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In een heterogeen oligopolie met perfecte informatie
is de keuze van instrument, prijs of hoeveelheid,
door ondernemingen wezenlijk willekeurig. De
oplossing mag daarom niet van de instrumentkeuze
afhangen. Deze eis van invariantie sluit het Cournot
evenwicht en het Bertrand evenwicht en, meer algemeen,
elk niet-codperatief evenwicht volgens Nash uit als
een geldige, dat wil zeggen op rationeel gedrag
berustende oplossing. Wel in aanmerking komen
oligopolie-modellen met <conjecturele variaties.
Conjecturele variaties hebben veel verwarring
gesticht. Maar als ze op de juiste manier worden
geinterpreteerd, dan blijkt de oplossingsverzameling
niets anders te zijn dan de contract curve, een
cobperatief evenwichtsbegrip. De oplossingsver-
zameling kan worden ingeperkt door een begrip van
economische kracht uitgeoefend door de agenten te
introduceren naar analogie van de zwaartekracht
uitgeoefend door massieve objecten. Dit leidt tot de
conclusie dat het evenwicht wordt gevormd door het
punt waar de gezamenlijke winst, inclusief de winst
van consumenten, maximaal is. In het geval van
prijsnemend gedrag valt de oplossing samen met het
competitieve evenwicht. Bij "prijsmakend" gedrag
hangt de oplossing (mede) af van cardinale eigen-
schappen van de nutsfuncties van de consumenten.
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Abstract

It is argued, in the context of a heterogeneous oligopoly with perfect infor-
mation, that rational behaviour should lead to an equilibrium that is
invariant to the choice of instrument, price or quantity, by firms. The Cour-
not oligopoly and the Bertrand oligopoly fail this test; as both solutions are
considered an example of a Nash noncooperative equilibrium, this result casts
doubt on the appropriateness of the latter concept. The conjectural variations
oligopoly passes the test. A natural consistency condition on the conjectural
variations implies that the solution is in fact the contract (hyper)surface.
The non-uniqueness of the equilibrium can be resolved by introducing a concept
of economic force exerted by agents analogous to the force of gravity exerted
by massive objects. This leads to the conclusion that the joint profit maxi-
mizing point is the equilibrium, where the joint profit includes the profits
of the consumers. The equilibrium depends on cardinal properties of the con-
sumers' utility functions. The emphasis is on the exposition of ideas rather

than on technical detail.

Keywords: Conjectural variation, Contract curve, Force, Game, Nash non-

cooperative equilibrium, Oligopoly.






ON THE THEORY OF OLIGOPOLY
1 Introduction

Oligopoly theory concerns the partial equilibrium analysis of economies
where agents exert some influence on the price of the good (or service) they
sell in an environment of price taking buyers. Usﬁally, the problem is stated
in terms of firms producing and selling goods and households buying and con-
suming those goods, and that is what we shall do here. The fact that firms may
influence the price of the good they sell is thought to derive from their
being few in number. Here, "few" means anything between the polar cases of
only one firm (monopoly, a quite uninteresting case) and of many firms
(polypoly) who all act as price takers.

Ever since Cournot first studied a model with few (in fact two) sellers,
economists have shown a keen interest in the case. One reason is its supposed
empirical relevance: firms often do not seem to act as price takers. But no
doubt, another reason is the intellectual challenge of formulating an apt
description of firm behaviour in such situations. This has proved to be a hard
task, even to the extent that one has come to speak of the "oligopoly problem".
There are several solution concepts which yield different outcomes in general.
That the problem still is very much alive, is evident from the recent outburst
of papers on "consistency of conjectures" (a conjecture being the opinion of
one firm on the reaction of another firm to its own action). Consistency of
conjectures also plays a role in the solution we propose, but it is a dif-
ferent concept of consistency than considered hitherto.

The content of this paper is as follows. In the next section we present
the general features of the model and introduce most of the notation. In order

to provide some background material we review and discuss, in Section 3,
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several well-known noncooperative solution concepts: those of Cournot and
Bertrand, (Chamberlinian) monopolistic competition, Bowley's conjectural
variations oligopoly (including its modern version with consistent
conjectures), and the Nash equilibrium for noncooperative games. In Section 4
we concentrate on the conjectural variations oligopoly as it seems to be the
only solution concept that meets a mild requirement of rationality on the part
of firms. We show that with some natural, simple restrictions on the conjec-
tural variations the set of equilibrium points is the contract (hyper)surface.
A stronger equilibrium concept is needed. The obvious choice is the joint pay-
off (profit) maximizing point (that lies on the contract surface). In Section
5 we suggest a rationale for this choice: the joint pay-off maximum may be
regarded as a stationary point in a field of economic forces in action space.
Application to the oligopoly model requires that the pay-off to consumers and
firms be expressed in the same units. Therefore we describe consumers as pro-
fit maximizers in Section 6. Our formulation is such that in the case of price
taking behaviour by all agents the joint profit maximum is the competitive
equilibrium. If firms are price makers, then the joint profit maximum depends

on cardinal properties of the consumers' utility functions. Section 7 conclu-

des.



2 Assumptions, notation, and terminology

We consider a world with I different, imperfectly substitutable products,
each one produced by one single firm. All consumers are price taking, budget-
constrained utility maximizers. Firms maximize profits. However, firms are not
infinitesimal relative to the size of the market and consequently they have

'some market power; they do not take prices as given.

Let x, be the quantity of product i and Py its price. We employ two
equivalent representations of the demand side in the model. One is a set of
well-behaved, differentiable (ordinary) market demand functions giving quan-

tities demanded as a function of prices:
(2.1) %, =9g.(Py,---, Py) - i=1,...,1,

where we have deleted aggregate consumer income Y from the list of arguments;

this makes it convenient to regard the prices p; as normalized prices
*

(pi:= pi/Y). We define

(2.2) E := [eij] = [alngi/alnpj],

the matrix of (uncompensated) price elasticities of quantities demanded. The
other is a set of inverse market demand functions giving prices offered as a

function of quantities:

(2.3) P, = fi(xl""' xI), i=1,..., 1.
We define
(2.4) D :=

[dij] = [alnfi/alnxj],
the matrix of (uncompensated) quantity elasticities of prices offered. D and E
are inverses of one another.

