forth.

I also noted that any number you start at would fit in one of the sequences and that as you apply the 
rules you end in the previous sequence stepping through each all the way back to the first. So if you started in 
the 7th sequence you end up in the 6th, then the 5th, 4th, 3rd, 2nd,  and finally1st. But the 1st may not and usually 
does not end there and this brings up to another sequence greater than or equal to 1! And that process continues 
until one reaches the main loop 4-2-1. And this observation is VERY important. No matter what the starting 
number it will cascade down through the second sequence ( 1+4x ) a number of times on it's way to the first 
sequence ( 0 +2x ) where it'll make another jump wherever.

Lets take a closer look at just the even numbers. We know that there's a pattern here too. Check out the 
following:

2 – 1
4 – 2 – 1
6 – 3
8 – 4 – 2 – 1
10 – 5
12 – 6 – 3
14 – 7 
16 – 8 – 4 – 2 – 1 
18 – 9
20 – 10 – 5 
22 – 11 
24 – 12 – 6 – 3
26 – 13
28 – 14 – 7
30 – 15
32 – 16 – 8 – 4 – 2 – 1 
34 – 17
36 – 18 – 9 
38 – 19
40 – 20 – 10 – 5 
42 – 21
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44 – 22 – 11
46 – 23 
48 – 24 – 12 – 6 – 3
50 – 25
52 – 26 – 13
54 – 27
56 – 28 – 14 – 7
58 – 29
60 – 30 – 15
62 – 31
64 – 32 – 16 – 8 – 4 – 2 – 1
66 – 33
68 – 34 – 17
70 – 35
72 – 36 – 18 – 9
74 – 37
76 – 38 – 19
78 – 39
80 – 40 – 20 – 10 – 5
82 – 41
84 – 42 – 21
86 – 43
88 – 44 – 22 – 11
90 – 45
92 – 46 – 23
94 – 47 
96 – 48 – 24 – 12 – 6 – 3 
98 – 49
100 – 50 – 25

As clearly seen above only powers of 2 'even' numbers can reduce directly to 1. example 2^1, 2^2; 
2^3;... or 2, 4, 8, 16, 32, 64, … Now looking at the remainder of this may be critical if you are playing the stats 
game. As you can see from the way I have it drawn... half the even numbers are divisble by 2 only once. That's 
50% of them. Of the 50% that remain a further 50% of them are divisible by an additional 2. So 25% of the 
total natural even numbers are divisible by 4 ( 2*2). And if you take the remaining 25%, half of them are 
divisble by another 2... 12.5% are divisible by 8 ( 2*2*2). 6.25% are divisible by 16; and so on and so forth. I 
do not need any of this even number stuff for my proof though.

Because of the way the the Collatz Tree forms I've noted that the starting odds on the successive limbs 
of any backbone branch are formed by applying (odd*4)+1 to each upper limb. Example 1, 5, 21, … and 
another 3, 13, 53,...

1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 
             |           |                |    
             |           |               21 – 42 - 84
             |           |
             |          05 – 10 – 20 – 40 – ...
             |                   |                 |
             1                  |               13 – 26 – 52 – ...
                                 |                                 |
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                                 |                                17 – 34 – 68 – ...
                                 |                                          |
                                03 – 06 – 12 – …               11 – 22 – 44 – ...
                                                                                     |
                                                                                    07 – 14 – 28 – ...
                                                                                                     |
                                                                                                    09 – 18 – …

So this leads to the obvious next step that I overlooked in my original report and that is that any odd number 
where you can substract 1 and have it evenly divisible by 4 is automatically collapsable to the 4-2-1 loop. For 
example; 21 – 1 = 20 /4 =5. Note that you may be able to continue subtracting another 1 and still have it 
divisible by a further 4. But this is not the norm. So if we know 1 to x (assumed) are true, then x+1 being an 
odd number where x+1 subtract 1 is evenly divisible by 4 is also true. So the 25% of natural numbers in the 
1+4x series are all true as well. Like the even numbers; if we know 1 to x ( are assumed to be true ) then x+1 as 
long as it is even is also true because (x+1)/2 is in the set we already assumed true...that's 1 to x. 

So, we can easily show that all even numbers can reduced to the main 4-2-1 loop knowing that if you 
have already proven 1 to x; then x+1 if it happens to be even has the rule x/2 applied and the result is a proven 
x! We can now bring the above discussion ( for odd numbers ) about what happens if you can subtract 1 and 
have it divisible by 4...and that this will result in a number that falls in the 1 to x already proven. And this is 
good because the original sequences I used to create the counting number sets has a special feature. The second 
sequence 1+4x has all of it's elements being evenly divisible by 4 after subtracting 1. For example ((1+4x)-1)/4 
=x That is the set 1, 5, 9, 13, 17, 21, … None of the other sequences will ever have an element that can do this. 
So the fact that we cascade through all sequences on the way down to the first sequence means we will go 
through the 1+4x sequence...and all elements in that set will automatically bring one to a number that is in the 
proven 1 to x! But this is only true if you start in 1+4x sequence. If you cascade from a higher level through 
1+4x you are by no means proven. In some cases you may have a number that is smaller than the starting 
number and in the assume 1 to x true set, but this is not the norm.

Now, any odd number that falls in ( is a member of ) 1+4x sequence means that it starts proven. So we 
have been able to prove all even numbers ( 50%) & all odd numbers where x-1 is evenly divisible by 4 (25%) 
are Proven. That's 75% total.

If we take the third sequence 3+8x we can show that when it cascades into 1+4x it is close enough that it
will be automatically proven. 

(3(3+8x)+1)/2
(10+24x)/2
(4+6+24x)/2
(4+6(1+4x))/2
2+3(1+4x) now see if it is evenly divible by 4 after subtracting 1...
(2+3(1+4x)-1)/4
(1+3(1+4x))/4
(4+12x)/4
1+3x.

So any odd number that falls in 3+8x sequence will automatically be smaller or in the 1 to x assumed. 
1+3x is smaller than the original 3+8x.

So as seen above any number that falls in 3+8x sequence ( level 3 ) will cascade directly to level 2 
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(1+4x) where it automatically becomes true! The resulting number is smaller than the starting odd and in the 1 
to x assumed. So that's an additional 12.5% which gives us a 87.5% of natural numbers proven.

Let's try doing the same thing to the next two sequences to see if they are close enough as well. That's 
the 7+16x and 15+32x. I'm going to try 31+64x as well because I know that's where it begins to fail. The math 
shows they both are... however 31+64x is not! Nor are any above that.