Both the ordinary and the inverse demand functions are polar cases of the

more general class of mixed demand functions, which have a mixture of prices
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and quantities, one from each pair (pi' xi), as left hand variables. We assume
that these functions exist for all mixtures and that they are differentiable.
(An individual's mixed demand functions have been studied by Chavas (1984).)

For the greater part of the paper, these assumptions on the demand side
are all we need. The implications of optimizing behaviour by consumers do not
play a role until Section 6. There, we will describe consumers as profit
maximizing agents.

Firms maximize profits in two stages. In the first stage firm i minimizes

its production cost for a given but arbitrary production level X, - Minimal

*x
cost Ci is a function of x, and other variables (prices of variable produc-
tion factors, quantities of fixed production factors). These latter variables
are deleted from the list of arguments since they play no role in our partial

equilibrium model. Thus we have

Ci = Yi(xi), i=1,...,1,

*
where Ci i= Ci/Y' By partial differentiation we obtain the marginal cost

functions,

(2.5) MC, := avi/axi, i=1,..., I.
MCi is a positive but not necessarily increasing function of X, -

The profit of firm i can now be written as
(2.6) IIi = pix; - V(%) i=1,..., I

In the second stage each firm determines the quantity and price of its product
such that profits are maximal. By assumption, firms are perfectly informed.
They know the (inverse) demand functions and all cost functions. They behave
rationally. The problem we address is what rational behaviour amounts to in

situations where firms have market power.
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By using the inverse market demand functions (2.3) all firms can formulate
their decision problem as one of choosing the volume of production.
Alternatively, they can all formulate it as one of choosing their product
price by substituting the market demand functions (2.1) for Xy in the profit
definition (2.6). There also is a number of intermediate cases where some
firms use quantity and other firms use price as instrument; these formulations
involve the use of mixed demand functions. These are all informationally
equivalent versions of one and the same problem.

Two assumptions are crucial in reducing the dynamic real life decision
problem full of uncertainty that firms face to the static mathematical problem
without uncertainty that we study. One assumption is that information is
costless, or that the speed of information is infinite; the other is that
adjustment is costless, or that the speed of adjustment is infinite.

In drawing the logical conclusions from these assumptions we must stay
within the confines of the model. This means that we cannot study processes,
for processes take time and there is no real time in our model. Nevertheless,
in thinking about the oligopoly problem one is naturally led to perform
thought experiments involving the reaction of some firm to the action of
another firm. Therefore terms like "conjectural variation" and "reaction func-
tion" occur in the literature on the oligopoly problem. These terms are
misleading because of their dynamic flavor. Actually all we can do is study
states of nature. In particular, we are interested in the existence of states
with certain desirable properties, called "equilibria". This requires the sta-
tement of equilibrium conditions based on the premise that firms are rational

profit maximizing agents. To this we now turn.
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3 Some noncooperative equilibrium concepts

In this section we review several well-known noncooperative equilibrium

concepts and make a number of comments on thenm.

3.1 Cournot oligopoly

Cournot considered an oligopoly with one homogeneous good and assumed that
each oligopolist chooses his production level taking the gquantities of his
rivals as given. We shall designate the natural generalization of this model
to a world with differentiated products by Cournot oligopoly. Under the
assumption of "quantity taking" we can easily derive the first order condition
for a profit maximum of firm i by substituting the inverse demand function
(2.3) into the profit definition (2.6) and then taking the partial derivative

with respect to X,. We can rewrite the resulting expression to

(3.1) MC, =p. (1+4d.), i=1,..., I

Under certain appropriate regularity conditions a (possibly unique) solution

to equations (2.3) and (3.1) exists, see Friedman (1977).

3.2 Bertrand oligopoly

Bertrand criticized Cournot by arguing that firms choose prices rather
than quantities, taking the prices of their rivals as given. We shall
designate the natural generalization of this model to a world with differen-
tiated products by Bertrand oligopoly, while acknowledging the contribution of
Edgeworth.

Under the assumption of "price taking" we can easily derive the first
order condition for a profit maximum of firm i by substituting the (ordinary)

demand function (2.1) into the profit definition (2.6) and then taking the
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partial derivative with respect to p;- We can rewrite the resulting expression
to

(3.2) MCi = pi(l + eli),

Again, under certain regularity conditions a (possibly unique) solution to

equations (2.1) and (3.2) exists.

3.3 Monopolistic competition

Chamberlin added an element of the theory of monopoly -the assumption that
firms may set the price of their own product- to the theory of perfect com-
petition -where firms are small and many- to obtain the theory of monopolistic
competition. Presumably, product differentiation is the feature that bestows
consistency upon this model. It does not belong to the theory of oligopoly
proper but to the more general field of imperfect competition. We discuss it
here for later reference.

The assumption that firms are small and many allows one to ignore the
income effect of a single price change because it has the order of magnitude

of 1/I. Thus one obtains the equilibrium conditions

*x -1 .
(3.3) MC, =p, [1+ (e,) ], i=1,...,1,

*
where e  is the compensated price elasticity of quantity demanded. The formal
ii
derivation proceeds by substituting the compensated (ordinary) demand function
into the profit definition and then taking the partial derivative with respect
to pi.
Usually, compensated demand functions of the following special form are

postulated in the model of monopolistic competition:



(3.4) X, = ci(x, pi/p), i=1,...,1I,

where x is total (industry) demand and p is the price of the composite good.
Dixit and Stiglitz (1977) take x to be a Constant Elasticity of Substitution
(CES) function with parameter 0. In that case (3.4) specializes to

(3.4") x, = x.(pi/p)_o, i=1,...,1,

with p a CES function of the individual prices p;- However, in deriving the
first order condition for a profit maximum of firm i they neglect the effect
of p; on p. Thus they obtain

-1
(3.5) MC, =p.(1-0").

In comparison to (3.3) another term with order of magnitude of 1/I has been

ignored.

Bertrand oligopoly and Cournot oligopoly are dual versions of one another.
Although it does not occur in the literature, there also exists a dual version
of Chamberlinian monopolistic competition, a version where firms use quantity

as instrument instead of price. The first order conditions for an equilibrium

then read
3.6 MC 1 * i 1
( . ) i -pi( +dii), 1= FACEE

*
where dii is the compensated quantity elasticity of price offered. A special

form of the compensated inverse demand functions analogous to (3.4) is

(3.7) P; di(p, xi/x), i=1,..., I.