(3(7+16x)+1)/2 (3(15+32x)+1)/2 (3(31+64x)+1)/2
(22+48x)/2 (46+96x)/2 (94+192x)/2
11+24x 23+48x 47+96x
(3(11+24x)+1)/2 (3(23+48x)+1)/2 (3(47+96x)+1)/2
(34+72x)/2 (70+144x)/2 (142+288x)/2
17+36x 35+72x 71+144x
(17+36x-1)/4 (3(35+72x)+1)/2 (3(71+144x)+1)/2
(16+36x)/4 (106+216x)/2 (214+432x)/2
4+9x 53+108x 107+216x
4+9x<7+16x! (53+108x-1)/4 (3(107+216x)+1)/2

(52+108x)/4 (322+648x)/2
13+27x 161+324x
13+27x<15+32x! (161+324x-1)/4

(160+324x)/4
40+81x
40+81x>31+64x!

I'm going to apply a twist to all levels greater than the third ( 3+8x ). Let's go in the opposite direction. 
First let's look at something special that occurs with a number of the upper level sequences...

Level 1 (0+2x) starts with 2 ( even numbers)
Level 2 (1+4x) starts with 1
Level 3 (3+8x) starts with 3 ( starts with a multiple of 3!)
Level 4 (7+16x) starts with 7
Level 5 (15+32x) starts with 15 ( starts with amultiple of 3!)
Level 6 (31+64x) starts with 31
Level 7 (63+128x) starts with 63 ( starts with a multiple of 3!)
Level 8 (127+256x) starts with 127
Level 9 (255+512x) starts with 255 ( starts with a multiple of 3!)
Level 10 (511+1024x) starts with 511

Any backbone row starting with an odd number that is divisible by 3 ( multiple of 3 ) can not spawn new
backbones. That exactly half of the remaining levels which is clearly the case as seen above. However, just 
because the first member in that level is a multiple of 3 does not mean the others are multiples of 3 too; quite 
the opposite. As we'll see below all upper level equations display the same properties.

Let's start with an odd number from the sequence 7+16x...say 23! Now let's multiply it by 2 and see if 
the result subtract 1 is evenly divisible by 3. If it is, the number is proven because it falls in the 1 to x assumed 
proven and is smaller than the original.

So the sequence starting with 7 has an even division of members into three groups; one where after you 
multiply by 2 you can subtract 1 and have it evenly divisble by 3; one where you must multiply by 4 then 
subtract 1 and it will be evenly divisible by 3 ( but the resulting number is not smaller than the starting! It is 
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however evenly divisible by 4 after subtracting 1! This then makes it smaller than the starting.); and a final 
group that is evenly divisible by 3 ( a multiple of 3 – dead end backbone ) which I can not handle at this time. 
So each group is exacly 1/3 ( 33% ). I can prove 2 of these subgroups meaning 66% are provable.

7 – 14 – 28     ( 28 – 1 = 27 / 3 = 9 ) 9 – 1 = 8 / 4 = 2!
or directly using even number 'duality' 7-1 = 6 / 3 = 2!

23 – 46 ( 46 – 1 = 45 / 3 = 15! )
39 – 78 – 156 ( Multiple of 3; I can't do anything with this yet )
55 – 110 – 220 ( 220 – 1 =219 / 3 = 73 ) 73 – 1 = 72 / 4 = 18!

or duality again 55-1 = 54 / 3 = 18!
71 – 142 ( 142 – 1 = 141 / 3 = 47! )
87 – 174 – 348 ( Multiple of 3!)
103 103-1=102 / 3 = 34 (duality)
119 - 238 238-1=237 / 3 = 79
135 (Multiple of 3)
151 151-1=150 / 3 = 50 (duality)
167 – 334 334-1=333 / 3 = 111
183 (Multiple of 3)

And this pattern in the above listing continues to infinity. I've highlighted the ones I consider 'duality' 
evens and you will note that they increase by exactly 16. The next subset are separated by exactly 32. As you 
can see this goes on toward infinity. This sequence ( 7+16x ) is where 16 and 32 come from. In the first subset 
our node is the key and being the first it reflects exacly 16. The second subset must have the node multiplied by 
2 exactly once to give an even number and those are separated by exactly 32 (16*2). All other levels display 
these same features.

Let's see if the next two levels ( 15+32x ) and ( 31+64x ) do the same thing:

15 (Multiple of 3)
47 – 94 94-1=93 / 3 = 31
79 79-1=78 / 3 = 26 (Duality)
111 (Multiple of 3)
143 – 286 286-1 = 285 / 3 = 95
175 175-1 = 174 / 3 = 58 (Duality)
207 (Multiple of 3)
239 – 478 478-1= 477 / 3 = 159
271 271-1 = 270 / 3 = 90 (Duality)
303 (Multiple of 3)
335 – 670 670-1= 669 / 3 = 223
367 367-1= 366 / 3 = 122 (Duality)

31 31-1 = 30 / 3 = 10 (Duality)
95 – 190 190-1= 189 / 3 = 63
159 (Multiple of 3)
223 223-1= 222 / 3 = 74 (Duality)
287 – 574 574-1 = 573 / 3 = 191
351 (Multiple of 3)
415 415-1 = 414 / 3 = 138 (Duality)
479 – 958 958-1 = 957 / 3 = 319
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543 (Multiple of 3)
607 607-1= 606 / 3 = 202 (Duality)
671 – 1342 1342-1 = 1341 / 3 = 447
735 (Multiple of 3)

They both do and display the exact same attributes. So it is safe to assume that all the other levels 
whether or not they start with multiples of 3, behave in the same fashion. Let's look at the level starting with 
127 ( 127+256x ).

127 – 254 – 508 ( 508 – 1 ) / 3 = 169  (169 – 1) / 4 = 42!
or duality 127-1 = 126 / 3 = 42.

383 – 766 ( 766 – 1 ) / 3 = 255!
639 – 1278 – 2556 ( Multiple of 3 )
895 – 1790 – 3580 ( 3580 – 1 ) / 3 = 1139  (1139 – 1) / 4 = 298!

duality 895-1 = 894 / 3 = 298.
1151 – 2302 ( 2302 – 1 ) / 3 = 767! 
1407 – 2814 – 5628 ( Multiple of 3 ) 
1663 1663-1=1662 / 3 = 554 (Duality)
1919 – 3838 3838-1=3837 / 3 = 1279
2175 (Multiple of 3)
2431 2431-1=2430 / 3 = 810 (Duality)
2687 – 5374 5374-1=5373 / 3 = 1791
2943 (Multiple of 3)

In this sequence/level (127+256x) we see the first subset separated by exactly 256 with the second set 
separated by exactly 512 ( 2*256). Cool.

Just for kicks, let's look at another multiple of 3 level ( 63+ 128x ) to see if it displays the same 
properties.

63 – 126 – 252 ( Multiple of 3 )
191 – 382 ( 382 – 1 ) / 3 = 127!
319 – 638 – 1276 ( 1276 – 1 ) / 3 = 425  (425-1) / 4 = 106!

duality 319-1 = 318 / 3 = 106.
447 – 894 – 1788 ( Multiple of 3 )
575 – 1150 (1150 – 1 ) /3 = 383!
703 – 1406 – 2812 (2812 – 1 ) /3 = 937  (937-1) / 4 = 234!

duality 703-1 = 702 / 3 = 234.
831 (Multiple of 3)
959 – 1918 1918-1= 1917 / 3 = 639
1087 1087-1=1086 / 3 = 362 (Duality)
1215 (Multiple of 3)
1343 – 2686 2686-1=2685 / 3 = 895
1471 1471-1=1470 / 3 = 490 (Duality)

A multiple of 3 equation behaves in exactly the same fashion...they are simply ordered otherwise. 66% 
are easily provable by the same techniques. Immediately above is level ( 63+128x ) with one subset separated 
by exactly 128 and the other by exacly 256. Not a coincidence!

So like I mentioned above 7+16x and 15+32x can be proven in the same fashion as 3+8x because they 
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are within a distance that will allow for it. I do however use both those sequences above to show what happens 
in all upper levels and how three distinct groupings/sets become possible. The numbers are smaller to deal with 
to show this point. Looking at sequence 127+256x you can see how quickly the numbers grow.

So as stated above we've shown that 66% of the members in each upper level sequences ( the ones that 
start with multiples of 3 are simply ordered differently ) by simply applying the rules as shown above; one third 
are simply multiplied by 2 then divisible by by 3 after subtracting 1; another third by multiplying by 4 then 
divisble by 3 after subtracting 1...but can be further reduced by subtracting 1 and have it divisible by 4; the 
remaining third are multiples of 3 and no proof yet.

I now realize that the approach I'm taking by backward traversing to prove by induction can be used to 
prove all numbers that are not multiples of 3; example is multiply by 2 and/or subtract 1 and then divisible by 3.
You will notice that all odd numbers (except multiples of 3) display this feature. We can use this as a second 
method that compliments my first method. As to speak they work hand in hand and prop up one another as an 
even stronger proof concept. Using duality makes this doable and easier to spot.

Snippet one...

5 – 10 – 20 – 40 …
        |                |    
        |               13 – 26 ...         
        |
       3 – 6 ...             

Snippet two...

31 – 62 – 124 – 248 ...
  |                 |   
10              41 – 82 …
                           |  
                          27 – 54 ...

The above two snippets show this concept clearly. By working backwards we have a result number 
smaller than the beginning number. Induction! 5 can easily be reduced to 3. 13 easily reduces to 4 (duality). 31 
easily reduces to 10. I can't believe this has been staring me in the face all this time. My discussion on duality 
made it a reality for me.

Doing the math we have 12.5% remaining to cover off the upper levels but remember that as we go up 
levels the members included are halved. So the levels have the following associated percentages:

Level 1 – 50% (100% provable)
Level 2 – 25% (100% provable)
Level 3 – 12.5% (100% provable)
Level 4 – 6.25% (100% provable)
Level 5 – 3.125% (100% provable)
Level 6 – 1.5625% (66% provable = 1.0417%)
Level 7 – 0.78125% (66% provable = 0.516%)
Level 8 – 0.390625% (66% provable = 0.2604167%)
Level 9 – 0.1903125% (66% provable = 0.1256%)
Level 10 – 0.09515625% (66% provable = 0.0628%)
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and so on ...

So continuing on with the math we can prove 50% + 25% + 12.5% + 6.25%+ 3.125% + 1.0417% + 
0.516% + 0.2604167% + 0.1256% + 0.0628 % giving a grand total of 98.88% . So I am able to prove slightly 
more than 98% of all the natural counting numbers set are provable.

My quandry now is that I can not fashion a method to handle those multiples of 3 instances ( the 
remainder and only case yet to be proven) which account for less than 2%. Wow, that's close. I wonder if 
anyone else has come this close?

I haven't abandoned hope of solving the 'multiple of 3' issue and wish to share what I do know so far. 
The following table contains all the multiples of 3 up to 207. Take note of how I reduce them to provable. I 
have not included any even multiples of 3...examples 6, 12, ...:

3 (3*3+1)/2 = 5 (5-1)/4 = 1 Provable
9 (9-1)/4 = 2 Provable
15 (3*15+1)/2 = 23 (3*23+1)/2 = 35 (3*35+1)/2 = 53 (53-1)/4 = 13 Provable
21 (21-1)/4 = 5 Provable
27 (3*27+1)/2 = 41 (41-1)/4 = 10 Provable
33 (33-1)/4 = 8 Provable
39 (3*39+1)/2 = 59 (3*59+1)/2 = 89 (81-1)/4 = 20 Provable
45 (45-1)/4 = 11 Provable
51 (3*51+1)/2 = 77 (77-1)/4 = 19 Provable
57 (57-1)/4 = 14 Provable
63 Not Provable
69 (69-1)/4 = 17 Provable
75 (3*75+1)/2 = 113 (113-1)/4 = 28 Provable
81 (81-1)/4 = 20 Provable
87 (3*87+1)/2 = 131 (3*131+1)/2 = 197 (197-1)/4 = 49 Provable
93 (93-1)/4 = 23 Provable
99 (3*99+1)/2 = 149 (149-1)/4 = 37 Provable
105 (105-1)/4 = 26 Provable
111 (3*111+1)/2 = 167 (3*167+1)/2 = 251 (3*251+1)/2 = 377 (377-1)/4 = 94  Provable
117 (117-1)/4 = 29 Provable
123 (3*123-1)/2 = 185 (185-1)/4 = 46 Provable
129 (129-1)/4 = 32 Provable
135 (3*135+1)/2 = 203 (3*203+1)/2 = 305 (305-1)/4 = 76 Provable
141 (141-1)/4 = 35 Provable
147 (3*147+1)/2 = 221 (221-1)/4 = 55 Provable
153 (153-1)/4 = 38 Provable
159 Not Provable
165 (165-1)/4 = 41 Provable
171 (3*171+1)/2 = 257 (257-1)/4 = 64 Provable
177 (177-1)/4 = 44 Provable
183 (3*183+1)/2 = 275 (3*275+1)/2 = 413 (413-1)/4 = 103 Provable
189 (189-1)/4 = 47 Provable
195 (3*195+1)/2 = 293 (293-1)/4 = 73 Provable
201 (201-1)/4 = 50 Provable
207 (3*207+1)/2 = 311 (3*311+1)/2 = 467 (3*467+1)/2 = 701 (701-1)/4 = 175  Provable
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As seen in table above ( green rows ) which account for 50% of the multiples of 3 are immediately 
provable ( x-1 ) / 4. You should come to realize that this 50% are contained in my level 2 equation. All the even 
multiples of 3 which I excluded from the above list are with the level 1 equation. Another 25% ( yellow ) of the 
multiples of 3 first have to go through 1 iteration of 3x+1 which will immedaitely be reducable because less 1 is
divisible by 4. These coincide with my level 3 equation. Another 12.5% ( blue ) must run through two iterations
of 3x+1 before becoming candidates for less 1 divisble by 4 evenly. This is my level 4 equation. And finally 
another 6.25% after 3 iterations of 3x+1 become evenly divisible 4 after subtracting 1 ( purple ). These are my 
level 5 equation. Now that totals to 93.75% of the odd multiples of 3 are provable. If we include the even 
multiples in the overall calculation it turns out to be 50% + 25% + 12.5% + 6.25% + 3.125% for a total of 
96.88% are easily provable by the techniques already outlined above. 