If we take p to be a CES function with parameter T = 1/0, then

p.(xi/x)_llo, i=1,...,1I.

(3.7") py

Neglecting the effect of X, on x we obtain the equilibrium conditions (3.5).

This is a remarkable result.
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3.4 Conjectural variations oligopoly

According to Bowley, firms take the impact of their actions on their
rivals' actions into account. Mathematically this means that we obtain the
appropriate first order conditions for profit maximization by taking total
rather than partial derivatives. In case firms use quantity as instrument we

can write these conditions as

i
(3.8) Mci = pi(l + sii)
i .
—pi(l+§dijxji)’ i=1,..., 1,

where X;i = (dlnxj/dlnxi)i. In accordance with the usual parlance in the
literature on oligopoly we may call X;i (i, 3 =1,..., I) the (quantity-quanti
ty) conjectural variation elasticity: it is the relative change in the quan-
tity produced by firm j that firm i (superscript) thinks is induced by an
infinitesimal relative change in its own quantity.

In case firms use price as instrument the first order conditions take

the form

i -1
(3.9) MC, =p.[1+ (€],) ]

i
ji

-1
p,[1 + (§ e 4050 1 i=1,..., 1,

where ¢§i = (dlnpj/dlnpisi. We may call ¢§i the (price-price) conjectural
variation elasticity: it is the relative change in the price charged by firm j
that firm i thinks is induced by an infinitesimal relative change in the price
it charges for its own product.

There also is a number of intermediate cases where some firms use quantity
and other firms use price as instrument. If we want to (but we don't), we can

write down the appropriate first order conditions by making use of mixed
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demand functions. The expressions would involve price-quantity and quantity-

price conjectural variation elasticities.

A problem that has puzzled economists for a long time, is: how are the conjec-
tural variation elasticities to be determined? In the (apparent) absence of
any clear guiding principle -it is not obvious which functions are being
differentiated- the students of the oligopoly problem have frequently resorted
to the assumption of these elasticities being zero, thus essentially falling
back on the concept of Cournot oligopoly (or Bertrand oligopoly, as the case
may be). Recently however, several authors have suggested that the conjectural
variations must satisfy some consistency condition; see Bresnahan (1981),
Laitner (1980), Perry (1982), and Kamien and Schwartz (1983). Below we point
out the sense in which, according to these authors, the conjectural variations
should be consistent.

Condition (3.8), which states that in equilibrium for each firm marginal
cost equals (perceived) marginal revenue (MR), can be thought of as an impli-
cit function giving x, in terms of the other quantities. Let ri be the func-

tion that solves (3.8) for X, in terms of those quantities:

(3.10) X, = ri(xl,..., X , X,

i+17° xI) solves (3.3),

i-1

for i = 1,..., I. The function r, is usually called the reaction function of
firm i. From (3.10) it follows

dlnxi Z alnri ' dlnxk

dlnxj k#i 9lnx dlnxj

MC.= MR, k
1 1

According to the authors mentioned above, conjectures are consistent if
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dlnx,
i

(3.11) xgj =
dlnxj

MC.= MR,
i i

A solution to the set of equations (3.10) -or equivalently, (3.8)- and (3.11)
is called a consistent conjectures equilibrium (provided, of course, that the
second order conditions for profit maximization are fulfilled). For special
cases of the (inverse) demand functions and marginal cost functions such an

equilibrium has been shown to exist, see Bresnahan (1981).

3.5 Nash equilibrium

The final solution concept we consider has its origin in game theory: the
noncooperative equilibrium according to Nash. Each player i (i =1,..., 1)
chooses an action ai from his action possibility set Ai such that the value of

his pay-off or utility wi,

(3.12) wi = wi(al,..., aI),

is as high as possible. The players are in a situation of interdependence
because the outcome for each player in general depends on the actions taken by
other players as well as on his own action. Each player i decides on his
action a, without communicating with other players, but fully informed about

the action possibility sets and preferences of all players. A Nash non-

* *
cooperative equilibrium al, -, a. is defined by

I
313 x * *
(3:13)  wi(a,.... a;,..., &) =
M * *
= Max wi(al,..., al, , aI), i=1, , I

Johansen (1982) has argued that the Nash noncooperative equilibrium is a

fundamental solution concept in situations of noncooperative interaction: if
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we take for granted that there is a natural solution concept in such
situations, then it must be the Nash noncooperative equilibrium; it incor-

porates fully rational behaviour on the part of each player:; player i must

consider all the decisions ay,--- A simultaneously when deciding on his own
L. * *
action a, i.e. he must consider the full problem of determining aj,-.-, ar

according to the conditions of definition (3.13).

There are two obvious ways in which the concept of Nash equilibrium can be
applied to the oligopoly problem. In both versions, the pay-off for firm i
is identified with its profit. In one version, a decision is identified with
the choice of quantity by each firm; in the other, a decision is identified
with the choice of price by each firm. (There also is a number of intermediate
cases where some firms choose a quantity and other firms set a price for their
product.)

Note that the definition of a Nash equilibrium given above is not for-
mulated in terms of a set of I equations, one for each firm, representing the
first order conditions for profit maximization. The decision situation in
which the players find themselves is described by Van Neumann and Morgenstern
as follows: "Thus each participant attempts to maximize a function of which he
does not control all variables. This is certainly no maximum problem, but a
peculiar and disconcerting mixture of several conflicting maximum problems.
Every participant is guided by another principle and neither determines all
variables which affect his interest. This kind of problem is nowhere dealt

with in classical mathematics." In the next subsection we shall return to this

point.
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3.6 Discussion

Many authors give misleading explanations of what a Nash noncooperative
equilibrium is; for a sample of quotations, see Johansen (1982). Frequently,
it is simply stated that a Nash equilibrium is a set of decisions in which
each player's decision is optimal given the decisions of all other players.
But player i does not know the actions of the other players. He only knows the
action(possibilify sets and the pay-off functions, and he must figure out what
the other decisions will be. Whatever the appropriate wording is, in the
differentiable case (3.13) is mathematically equivalent to a definition in
terms of first order conditions obtained by partial differentiation of each
player's pay-off function with respect to his decision variable. Thus, in the
case of quantity (price) setting oligopolists, one arrives at the Cournot
(Bertrand) solution which may then be called the Cournot (Bertrand)-Nash
equilibrium.