Now I list the non-provables in a table where one can note they are separated by 96:

63
159
255
351
447
543
639
735
831
927
1023
1119

What's important to note here are the items I marked red. These are the very first members of my 
equations for those levels that are multiples of 3. Imagine that. You can see that 127 and 511 which are not 
multiples of 3 are not included in this list. 

Taking a look at my equation that starts with 31 will proceed with the following members 95, 159, 223, 
287, 351, 415, 479, 543, 607, 671, 735, 799, 863, 927, 991, 1055, 1119.   If we look at another equation starting 
with 127 we have the following sequence of members 383, 639, 895, 1151, 1407 ... Notice how the multiples of
3 entries found in the non-multiple of 3 equations in upper levels are found in this above list. This is also the 
case for those equations that start with multiples of 3...they are ordered differently but each multiple of 3 
appears in this list too! Example 63, 191, 319, 447, 575, 703, 831, 959, 1087.

We can safely concluded that all the easily provable multiples of 3 fall in those levels 1 to 5 equations. 
And that the remainder of those multiples of 3 are found in upper levels and not easily provable; not proven so 
far.

I've also found another connection that I will point out here ( remember the duality of even numbers ):

Level starting with 31:
31 95 159 223 287 351
(31-1)/3 (95*2-1)/3 Mult 3 (223-1)/3 (287*2-1)/3 Mult 3
10 63 74 191

Level starting with 63. This clearly brings us back to the cascading effect.
63 191 319 447 575 703
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Mult 3 (191*2-1)/3 (319-1)/3 Mult 3 (575*2-1)/3 (703-1)/3
127 106 383 234

Level starting with 127:
127 383 639 895 1151 1407
(127-1)/3 (383*2-1)/3 Mult 3 (895-1)/3 (1151*2-1)/3 Mult 3
42 255 298 767

Does the same thing as above 3 levels with the second member pointing to the first item of the next level
up. There are other observations that I don't think will play a role in the proof. The fifth item points to the 
second of the next level. I wonder if the eigth item will poin to the 3rd in the next level. Lets check:

Level starting with 255:

415 479 543 607 671 735
(415-1)/3 (479*2-1)/3 Mult 3 (607-1)/3 (671*2-1)/3 Mult 3
138 319 202 447

It does and if one continues this the pattern becomes obvious and holds true in all upper levels. I find 
that very interesting, indeed. You can likely see other connections as I do but nothing that will help me with the 
multiple of 3 delima I have.

I wouldn't be surprised if we see this same pattern all the way from the level that starts with 3 (3+8x). I'll
leave that to you to investigate. I do not believe I need it to prove those lower levels since I already have a 
method to do just that. And my quick inquiry does indicate it is! There's all kinds of patterns and connectivty.

With some further pondering, I've decided to reconsider the multiples of 3 in a their own light. The do 
cover 1/3rd of the entire natural counting number set. First, if I look at just the multiples of 3 the following chart 
becomes obvious. These multiples of 3 account for 1/3 of the entire counting number set. Right?

3 6 9 12 15 18 21 24 27 30 33 36 39 (+3)
3 6 9 12 15 18 (x/2)

2 5 8 (x-1)/4

Dividing by 2 will eliminating 50% half of these as automatically provable. These coincidentally 
coincide with my level 1 equation ( 0+2x ). You'll also note that all these are separated by exactly 6; 
6+6=12+6=18+6=24. Half of the remaining are divisible by 4 after subtracting 1. That's another 25%. This is 
my level 2 equation ( 1+4x ). These are separated by 12; 9+12=21+12=33. I might also point out that results all 
seem to be spaced out by exactly 3. For example, after dividing through by 2 we get 
3+3=6+3=9+3=12+3=15+3=18... After doing (x-1)/4 we get 2+3=5+3=8+3=11...

For easier viewing I'm going to elimate that 75% from my next chart as provable.

3 15 27 39 51 63 75 87 99 111 123 135 (+12)
5 41 77 113 149 185 (3x+1)/1
1 10 19 28 37 46 (x-1)/4

You can clearly see that 50% of the remainder are level 3 equation ( 3+8x ) and are separated by 12. As 
seen elsewhere these can be reduced to provable after one iteration of (3x+1)/2 then apply (x-1)/4. The end row 
is separated by 9; 1+9=10+9=19+9=28...
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Let's redraw the remainder:

15 39 63 87 111 135 159 183 207 231 255 279 (+24)
59 131 203 275 347 419 (3x+1)/2
89 197 305 413 521 629 (3x+1)/2
22 49 76 103 130 157 (x-1)/4

These are the level 4 equation ( 7+16x ) and make another 50% of the remaining provable after running 
through two cycles of (3x+1)/2 and one cycles of (x-1)/4. The end row is separated by 27. Now 27 may be an 
interesting coincidence in that starting at that number produces a very long chain. This might prove useful if 
one wishes to try to determine the length of the chains. I'm not interested in that here.

Redrawing the remainder we get:

15 63 111 159 207 255 303 351 399 447 495 543 (+48)
23 167 311 455 599 743 (3x+1)/2
35 251 467 683 899 1115 (3x+1)/2
53 377 701 1025 1349 1673 (3x+1)/2
13 94 175 256 337 418 (x-1)/4

These are level 5 equation ( 15+32x ) and proves a further 50% of the remainder. This is after 3 cycles of
(3x+1)/2 and one of (x-1)/4. Our list is getting pretty small with these first 5 levels removed. Note that the end 
row is separated by 81. Are you beginning to see a pattern with this spacing as we go higher in my equations to 
upper levels. Level 2 ( 1+4x ) has them separated by 3; Level 3 ( 3+8x ) has them separated by 9 = ( 3 * 3 ). 
Level 4 ( 7 + 16x ) separated by 27 = ( 3 * 3 * 3 ). And level 5 needless to say will be 81 as shown above ( 3 * 3
* 3 * 3 ). Cool.