Now, by assumption all firms have full knowledge of the (inverse) demand
functions and thus they are able to translate any price strategy into a quan-
tity strategy, and vice versa. Hence the choice of instrument is essentially
arbitrary. Therefore, a minimal requirement of rationality (on the part of
each firm) would seem to be that the solution is the same, no matter whether
firms use quantity or price as instrument. If a Nash equilibrium assumes fully
rational behaviour by firms as Johansen (1982) argues it does, then it must
fulfill this requirement. But a Cournot oligopoly and a Bertrand oligopoly are
not equivalent, i.e. their equilibrium points do not generally coincide.l In
our view, the most objectionable feature of the Cournot and Bertrand oligopoly

is this dependence of the ensuing equilibrium on the arbitrary choice of

instruments.

1see Hathaway and Rickard (1979).
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In Section 3.3 we have encountered an example of equivalence of the price
and quantity version of monopolistic competition, but that result holds only
approximately for a special form of the (compensated) demand and inverse
demand functions.

Now we have seen that the Cournot and Bertrand solution -and, more
generally, every Nash noncooperative equilibrium- must be discarded, we. are
faced with the question how to obtain a set of first order conditions for pro-
fit maximization that corresponds to rational behaviour.

The natural route is to take the total derivative of each firm's profit
function with respect to its own decision variable. This possibility
corresponds, of course, to the conjectural variations oligopoly in its various
forms. For one thing, we observe that this class of models is rich enough to
meet the requirement that the solution to the output game coincides with the
solution to the price game. In the case of a duopoly, this requirement leads
to the following relation between the price-price and quantity-quantity con-

jectural variation elasticities:

] b 3 C
.14 s = - L. 97 s . 97.), p =1, 2.
(3 ) le (elj e ¢13) / (eJJ + eJ1 ¢lj) i, j 1, 2
It follows from equating the right hand sides of (3.8) and (3.9). A similar
derivation in the case of more than two firms fails because of the abundance
of the number of conjectural variation elasticities relative to the number of

equality restrictions. But by using the fact that D and E are inverses of one

another, we can easily prove that the obvious generalization of (3.14),

i j j oL
(3.15) Xiy = % ey ¢2j / % ) ) 57 i, 3 =1,..., 1,

continues to guarantee the equivalence of the price and quantity version of

the game.
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Some students may argue, like Daughety (1985, p. 374) does, that there is
no place for (non-zero) conjectural variations in a static model. They are
wrong. There is nothing inherently dynamic in the mathematical concept of a
derivative, be it a partial or a total derivative.

That non-zero conjectural variations need not, indeed cannot be ruled out
a priori is evident from (3.14) and (3.15), which show that generally to zero
conjectural variations in price space there correspond non-zero conjectural
variations in quantity space. Of course, the converse holds good as well.

Confining ourselves to conjectural variations oligopolies we face the
problem of determining the conjectures. Do natural restrictions exist that
these conjectures must obey? Preferably, such restrictions (if there are any)
must imply the equivalence of the various (price, quantity, mixed) versions of
the game. One possibility that comes to mind is the assumption of consistency
set out in Section 3.4 above.2 We regard this solution as unsatisfactory for
reasons to be explained in the next section.

So far we have not paid any attention to two well-known models,
Stackelberg's leader-follower oligopoly and Sweezy's kinked demand curve oli-
gopoly. In the latter case, a specific asymmetry is introduced in firms' con-
jectures: competitors are assumed to follow a price cut but not to follow a
price increase at all. In the former case, firms may be followers, taking the
quantity (price) of their rivals as given, or leaders, assuming that their
rivals are followers and exploiting this to their advantage. In both cases,
arbitrary assumptions are made about the conjectural variations.3 In our opi-

2In the duopoly case Salant (1984), confining his attention to quantity-
quantity and price-price conjectures that yield the same outcome, showed that
to a consistent conjectures equilibrium in quantities there corresponds a
consistent conjectures equilibrium in prices, and vice versa. Of course, this
does not prove that consistency (of conjectures) implies equivalence (of the
price and quantity version).

31In the Stackelberg oligopoly the arbitrariness is frequently shifted one
stage back by postulating a size distribution of firms (which actually is
endogeneous) and linking size with behaviour, assuming large firms to be
leaders and small ones to be followers.
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nion, however, the (properties of the) conjectures must be derived as part of
the solution to the oligopoly problem rather than assumed a priori.4 To this we

turn in the next section.

4Stigler (1964, p. 44) takes a similar position when he writes: "A satisfac-
tory theory of oligopoly cannot begin with assumptions concerning the way in
which each firm views its interdependence with its rivals. If we adhere to
the traditional theory of profit maximizing enterprises, then behaviour is no
longer something to be assumed but rather something to be deduced."
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4 Consistent conjectural variations

We continue to explore the properties of the conjectural variations oligo-
poly on the assumption -for which we see no alternative- that the solution to
the oligopoly problem is a member of this class of models. Thus, with wi =
wi(al,..., aI) the pay-off function of player i, the first order conditions
for a pay-off maximum are
(4.1) 0, = § wija;i =0, i=1,..., 1,
where d;i = (daj/dai)i. This corresponds to (3.8) when firms use (the
natural logarithm of) quantity as instrument; more generally, a, may be either
ln(pi) or ln(xi). We shall also consider the cross derivatives of one player's
pay-off function with respect to the action of some other player, as conjec-
tured by a third player. In general we have

al

) .
(4.2) w = § LIC o i, k, &, =1,..., I,

where d?k is the conjecture of firm £ on the reaction of firm j to an action
of firm k. There are I® such conjectures, I? of which (the a?j) are equal to

one.

As we assume that players behave rationally, it is natural to impose the

restrictions that conjectured total derivatives equal actual total derivatives:

2 J .
(4.3) ajk = djk = qjk' ik, 2=1,...,1,

. , L

implying wik = wik for all i, k and £. This reduces the number of (as yet)
unknown action-action derivatives to I?® - I. But then, if the ajk are total
derivatives they have all properties of total derivatives. In particular,

there holds
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(4.4) aikakj = aij' i, 3, k=1,..., 1,

which simply is the chain rule for differentiation. These relations reduce the
number of independent interesting action-action derivatives to I - 1.