Now we are beginning to step into my realization that is we apply (3x+1)/2 over and over we will reach 
a point where we hit level 2 after a specific number of iterations... and the final step in that at level 2 we can do 
the (x-1)/4. Right? That's the cascade I've been pointing out. What I didn't consider is that the resulting number 
may still be 'even' and further divisible by another (x-1)/4 or simply by 2 or a combination and number of these 
which results in the final number being smaller than the starting number. So what I am saying is if we end up 
with a number that is still larger than the starting number and cannot reduce it further with (x-1)/4 or (x/2)...then
continue to apply (3x+1)/2 until you can start reducing again. My belief is that no matter the number (multiple 
of 3) it can be manipulated into provable in short fashion. Let's take the remainder and start a new chart:

63 159 255 351 447 543 639 735 831 927 1023 1119 (+96)
^ ^ ^ ^ ^ ^
159 351 543 735 927 1119 (+192)

As seen above the same pattern exists for pulling out those entries that are related to the current level we
are investigating. In this case they are separated by 192. So let's start a new chart with just those expanded out:

159 351 543 735 927 1119 1311 1503 1695 1887 2079 2271 (+192)
809 1781 2753 3725 4697 5669 6641 7613 8585 9557 10529 11501 4{(3x+1)/2}
202 445 688 931 1174 1417 1660 1903 2146 2389 2632 2875 (x-1)/4
101 344 587 830 1073 1316 (x/2)
25 111 354 268 597 (x-1)/4
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172 177 415 134 658 (x/2)

As can be seen in the above chart every 4th column is not reducable. The other columns through a 
decernable pattern are reducable well below the starting number. See if you can pick out that pattern yourself... 
So at this point we have shown that ¾ of the multiples of 3 are provable. Let's pull out those that were not and 
start yet another sub-chart:

735 1503 2271 3039 3807 4575 5343 6111 6879 7647 8415 9183 (+768)
931 1903 2875 3847 4819 5791 6763 7735 8707 9679 10651 11623 (prelims)
1397 2855 4313 5771 7229 8687 10145 11603 13061 14519 15997 17435 (3x+1)/2

4283 8657 13031 17505 21779 26153 (3x+1)/2
6425 19547 32669 (3x+1)/2

349 1606 1078 2164 1807 2536 4376 3265 8167 3999 6538 (x-1)/4

Continuation of the above chart:

9951 10719 11487 12255 13023 13791 14559 15327 16095 16863 17631 18399 (+768)
12595 13567 14539 15511 16483 17455 18427 19399 20371 21343 22315 23287 (prelims)
18893 20351 21809 23267 24725 26183 27641 29099 30557 32015 33473 34931 (3x+1)/2

30527 34901 39275 43649 48023 52397 (3x+1)/2
45791 58913 72035 (3x+1)/2

4723 5452 8725 6181 14728 6910 10912 7639 8368 13099 (x-1)/4

Again, it appears that every 4th column do not reduce to provable. Let's pick off the remaining that did 
not reduce to a provable level into a new chart:

1503 4575 7647 10719 13791 16863    19935    23007    26079    29151    32223    35295     (+3072)
6425 19547 32669 45791 58913 72035    85157    98279    111401  124523  137645  150767   (+13122)
1606 8167 14728               21289           27850                  34411     (x-1)/4
803 7364        13925        (x/2)

29321 12251 68687 108053  31934    147419          186785 51617   226151   (3x+1)/2
  15967     (x/2)

7330 27013          46696     (x-1)/4
3665          23348     (x/2)

6753 12904     (x-1)/4
18377 103031      221129  339277   (3x+1)/2
4594      55282  84819     (x-1)/4

     27641     (x/2)
     6910     (x-1)/4

154547  127229   (3x+1)/2
 31807     (x-1)/4

Continuation of the above chart:

38367   41439    44511    47583    50655    53727    56799    59871    62943    66015    69087 (+3072)
163889  177011  190133  203255  216377  229499  242621  255743  268865  281987  295109 (+13122)
40972                  47533                  54094                  60655                  67216                  73777 (x-1)/4
20486          27047       33608 (x/2)

  265517  71300     304833 344249  90983   383615         422981  110666 (3x+1)/2
    35650            55333   (x/2)
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  66379 86062         105745 (x-1)/4
43031 (x/2)

          76208         23436 (x-1)/4
        38104 (x/2)

  99569           136475  575423 (3x+1)/2
  24892   (x-1)/4   
  12446 (x/2)

  204713  863135 (3x+1)/2
  51178 (x-1)/4

Numbers really start reducing in these cycles of (3x+1)/2. We only have every 16th column left 
unproven. I am pretty certain all the above numbers are correct. Hmmm, there seems to be spreading out, 4 in 
the other chart; 16 in this chart. 16 = 4*4. Now if I were to place a bet I would safely assume that if I pulled out 
the leftovers and expanded into a new chart we would find that we would have leftover columns not reducable 
after every 64th column. And the folowing chart would see leftovers after every 256th column; and the next after 
every 1024th column; etc. Wow! Interesting indeed. So we see ¼ leftover after first chart; 1/16th leftover after the
second chart; 1/64th after the third; 1/256th in the fourth and 1/1024th in the 5th. This process continues and shows
that with deductive reasoning, an unproven multiple of 3 simply run through another 3 iterations of (3x+1)/2, 
will likely become provable. Right? Maybe not. So I worked outside this report in a spreadsheet to prove that is 
the case. That was an involved process indeed and placing the results in this report would make it far to long. 
What I found out is that the very next chart with the leftovers expanded will result in a mimimum of 1/64th but it
could be much less like 1/128th ; I decided against trying to find the exact number; the minimum of 1/64th fits 
my theory but I had to run the process through 3 iterations of 3 iterations to reach only 1/64th remaining. That's 
running through 9 iterations of (3x+1)/2. I wonder if this has something to do with 2*2 and 3*3. I believe that 
'3' is important in understanding what is going on but I don't think I need it for the proof. I was able to show that
we approach 100% reducable with more interations of (3x+1)/2. Anyways, I'll archive that spreadsheet or find a
way to place it as an appendix to this report.

It would appear that each time I do a set of (3x+1)/2, I reduce the remaining set by ¾ leaving only a 
quarter. In the next set of (3x+1)/2 I reduce the remaining set to 1/16th. And the next the remaining is reduced to 
just 1/64th;... So we have a situation where as we approach an infinite number of (3x+1)/2 iterations we reduce 
the set to very, very, very, very, very tiny. For all intents and purpose we have proven all these multiples of 3? 
We would have to map out many more numbers in the above chart to show this clearly; that is why I am clearly 
pointing out this observation. At this state of the charting it appears to be what is going on.

So my idea almost played out in that we could apply further (x-1)/4 or x/2 to reduce to make provable in
¾ of the cases. As I've shown, if we apply that last quarter (¼) through multiple iterations of (3x+1)/2 it then 
becomes divisible by 4 after subtracting 1. That's another ¾ easily proven. That leaves a quarter of a quarter to 
prove. It appears that if given enough iterations of (3x+1)/2 one can reduce any multiple of three to an inductive
state! Some of these multiples of 3 are going to consume a very large number of iterations as you can imagine; 
almost enough to consider it a runaway growth cycle. But, if you will notice there is again a decernable pattern 
to all this madness. So even if you do not want to take that last step to having them all provable...you can accept
that ¾ of with an additional 15/16th  of that final ¼ are easily provable. 75% + 23.4375% = 98.4375% total. For 
level 6 (31+64x) we easily show that 66% are provable leaving only multiples of 3. Above we have shown that 
98.4375% of those multiples of 3 are also easily proven. The remainder are a little questionable. So that works 
out to 66.66666% + 98.4375% of 33.3333333% = 66.66667% + 32.81% = 99.48%. So level 6 has 1.5625% of 
the natural numbers...with 99.48% of them easily provable... 1.554%. I'll do the next level 7 immediately to 
show this concept holds in upper levels. If you follow my above reasoning and agreee with the mathematics 
displayed you will notice that we can prove ¾ leaving ¼; of that ¼ we can prove 15/16th of that leaving just 
1/16 to prove; one more itteration set and we prove 63/64 leaving 1/64th  unproven. Can you see that this is 
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approaching 100% provable after a finite number of steps? Now, a little more statistics (with just  shows:

Level 1 (0+2x) is 100% provable for 50% of natural counting number set 50%
Level 2 (1+4x) is 100% provable for 25% of natural counting number set 25%
Level 3 (3+8x) is 100% provable for 12.5% of natural counting number set 12.5%
Level 4 (7+16x) is 100% provable for 6.25% of natural counting number set 6.25%
Level 5 (15+32x) is 100% provable for 3.125% of natural counting number set 3.125%
Level 6 (31+64x) is 99.48% provable for 1.5625% of natural counting number set 1.554%
Level 7 (63+128x) is 99.48% provable for 0.78125% of natural counting number set 0.777%
Level 8 (127+256x) is 99.48% 0.3906% 0.3886%
Level 9 (255+512x) is 99.48% 0.1953% 0.1943%
Level 10 (511+1024x) is 99.48% 0.0977% 0.0972%

For a grand total of 99.886% easily provable! That's 0.11% not so easily provable but I do believe I was able to 
show that they are as well. Do you agree that if I put the full observable from above this number approaches 
100% provable multiples of 3.

63 255 447 639 831 1023 1215 1407 1599 1791 1983 2175 (+192 )
95 671 1247 1823 2399 2975 (3x+1)/2
143 1007 1871 2735 3599 4463 (3x+1)/2
215 1511 2807 4103 5399 6695 (3x+1)/2
323 2267 4211 6155 8099 10043 (3x+1)/2
485 3401 6317 9233 12149 15065 (3x+1)/2
121 850 1579 2308 3037 3766 (x-1)/4

425 1154 1883 (x/2)
30 106 759 (x-1)/4
15 53 577 (x/2)

2369 (3x+1)/2
592 144 (x-1)/4

(3x+1)/2
(3x+1)/2

13 (x-1)/4
3 (x-1)/4

72 (x/2)

Continuation of above chart to show same patterns...

2367 2559 2751 2943 3135 3327 3519 3711 3903 4095 4287 (+192 )
3551 4127 4703 5279 5855 6431 (3x+1)/2
5327 6191 7055 7919 8783 9647 (3x+1)/2
7991 9287 10583 11879 13175 14471 (3x+1)/2
11987 13931 15875 17819 19763 21707 (3x+1)/2
17981 20897 23813 26729 29645 32561 (3x+1)/2
4495 5224 5953 6682 7411 8140 (x-1)/4

    2612 3341 4070 (x/2)
    1488 835 (x-1)/4

1306 744 2035 (x/2)
6743 11117 (3x+1)/2

2779 (x-1)/4
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10115 (3x+1)/2
15173 (3x+1)/2
3793 (x-1)/4
948 (x-1)/4
464 372 (x/2)

This is getting somewhat invloved. I hope you can appreciate that if you end up with unprovables 
simply pass them through (x-1)/4 and (x/2) as many times as needed to reduce to odd and if the number is still 
larger than the start number apply (3x+1)/2 however many times to get it reducable once again using (x-1)/4 
and (x/2). As seen in the above detailed work with level 6 the exact same trends hold in this level. I didn't go 
into as great detail; just enough to show this was the case. It is. So 75% are easily provable with 93.75% of the 
remaing quarter also easily provable, and so on...with 98.4375% of that remaining 1/16th also provable...

I spoke about this aspect in an upper section where I believed that if you apply (3x+1)/2 three times in a 
row you make it possible to extract (x/2) and/or (x-1)/4 a number of times. At that time I wasn't clear how it 
worked in Collatz...but now it is becoming very clear. You can see it is a little involved but the basic premis is 
there.

After having done all the work above I made a discovery that really simplifies proving all multiples of 3,
whether they be even or odd. I think you're going to enjoy this piece since it is so obvious after having done all 
the other research. I'm going to start by putting together several charts I mastered last night:

3 → ((3*3)+1)/2=5; ((3*5)+1)/2=8; 8/2=4; (4-1)/3=1 (sequence starting 3; separation 24)
6 → 6/2=3 (sequence starting 0; separation 3)
9 → ((3*9)+1)/2=14; 14/2=7 (sequence starting 9; separation 12)
12 → 12/2=6
15
18 → 18/2=9
21 → ((3*21)+1)/2=32; 32/2=16
24 → 24/2=12
27 → ((3*27)+1)/2=41; ((3*41)+1)/2=62; 62/2=31; (31-1)/3=10
30 → 30/2=15
33 → ((3*33)+1)/2=50; 50/2=25
36 → 36/2=18
39
42 → 42/2=21
45 → ((3*45)+1)/2=68; 68/2=34
48 → 48/2=24
51 → ((3*51)+1)/2=77; ((3*77)+1)/2=116; 116/2=58; (58-1)/3=19
54 → 54/2=27
57 → ((3*57)+1)/2=86; 86/2=43
60 → 60/2=30
63
66 → 66/2=33
69 → ((3*69)+1)/2=104; 104/2=52
72 → 72/2=36
75 → ((3*75)+1)/2=113; ((3*113)+1)/2=170; 170/2=85; (85-1)/3=28
78 → 78/2=39
81 → ((3*81)+1)/2=122; 122/2=61
84 → 84/2=42
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87
90 → 90/2=45
93 → ((3*93)+1)/2=140; 140/2=70
96 → 96/2=48
99 → ((3*99)+1)/2=149; ((3*149)+1)/2=224; 224/2=112; (112-1)/3=37
102 → 102/2=51
105 → ((3*105)+1)/2=158; 158/2=79
108 → 108/2=54
111
114 → 114/2=57
117 → ((3*117)+1)/2=176; 176/2=88