The observation that in equilibrium the (actual) reaction coefficients
aij obey the relations (4.4) is a simple but crucial step in our analysis. The
rest is a matter of elementary mathematics (mainly linear algebra).

We start by noting that (4.1, 4.3-4) imply that in equilibrium all (cross)
derivatives wi

are equal to zero. For wi = wiia’

k ik
(both aik # 0 and) wii # 0, contradicting (4.1). Defining W = [wij] and

K , and wik # 0 would imply

A = [dij] we can compactly write all these equations as
(4.5) WA = 0.

But since (4.4) implies that the matrix A has rank one, it suffices to consider

anyone of the following sets of I equations:

(4.6) Wa, =0, i=1,...

3]
equation of the i-th set. Thus (4.6) is nothing but a set of I equivalent

where di is the i-th column of A. Multiplying W.. = 0 by qji yields the j-th

representations of the first order conditions (4.1).
Now observe that for given W, wai = 0 is a set of I linear equations in
I - 1 unknowns (dii = 1). The existence of a solution requires that the coef-

ficient matrix is singular, implying that its determinant equals zero:
(4.7) |w|=o0.

In fact, we shall assume that in equilibrium the rank of W is I - 1, and that
each of its submatrices wii' obtained by deleting the i-th row and column, has

full rank I-1. This guarantees the uniqueness of the solution for Gi, given W.
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In order to see more clearly the meaning of (4.7), delete the i-th
equation from wai = 0 and solve the reduced system for aji’ j # i. Let wi(—i)

be the i-th column of W without element i, and let qi(-i) be defined

analogously. The solution is

-1
(4-8) Ay gy = ~(Wgy) 7wy gy

*
Writing out the right hand side of (4.8) we see that (withl wij | the cofactor

of w,.)
ij

*

*
(4.9) a =|w | /|w_ |, i, 3=1,..., I.

ji ij
Substitution of (4.9) for aji into the equation deleted at the outset and

*
multiplication by Iwii | yields

*

; | = o, i=1,..., I

(4.10) ? wijl W,
The left hand side of (4.10) simply is the determinant of the matrix W
expanded in terms of the elements of row i and their cofactors, and so (4.10)
represents I equivalent versions of the condition |W| = 0.

This derivation shows that the restrictions (4.3-4) imply that in
equilibrium each of the first order conditions (4.6) collapses to the same
relation. All points on the surface defined by] w] = 0 satisfy the first order
conditions. In general, there is no unique solution to the equilibrium con-

ditions considered until now.

A geometric interpretation helps to further clarify what we have derived
sofar. Let us consider an isopay-off surface in action space for player i,

defined by wi = c(onstant). Along such a surface there holds
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(4.11) Y w._. da: = o0, i=1,..., 1,
rRES I

which is equivalent to "the" first order conditions (4.1) for a pay-off maxi-
mum. Through a point on the isopay-off surface there is a hyperplane tangent
to the surface at that point. The condition (4.11) stipulates that the vector
dai lies in a tangent hyperplane to some isopay-off surface of player i. Our
consistency conditions (4.3-4) simply amount to the requirements da; = da,
i=1,..., I, (4.11) then states that for a point to be an equilibrium, there
must exist at that point some joint infinitesimal variation of actions that
leaves each player's pay-off unchanged. In general, the I tangent hyperplanes
through a point (one for each isopay-off surface) have only the point con-
cerned in common. The geometric interpretation of the restrictions (4.3-4) is
that we confine attention to points where the tangent hyperplanes have (at
least) a straight line in common. In the case of two players this implies that
the two tangent lines must coincide, which occurs at points of tangency be-
tween the isopay-off curves of the two players. These points form a curve which
is analogous to Edgeworth's contract curve. Therefore we shall call the
(hyper)surface defined by the equation| W| = 0 the contract surface.

The case of two players can be illustrated diagrammatically with a figure
well-known from textbooks on microeconomic theory, e.g. Koutsoyiannis (1975,
P. 221 or 234). Figure 1 is adopted from this source. It shows isopay-off
curves for both players, the curves of the pay-off for player i being concave
to the ai-axis. The closer the curve is to the axis, the higher the pay-off.
The curve Mle traces out the points of tangency between the isopay-off curves
of both players: it is the contract curve. Also shown are the reaction curves
for the case that the players are naive in the sense that player i assumes
that aji (i # i) equals zero, for i, j = 1, 2. The reaction curve for such a

player is given by Wiy = 0 (for quantity setting (price setting) oligopolists
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this is the Cournot (Bertrand) assumption). The intersection R of the reaction
curves is the "equilibrium" point, given that the players behave in this
suboptimal way. The points S1 and S2 are the Stackelberg "equilibria" of the
game: the leader or sophisticated player has determined his optimal action by
finding the point of tangency between one of his isopay-off curves and the
reaction curve of the follower or naive player. Again, these points represent
equilibria only under the particular behavioural assumptions mentioned, which
impose suboptimal behaviour on one of the players.

For the sake of concreteness, assume that the isopay-off curves for player
i form a set of concentric circles with center Mi, i =1, 2. All points on the

straight line through Ml and M, satisfy the first order conditions (4.6).

2

However, at points on the line but outside the segment M1M2 the second order
conditions are not fulfilled: at those points the pay-off for one player is at
a minimum given the pay-off for the other player. Henceforward, we shall
reserve the term contract surface for the set of points where both the first
order and the second order conditions are met with. In the present case the
contract curve is the line segment MIMZ'

The generalization to cases with more than two players is straightforward.
Let there be three players, where the isopay-off surfaces for each player i
form a set of concentric balls with center Mi’ The contract surface now is the
triangle M1M2M3. With four players, the contract (hyper)surface is a tetra-
hedron (something we can still imagine), and so on (beyond imagination).

We now return to the concept of consistency defined in Section 3.4,
equation (3.11). For simplicity's sake we consider a duopoly. Note that (3.11)
applied to one player (the first, say) separately is a tangency condition:

Firm 1 equates the marginal rate of substitution daz/dal along some isopay-off

curve with the marginal rate of substitution along the reaction curve of Firm
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2. The solution may be called a generalized Stackelberg "equilibrium®, the
generalization being that the second firm's conjectural variation need not
equal zero (but is known to the other firm). Of course, for a given pair of
conjectural variations there are two generalized Stackelberg "equilibria" that
do not in general coincide. The exception occurs when each firm's reaction
curve coincides with the contract curve. Then both firms search in vain for a
point of tangency with one of their isopay-off curves, and the whole contract
curve remains as the collection of candidate equilibrium points.

From the analysis in this section we conclude that rational behaviour in
our game with full information and instantaneous adjustment is cooperative
behaviour. The same result has been obtained for infinitely repeated games,
but we have derived it for the one-shot oligopoly game that is being played
only once, by simply imposing the almost self-evident requirement that the
solution be invariant to the arbitrary choice of instrument. On closer
scrutiny, the result is not as unexpected as it may seem at first sight. In
Section 3 we have reviewed a number of noncooperative "solution" concepts,
uncritically accepting that they are applicable to the problem at hand. Now,
the distinguishing features of a noncooperative game are that the players 1.
may not communicate, and 2. cannot make binding contracts. But in a world with
perfect information there is no need for communication, and if moreover
adjustment is instantaneous, then there is no need for contracts either. So

these two restrictions on the players' behaviour are not binding.
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5 Joint profit maximization and economic forces

As the contract curve Mle in Figure 1 is the locus of points where the
isopay-off eurves of the players are tangent and where the second order con-
ditions are fulfilled, a movement along the curve necessarily means that while
the pay-off to one player is increased, the pay-off to the other player is
lowered. But consider any point off the contract curve, for example R; By
following the isopay-off curves through R we see that the pay-off to one
player may be increased while holding constant the pay-off to the other
player. Thus at all points off the contract curve there are untapped possibi-
lities for pay-off increases.

This discussion implies that the point (or points) where the joint pay-off
w = wl + w2 reaches a (or its) maximum, is a point on the contract curve. It

is quite easy to prove this mathematically for the general case of I players.

The first order conditions for a joint pay-off maximum are

(5.1) w/da; = § Wi =0, i=1,..., I.

With 1' a row vector of ones we can state these conditions as
(5.2) 1'W = 0.

*

At a point a in action space where these conditions are satisfied, the matrix
, *

W is singular. Hence a 1is a point on the contract surface. This result also

holds true if the joint pay-off is not the simple sum but some other function

of the individual pay-offs, in which case we must replace 1' by the row vector

of first partial derivatives of this function with respect to its arguments.

Now, why is it that we do not find just one "equilibrium" point or only a few
but a whole continuum of them? Let us return to Figure 1 and give it another

interpretation. Point M, represents the earth and point M

1 represents the

2
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moon. These celestial bodies are surrounded by a gravity field. The curves
centered at M1 connect the points where the potential function of the field of
the earth takes the same value. At each point in the field, the gradient of
the potential function in some direction is equal to the force of the field in
that direction. Analogously for the field of the moon. For a massive body
somewhere on the curve Mle there is no force pulling it off the curve. That
does not mean that the system is in equilibrium, for the attractive forces of
the earth and the moon need not cancel at the particular point. To be sure,
there is a point on the curve where they do cancel, and this is an equilibrium
point; the equilibrium is unstable, because even a small displacement from the
point will cause a massive body to start falling either to the earth or to the
moon.

By now it will be clear what is missing from game theory: a theory of for-
ces exerted by players. Game theorists, and social scientists making use of
game theory (economists for example), have only been willing to state that
players do not exert forces in some directions (at some point, all directions
in the tangent hyperplane to their isopay-off surface at that point) but have
remained silent on the intensity of effort in other directions. The result is
a literally (and figuratively?) forceless theory. Still, in many applications
the introduction of the concepts of force and power seems quite natural. 1In
fact, economists do speak of market forces and economic power. And even the
carrier of the force has been identified, as is apparent from the title of a
song in the film Cabaret: Money Makes The World Go Round.

It is not the purpose of the present paper to elaborate a theory of force
in game theory or, more specifically, in economic theory. But we do want to

draw attention to some consequences of formally introducing a force. How the

introduction can be achieved is clear from the analogy with the theory of gra-
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vity: we identify the potential function of a player with his pay-off func-
tion; the force exerted by a player at some point in action space in a par-
ticular direction is equal to the gradient of his pay-off function in that
direction, evaluated at the point concerned. Now, in order for the force to
have an objective meaning and to be amenable to empirical investigation, we
must be able to compare forces across players, or in other words to express
the forces exerted by the different players in the same units. So, cardinal
properties of the pay-off functions are invoked. In economics, the introduc-
tion of an objective force would imply the resurrection of cardinal utility,
even without uncertainty.

Accepting the existence of an (objective) force, we note that the
equilibrium points of a (noncooperative) game are those points where the joint
pay-off is stationary; for at such points the forces exerted by all players
exactly cancel. This is the analogon of the result that an equilibrium in phy-
sical systems is characterized by some aggregate entity, for example potential
energy, being at an extreme value.

In economics, a usual assumption is that marginal pay-off (profit, utility)
is decreasing in directions of increasing pay-off. As a corollary, the strength
of the economic force increases with increasing distance (in action space)
from the point of maximum pay-off (in this respect the analogy with the force
of gravity fails; the economic force is better likened to the strong force
that binds together quarks in composite particles like protons, electrons and
so on). The assumption of diminishing marginal pay-offs implies that on the
curve MIMZ in Figure 1 there is a unique equilibrium point and the equilibrium
is stable.

Much more can be said on the similarity between game theory and models of

the natural forces. It seems that the analogy can be stretched in many
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respects. For example, we may confer an economic charge upon the players, sti-
pulating that they are sensitive to the economic force. But it is time that we

return to the subject matter of the paper: the theory of oligopoly.
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6 Oligopoly and joint profit maximization

6.1 Introduction

In this section we maintain the hypothesis that firms -or, more
generally, agents- behave in such a way that the joint profit is being maxi-
nmized, and we study its consequences within the context of the model sketched
in Section 2. Of course, there are many reasons why in reality the joint pro-
fit maximum will not be reached (on this subject, see Stigler (1964)), but
that is not our concern here.

The joint profit of firms is given by

il

(6.1) W :=Y} Hi
i

§ [py%; - ¥ (x,)] =Y - § Y (%),

where Y, the aggregate consumer income, is a datum. This means that, with cost
functions that are strictly increasing, the joint profit of firms is maximal
ifx, =0,i=1,..., I.