Starting another chart with the left overs from above chart:

15 → ((3*15)+1)/2=23; ((3*23)+1)/2=35; ((3*35)+1)/2=53; ((3*53)+1)/2=80; 80/2=40; (40-1)/3=13
39 → ((3*39)+1)/2=59; 89; 134; 134/2=67; (67-1)/3=22 ( 2nd column chart 1 )
63 → 
87 → ((3*87)+1)/2=131; 197; 296; 296/2=148; (148-1)/3=49
111 → ((3*111)+1)/2=167; 251; 377; 566; 566/2=283; (283-1)/3=94
135 → ((3*135)+1)/2=203; 305; 458; 458/2=229; (229-1)/3=76
159 → 
183 → ((3*183)+1)/2=275; 413; 620; 620/2=310; (310-1)/3=103
207 → ((3*207)+1)/2=311; 467; 701; 1052; 1052/2=526; (526-1)/3=175
231 → ((3*231)+1)/2=347; 521; 782; 782/2=391; (391-1)/3=130
255 → 
279 → ((3*279)+1)/2=419; 629; 944; 944/2=472; (472-1)/3=157
303 → ((3*303)+1)/2=455; 683; 1025; 1538; 1538/2=769; (769-1)/3=256
327 → ((3*327)+1)/2=491; 737; 1106; 1106/2=553; (553-1)/3=184
351 → 
375 → ((3*375)+1)/2=563; 845; 1268; 1268/2=634; (634-1)/3=211
399 → ((3*399)+1)/2=599; 899; 1349; 2024; 2024/2=1012; (1012-1)/3=337
423 → ((3*423)+1)/2=635; 953; 1430; 1430/2=715; (715-1)/3=238
447 → 
471 → ((3*471)+1)/2=707; 1061; 1592; 1592/2=796; (796-1)/3=265
495 → ((3*495)+1)/2=743; 1115; 1673; 2510; 2510/2=1255; (1255-1)/3=418
519 → ((3*519)+1)/2=779; 1169; 1754; 1754/2=877; (877-1)/3=292 
543 → 

As you can see from the above chart reflected in the two charts below; the next sequence in each will 
immediately reduce through existing columns.And all the remaining upper sequences do the exact same thing 
so I will not bore you with more charting. The two following charts puts it in a compact easy to understand 
package.

From the above chart you can see the multiples of 3 form two distinct charts below. I've simplified that 
in the quick table right below:

2-1 3*1=3 (2nd chart) → 0 ← (first starting sequence for 2nd chart)
1-1 3*4=12 (1st chart) → 9 ←  10  (first starting sequence for 1st chart)
2-2 3*8=24 (2nd chart) → 3 (2nd starting sequence for 2nd chart)
1-2 3*16=48 (1st chart) → 39 ←  40 (2nd starting sequence for 1st chart)
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2-3 3*32=96 (2nd chart) → 15 (3rd starting sequence for 2nd chart)
1-3 3*64=192 (1st chart) → 159 ←  160 (3rd starting sequence for 1st chart)
2-4 3*128=384 (2nd chart) → 63 (4th starting sequence for 2nd chart)
1-4 3*256=768 (1st chart) → 639 ←  640 (4th starting sequence for 1st chart)
2-5 3*512=1536 (2nd chart) → 255 (5th starting sequence for 2nd chart)
1-5 3*1024=3072 (1st chart) → 2559 ←  2560 (5th starting sequence for 1st chart)

It may not be obvious from the first sequence(s) in each chart but they have items/members that are 
automatically provable. In the case of the second chart the first two sequences fit that bill. I've highlighted one 
in red, one in green and the other in blue (above). You can also see that the even multiples of 3 are being 
accounted for in the first column of the second chart – that's because they are also easily proven by simply 
dividing by 2. Right? Just in case that doesn't work for you you'll find that all the even multiples of 3 are found 
in the second chart in the A column. The double lettered columns in each chart are simply the sequences ( first 
half ) with the last half being the result of multiple (3x+1)/2 and x/2 until final (x-1)/3 possible. For example 
take 3; ((3*3)+1)/2)=5; ((3*5)+1)/2=8; 8/2=4; (4-1)/3=1. Using this feature you'll notice that there is a cascade 
of all multiples of 3 through to the first columns which are provable so they are all provable too. Right?

A quick explanation of the following charts in case you didn't immediately see it. The single letter 
columns are arranged so that each column up ( to the right ) is simply 3x+1

A B C D E F G H/I J/K L/M N/O
3 9 27 81 243 729 2187 12/3 48/27 192/243 768/2187

2 7 22 67 202 607 1822 9/2 39/22 159/202 639/1822
5 16 49 148 445 1336 4009 21/5 87/49 351/445 1407/4009
8 25 76 229 688 2065 6196 33/8 135/76 543/688 2175/6196
11 34 103 310 931 2794 8383 45/11 183/103 735/931 2943/8383
14 43 130 391 1174 3523 10570 57/14 231/130 927/1174 3711/10570
17 52 157 472 1417 4252 12757 69/17 279/157 1119/1417 4479/12757
20 61 184 553 1660 4981 14944 81/20 327/184 1311/1660 5247/14944
23 70 211 634 1903 5710 17131 93/23 375/211 1503/1903 6015/17131
26 79 238 715 2146 6439 19318 105/26 423/238 1695/2146 6783/19318
29 88 265 796 2389 7168 21505 117/29 471/265 1887/2389 7551/21505
32 97 292 877 2632 7897 23692 129/32 519/292 2079/2632 8319/23692
35 106 319 958 2875 8626 25879 141/35 567/319 2271/2875 9087/25879
38 115 346 1039 3118 9355 28066 153/38 615/346 2463/3118 9855/28066
41 124 373 1120 3361 10084 30253 165/41 663/373 2655/3361 10623/30253
44 133 400 1201 3604 10813 32440 177/44 711/400 2847/3604 11391/32440
47 142 427 1282 3847 11542 34627 189/47 759/427 3039/3847 12159/34627
50 151 454 1363 4090 12271 36814 201/50 807/454 3231/4090 12927/36814
53 160 481 1444 4333 13000 39001 213/53 855/481 3423/4333 13695/39001
56 169 508 1525 4576 13729 41188 225/56 903/508 3615/4576 14463/41188
59 178 535 1606 4819 14458 43375 237/59 951/535 3807/4819 15231/43375
62 187 562 1687 5062 15187 45562 249/62 999/562 3999/5062 15999/45562
65 196 589 1768 5305 15916 47749 261/65 1047/589 4191/5305 16767/47749
68 205 616 1849 5548 16645 49936 273/68 1095/616 4383/5548 17535/49936
71 214 643 1930 5791 17374 52123 285/71 1143/643 4575/5791 18303/52123
74 223 670 2011 6034 18103 54310 297/74 1191/670 4767/6034 19071/54310
77 232 697 2092 6277 18832 56497 309/77 1239/697 4959/6277 19839/56497