The explanation for this result is, of course, that no weight has been
given to the interests of consumers or, stated differently, that the economic
forces exerted by consumers have been neglected. This raises the question how
these interests can be taken into account.

Usually, consumers are described as budget-constrained utility maximizers.
We now face the problem that the objectives of consumers and producers are not
being expressed in the same units. Describing firms as utility maximizers is
no way out because "utils" need not be comparable across agents.

The solution we propose is to treat consumers in a way that is completely
analogous to the way producers are being treated: as profit maximizing agents.
This is the subject of the next subsection. Thereafter we return to the

problem of joint profit maximization.
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6.2 Consumer behaviour

We feel free to present some results from the economic theory of consumer
behaviour without proof. For a good treatment of the duality concepts
involved, see Anderson (1980) and Weymark (1980).

We assume there are J identical consumers. We omit the subscript j
(=1,..., J). Each consumer has a given budget Y, which we take as the unit of
value (Y = 1).

Traditionally, consumers are described as maximizing their utility U,
(6.2) U = u(xl,..., xI),

subject to the budget constraint zipixi = 1. The first order conditions are

(next to the budget constraint)
(6.3) au/axi = u, = Ap., i=1,..., I.

The solution consists of the consumer's demand functions, which give the opti-

*
mal quantities as a function of the normalized prices p. (= p /Y):
1 i

(6‘4) xi=gi(pll"'l pI)r 1=l,..., I.

(By summing these demand functions over all consumers we obtain the market
demand functions (2.1).) The economic interpretation of the Lagrange
multiplier A associated with the budget constraint is that of the marginal uti-
lity of income.

By substituting the functions gi(.) for X, into the (direct) utility func-

tion u(.) we obtain the indirect utility function v(.),

(6.5) U = v(pl,..., pI).
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The dual problem of minimizing v(.) subject to the budget constraint with

given quantities leads to the first order conditions

(6.6) av/api =i v, = -ux,, i=1,..., I.
The optimal prices are a function of the quantities:
(6.7) pi = fi(xl""’ xI), i=1,..., I.

These are the consumer's inverse demand functions. Again, the Lagrange
multiplier associated with the budget constraint, H, stands for the consumer's
marginal utility of income.

In fact, if we know the indirect utility function we can easily obtain the
(ordinary) demand functions from the first order conditions of the dual

problem:

(6.8) x, = vi/z pjvj, i=1,..., I.
J

This is the Identity of Ville and Roy. The Lagrange multiplier Y is given by

(6.9) u=-Lpv,.
i

Analogously, we obtain from the primal problem

(6.10) p, = ui/z XU i=1,..., I,
3

which is the Identity of Hotelling and Wold, and
(6.11) A = Z X;u, .
i

In an equilibrium A equals y.

We next turn to the description of consumers as profit maximizing agents. Just

like firms, consumers maximize profits in two stages. In the first stage, each
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consumer minimizes the cost of "producing" a given but arbitrary level of uti-
lity U according to the utility function U = u(.). This yields the cost or

expenditure function,

(6.12) Y = c(pl,..., Py- U)
= min (§ pjxj | u(xl,..., xI) 2 U).
X,

1

Solving the equation c(.) = 1 for U yields the indirect utility function v(.).
In order to define the profit of a consumer we introduce the price of uti-

lity, Py- The consumer's profit then is

(6.13) II := pUU - ¢(py.---, Py, V).

II
The first order condition for a profit maximum is

(6.14) = 0c/0U =: ¢

pU U(')l

because pU is taken as given by the consumer. In equilibrium, the price of
utility equals the marginal cost of producing utility.

By putting the price of utility equal to the reciprocal of the marginal
utility of income we can guarantee that the solution to the problem of profit
maximization coincides with the solution to the traditional (formulation of

the) problem.

The dual of the expenditure function is the distance function, defined by

(6.15) d(xl,..., Xy U) := min (z pjxj | v(pl,..., pI) < U).

p; 3

Solving the equation d(.) = 1 yields the direct utility function U = u(.).

There holds
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(6.16) c = -d.

A well-known result is Shephard's Lemma, which states that
(6.17) x, = ac/api = ¢, (Py,--+/ Py, U)o

The functions ci(.) are the compensated demand functions. The dual result is

the Shephard-Hanoch Lemma, stating that

(6.18) p; = 3d/3xi =: di(xl""’ x_, U).

II
The functions di(') are the compensated inverse demand functions. In Section
3.3, where we described the theory of monopolistic competition, we made use of
the concept of compensated (inverse) demand functions.

The results (6.16-18) are useful in converting the "price version" of the

problem of joint profit maximization into the "quantity version", and vice

versa.

6.3 Joint profit maximization

In this section, by "joint profit" we mean the sum of the profit of con-
sumers and producers. For the sake of ease we consider the case that there is
but one consumer.

The expenditures of the consumer equal the revenues of the firms. The
joint profit thus is
(6.19) I := p U - Y Y (x,).

i
In the case of price taking behaviour by firms (and the consumer, of course),
we may treat pU as a parameter of the problem. By substituting u(.) for U and
taking partial derivatives with respect to x, we obtain the first order

conditions
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(6.20) MC, = p,.u,, i=1,...,I;

by setting pU equal to the reciprocal of the marginal utility of income we can
guarantee that the consumer exhausts his budget. Obviously, these conditions
for a cooperative equilibrium are equivalent to the conditions for a (partial)
competitive equilibrium, which state that the marginal cost of producing good
i equals the price of good i.

In the oligopoly case we must take the dependence of pU on the decision
variables of the agents into account. There are several equivalent for-

mulations of the problem. One is

I

(6.21) maximize -4 (x,...., x_, U).U - Y Y, (x,)
xi, U i

subject to d(xl,..., Xr, U) = 1.

This is the pure "quantity version" as it involves only quantities as decision
variables. (Of course, we may use the constraint to eliminate U from the
objective function; this amounts to replacing —dU by l/zixiui and U by u(.).)

From the first order conditions we derive

(6.22) MCi = di(l - diU'U/di +d

gy~ U7/8y) - i=1,..., 1,

where dUU is the derivative of dU with respect to U and diU the derivative of
dU with respect to x, . In equilibrium, the marginal cost of producing good i
equals the marginal revenue to the consumer of good i. Under competitive cir-
cumstances the latter equals the price of good i, di' In the case of oligopoly
account must be taken of the effect of the marginal change in utility on the
price of the good and on the price of utility. The former effect is measured

by minus the utility elasticity of the price offered for good i and the latter

effect by the utility elasticity of the marginal cost of utility, both



multiplied by the price of the good.

Another formulation is

(6.23) maximize cy(p,,..., Py, U).U - ) Y;[c;(Py,---s Pr, V)]
pi’ U i

subject to c(pl,..., pP-., U) 1,

II
which is an example of a "mixed version" of the problem. From the first order
conditions we now derive

(6.24) Z MCi(eyy - Cyy-Ci/Cy) = 5 (1 - ey U/ey + ey Ulcy),
3

in obvious notation. These conditions express the equality of the marginal
cost for firms to the marginal revenue for the consumer of a marginal change
in the price of good i. Under competitive circumstances the contribution of an
infinitesimal change in the price of good i to the consumer's revenue equals
minus the quantity of the good, cy- In the case of oligopoly account must be
taken of the effect of the marginal change in utility on the quantity of the
good and on the price of utility. The former effect is measured by minus the
utility elasticity of the quantity demanded of good i and the latter by the
utility elasticity of the marginal cost of utility, both multiplied by minus
the quantity of the good. The marginal cost for firms of a small change in the
price of good i is a weighted sum of the marginal cost of producing the goods.
It is easily verified that the weights are the derivatives with respect to
Py of the consumer's uncompensated demand functions.

Using the constraint to eliminate U from the objective function (6.23) we

obtain the unconstrained problem
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(6.25) maximize - v(pl,..., pI)/Z pivi(pl,..., pI)

Py i

- Z Y,(9;(P. -0 PO
1

We refrain from presenting the first order conditions for this problem.

It is clear from the first order conditions (6.22) and (6.24) that the
equilibrium depends on cardinal properties of the consumer's utility function.
We conclude this section by giving two examples, each with one and the same
preference ordering but with a different cardinal representation. In both
examples there is a quantity aggregator x that is a linearly homogeneous func-
tion of the quantities of the individual goods. Dual to x there is a price
aggregator p that is a linearly homogeneous function of the prices of the

individual goods. The product p.x equals the consumer's budget.

Example 1

Let the consumer's utility function be

(6.26) U = x".

The distance function then is

(6.27) d(x ..., x;, U) = x.u Y,
I
W i = - = 22 = -
e find that dU d/vu, dUU (1 + v)d/véu*, and diU di/VU.
By substituting these results into (6.22) we obtain
(6.28) MC, =d,[1 - (1L +V)/V +1/v] =0, i=1,..., I.

The explanation for this result is the following. If the utility function is
homogeneous, a proportionate change in all quantities can be compensated by an

equal proportionate change of all prices in the opposite direction so as to
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leave the consumer's revenue unchanged: along each ray in quantity (price)
space through the origin the consumer's revenue is constant. Therefore the

joint profit is maximal if total production costs are minimal.

Let the consumer's utility function be

(6.29) U = 1ln(x).

The distance function then is

-U
(6.30) d(xl,..., Xy, U) = x.e .
We find that dU = -4, dUU = d, diU = —di. By substituting these results into
(6.22) we obtain
(6.31) MC, = 4,, i=1,..., I.
i i

This is equal to the competitive outcome.

These examples show that there is a wide range of equilibria for a given pre-

ference ordering, corresponding to different cardinal representations.
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7 Conclusion

We have reconsidered the oligopoly problem in one of its most elementary
forms: static, with perfect information and no uncertainty, and with differen-
tiated products. There are several equivalent ways to represent the demand
side: by means of ordinary, inverse, or mixed demand functions. They enable
firms to travel from quantity space to price space or any "mixture" space, and
vice versa. Hence the choice of instrument is essentially arbitrary. A minimal
requirement of rationality on the part of firms is that the solution does not
depend on the arbitrary choice of instrument. This simple observation, that
surprisingly has not been made before, has a far reaching implication: it
discards the Cournot equilibrium and the Bertrand equilibrium and, more
generally, any Nash noncooperative equilibrium as a valid solution concept
based on rational behaviour. This is the first, negative result of our study.

The requirement that the solution be invariant to the arbitrary choice of
instrument, price or quantity, by firms suggests that the solution belongs to
the class of conjectural variations oligopolies. Conjectural variations have
long confused students of the oligopoly problem. We have given their correct
mathematical interpretation and shown that the solution to all conjectural
variations oligopolies is the contract curve (or rather, hypersurface). This
is the second, positive result of our study.

The contract curve is much too weak a solution concept to be of any use. A
special point on the contract curve is the point where the joint pay-off is
maximal. We have suggested a rationale for choosing this point as the solution
by noting an analogy between game theory and the theory of gravity. A player's
pay-off function may be regarded his potential function. The gradient of this
function in some direction represents the (economic) force exerted by the

player in that direction. An equilibrium is a point where the forces exerted
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by all players exactly cancel. Such is the case at the joint pay-off maxi-~
mizing point. This is the third, suggestive result of our study.

The proof of the pudding is in the eating. Application of the idea of
joint pay-off maximization to the oligopoly problem requires that the pay-off
to consumers and producers be expressed in the same units. It appears con-
venient to describe consumers as profit maximizing agents. We have defined the
revenues to a consumer as the product of the quantity and price of utility;
the price of utility is just the reciprocal of the marginal utility of the
consumer's income. This way of formulating the problem has the attractive
feature that the (partial) competitive equilibrium results as the solution to
the problem of joint profit maximization in the special case that firms take
prices as given. In general, however, the solution depends on cardinal proper-
ties of the consumers' utility functions.

Does the introduction into economic theory of a formal concept of economic
force have other benefits besides resolving the indeterminacy of the solution
to the oligopoly problem? It might be helpfull in formalizing a theory of eco-

nomical dynamics. This is a suggested field for future research.
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FIGURE 1

M;Nj
MMy

Reaction curve of player i (defined by wij =0, 1i=1, 2)
Contract curve (d;ody; = 1) '

Nash noncoooperative equilibrium

Stackelberg equilibrium with player i as leader