A B C D E F G H I/J K/L M/N O/P
3 9 27 81 243 729 2187 6561 24/9 96/81 384/729 1536/6561
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0 1 4 13 40 121 364 1093 3/1 15/13 63/121 255/1093
3 10 31 94 283 850 2551 7654 27/10 111/94 447/850 1791/7654
6 19 58 175 526 1579 4738 14215 51/19 207/175 831/1579 3327/14215
9 28 85 256 769 2308 6925 20776 75/28 303/256 1215/2308 4863/20776
12 37 112 337 1012 3037 9112 27337 99/37 399/337 1599/3037 6399/27337
15 46 139 418 1255 3766 11299 33898 123/46 495/418 1983/3766 7935/33898
18 55 166 499 1498 4495 13486 40459 147/55 591/499 2367/4495 9471/40459
21 64 193 580 1741 5224 15673 47020 171/64 687/580 2751/5224 11007/47020
24 73 220 661 1984 5953 17860 53581 195/73 783/661 3135/5953 12543/53581
27 82 247 742 2227 6682 20047 60142 219/82 879/742 3519/6682 14079/60142
30 91 274 823 2470 7411 22234 66703 243/91 975/823 3903/7411 15615/66703
33 100 301 904 2713 8140 24421 73264 267/100 1071/904 4287/8140 17151/73264
36 109 328 985 2956 8869 26608 79825 291/109 1167/985 4671/8869 18687/79825
39 118 355 1066 3199 9598 28795 86386 315/118 1263/1066 5055/9598 20223/86386
42 127 382 1147 3442 10327 30982 92947 339/127 1359/1147 5439/10327 21759/92947
45 136 409 1228 3685 11056 33169 99508 363/136 1455/1228 5823/11056 23295/99508
48 145 436 1309 3928 11785 35356 106069 387/145 1551/1309 6207/11785 24831/106069
51 154 463 1390 4171 12514 37543 112630 411/154 1647/1390 6591/12514 26367/112630
54 163 490 1471 4414 13243 39730 119191 435/163 1743/1471 6975/13243 27903/119191
57 172 517 1552 4657 13972 41917 125752 459/172 1839/1552 7359/13972 29439/125752
60 181 544 1633 4900 14701 44104 132313 483/181 1935/1633 7743/14701 30975/132313
63 190 571 1714 5143 15430 46291 138874 507/190 2031/1714 8127/15430 32511/138874
66 199 598 1795 5386 16159 48478 145435 531/199 2127/1795 8511/16159 34047/145435
69 208 625 1876 5629 16888 50665 151996 555/208 2223/1876 8895/16888 35583/151996
72 217 652 1957 5872 17617 52852 158557 579/217 2319/1957 9279/17617 37119/158557
75 226 679 2038 6115 18346 55039 165118 603/226 2415/2038 9663/18346 38655/165118

Note that duality plays an important for even numbers that show up in the above charts and make this all
possible. I should also mention that we can likely create a another two sets of equations something like my 
original ones that may be useful in expanding upon this proof. Those new equations would look very similar to 
mine. I, without realizing it in previous work had stumbled across this without realizing it's full potential. We 
may even be able to make similar charts for the other two subsets... multiples of 3 minus 1; and multiples of 3 
minus two and use those in a proof. I'll leave that up to the reader to explore.

Let's do a visual to fix this idea in place so that you can easily agree with the concept as all 
encompassing for these multiples of 3.

607 – 1214 – 2428 …
  |                         |   
202        ←       809 – 1618 …

              |                                    | 
 67                               539 – 1078 …
  |                                               |   
 22                                          359 – 718 …
  |                                                          |     
  7                                                       239 – 478 …
  |                                                                      |    
  2                                                                   159 – 318 ...

I believe you see it clearly now. This is the case and concept for all multiples of 3. 159 quickly reduces 
to a much smaller number than the starting 159.

So, we were left with a subset of multiples of 3 we could not easily prove with other explored methods 
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previously explored and the route I orininally took became far too cumbersome to use for this proof. I left it 
there as a precursor to why I went this route. The above discussion exclusively dedicated to multiples of 3 
shows that ALL are provable through simple induction because of the cascades through the two charts. The 
column headers have numbers immediately below them which indicate the separation of the sequence elements 
following in those columns. There are very nice patterns there. So having said that the remainder of outstanding
multiples of 3 are previously proven if we consider the charts above and hence the proof is COMPLETE.

Could this be the elusive proof for the remainder of the multiples of 3 I could not prove with the other 
above methods? The end result is once again induction where the end number is less than the starting number 
and thus in 1 to k.

I am not going to go any deeper with the above levels because the numbers are going to get scary large 
quickly. I just wanted to get the concept across. With each additional level we halve the number of elements 
remain and achieve an amazing 100% provable. Actually we were 'approaching' 100% provable. I did not 
believe I could get any closer to proving this conjecture, but as you saw above, once I reconsidered the 
multiples of 3 in it's own subset the proof became obvious and 100% achievable.

It is not worth investigating here but I do wonder if what I last did to prove that small subset of multiples
of 3 can also be used for any number as a more complicated way to a proof. I have a feeling it can. It may be 
worth investigating at some future date.

I believe this is the best part of what is required for a proof! Now to put it in a more 'proofy' format. Or 
can this be considered the proof?

Section 13 - Conclusion

With all the above discussion I have concluded that the original conjecture holds true for all positive 
counting numbers; 100% of them proven. 

 I am not a mathematician so my technical terminology leaves a lot to be desired. But I hope I have 
successfully made my case.

I believe it is possible for others to simplify or improve upon my concepts, but please do give me the 
due credit for my research. It may now be possible to compute the length and largest number reached in the 
chains. This would be something worth looking into at some future date.

It has been a joy working on this 'unsolvable' problem. It's not so unsolvable anymore!

One of my biggest issues worth mentioning is the disemination or dispersal of information into the real 
world. I have these insights but no real way to share them. I now have what I consider to be a complete proof 
with no one to show it to. I must resort to pre-print sites where my information will likely only be shared with 
the world at an expense to me. I have never expected to make any money from this and will never sign over my 
rights to this discovery nor spend my own money to have it published in a journal. That belittles the scholarly 
nature of the work and makes it appear that I bought that recognition. I leave it to my piers to review my work 
voluntarily. There should be a lineup. I believe it is worth their effort since it puts an end to nearly 100 years of 
searching for a proof. This can now be called the 'Collatz Theorem' with my humble contribution to 
mathematics. All I seek is the recognition and the fame; maybe a Nobel Prize in Mathematics...I can hope... 
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