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Abstract. In this article, known complex analysis techniques will be used to
prove by reduction to absurdity that the zeta function must admit at least one
non-trivial zero outside the critical line.

The central idea of the article is to assume the Riemann hypothesis as true
and obtain a accretion for the function ξ(s)′

ξ(s)(s−1)4
in the region Re(s) > 0 using

Hadamard’s factorization theorem and known facts about the zeta function.
Using Cauchy’s theorem for a closed rectangular path with side 2N and

center (a+N,0) and the aforementioned accretion, it is possible to prove that∫N
−N

ξ(a+it)′

ξ(a+it)(a−1+it)4
dt ≈ 0, 1854 + 2

3
√
2N

3|(a−1)(a− 1
2 )|

for every 1
2
< a < 1

and N ∈ R. However, from other techniques, it appears that such a result
cannot be true, thus showing the absurdity.
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1. Introduction

When Bernhard Riemann was invited in 1859 to become a corresponding member
of the Berlin Academy, as was customary on such occasions, he submitted an article
with the research he was developing. Riemann’s famous article in 1859 was entitled
"On the number of primes less than a given quantity", in which Riemann showed
that the non-trivial zeros of the function are intrinsically connected with the prime
numbers, which is one of the most important results in mathematics.

In the same article, Riemann formulated the conjecture that became known as
the Riemann hypothesis and that proved to be a difficult problem to be solved.
One that is extremely important and is related to several mathematical results,
including the best estimate of the error in the Theorem of Prime Numbers .

The Riemann Hypothesis is the only problem that simultaneously belongs to the
list of Hilbert problems (biggest mathematical challenges of the century), the list of
millennium problems (7 biggest mathematical challenges for this millennium) and
Smale’s problems (biggest mathematical challenges for the century), which contex-
tualizes its eminent importance. Indeed, the Riemann Hypothesis is a celebrated
conjecture within mathematics.

In what follows, we will enunciate general results related to complex analysis
and some well-established theorems about the Riemann zeta function, later, we
will assume the Riemann Hypothesis as true and use these results to arrive at a
contradictory result, thus proving that the Riemann Hypothesis can’t be true.
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2. General Theorems

Theorem 2.1 (Cauchy). Let f be a holomorphic function defined on a simply
connected set Ω, if γ is a closed path contained in Ω, then:∮

f = 0

Proof. [1] □

Theorem 2.2 (Cauchy). Let f be a holomorphic function defined on a simply
connected set Ω, if γ is a closed path contained in Ω, and s0 is an interior point on
the contour of the path γ, then:∮

f(s)

(s− s0)n
= 2πi

f (n−1)(s0)

(n− 1)!

Proof. [1] □

Theorem 2.3 (Hadamard). Suppose f is an integer function such as |f(s)| <
AeB|s|p where p is the smallest real number in which the inequality is satisfied for
every s. Let k be an integer such thatk ≤ p < k+1 and {an}n∈N the set of zeros of
f , then:

f (s) = smeP (s)
∏

Ek

(
s

an

)
, Ek (s) = (1− s) es+

s2

2 + s3

3 +...+ sk

k

where P (s) is a polynomial of degree k and m the multiplicity of the root s=0.

Proof. [2] □

Theorem 2.4 (Cauchy). Suppose f is an integer function such as |f(s)| < AeB|s|p

and {an}n∈N the set of zeros of f , then:∑ 1

|an|s
< +∞, if s > p

Proof. [3] □

3. Facts about the Zeta Function

Proposition 1. The zeta function ξ : C/{1} → C is a holomorphic function with
a simple pole at s = 1. Besides the trivial zeros {−2,−4, ...,−2n...} ξ can only have
possible roots in the critical range H = {s ∈ C/0 < Re (s) < 1}.

Proof. [1] □

Proposition 2. The function G (s) = ξ (s) (s− 1) is holomorphic in the region
Re (s) > 0, and the roots of G in this region are the same roots of ζ, in particular,
G does not vanish in the region Re (s) ≥ 1

Proof. Trivial. □

Proposition 3. Let ξ(s) be the Riemann zeta function, for every ε > 0 exists
Aε e Bε such that |ξ (s) (s− 1) | < Aεe

Bε |s|1+ε

.

Proof. [2] □
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Corollary 1. Let {an}n∈N be the set of zeros in the zeta function, then:∑ 1

|an|s
< +∞, if s > 1

Proof. Immediate consequence of proposition 3. □

Proposition 4. If ξ (s) = 0, then ξ (s∗) = 0.

Proof. [3] □

4. Proof

Hypothesis 1. All non-trivial zeros of the zeta function ξ : C/1 → C are on the
critical line Re(s) = 1/2.

Proposition 5.

lim
|s|→∞

ξ(s)′

ξ(s)(s− 1)4
= 0.

Proof. Let G (s) = ξ (s) (s− 1), as G (s) is an integer function whose zeros are the
same zeros from ξ (s). By theorem 3 we have:

ξ (s) (s− 1) = eAs+B
∏

(1− s

an
)e

s
an

ξ (s)
′

ξ (s)
= −s

∑ 1

an (an − s)
+A− 1

s− 1

ξ (s)
′

ξ(s)(s− 1)4
= − s

(s− 1)
4

∑ 1

an (an − s)
+

A

(s− 1)
4 − 1

(s− 1)
5

Where an = −2kn, kn ∈ N or 1
2 + itn, tn ∈ R , according to hypothesis 1. □

Note that:

|s− 1| |s− an| ≥ |an|
∣∣∣∣(Re (s)− 1)

(
Re (s)− 1

2

)∣∣∣∣
In fact, be s = a+ it and an = 1

2 + itn, then:

|s− 1|2 |s− an|2 = ((a− 1)
2
+t2)

((
a− 1

2

)2

+ (t− tn)
2

)
≥ (a− 1)

2
(t− tn)

2
+

(
a− 1

2

)2

t2

Defining:

f (t) = (a− 1)
2
(t− tn)

2
+

(
a− 1

2

)2

t2

As f (t) → ∞ if |t| → ∞, it follows that f (t) admits a global minimum at the
point where f (t∗)′ = 0.

f (t∗)′ = 0 ⇒ t∗ =
(a− 1)

2
tn

(a− 1)
2
+
(
a− 1

2

)2
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Thus:

f (t) ≥ f (t∗) = (a− 1)
2

(
a− 1

2

)2

t2n

That is:

|s− 1| |s− an| ≥ |an|
∣∣∣∣(Re (s)− 1)

(
Re (s)− 1

2

)∣∣∣∣

If s = a+ it and an = −2kn, then:

|s− 1|2 |s− an|2 = ((a− 1)
2
+ t2)

(
(a+ 2kn)

2
+ (t− tn)

2
)

Applying the same procedure it is found that:

|s− 1| |s− an| ≥ |an| |(Re (s)− 1) (Re (s) + 2kn)|

As |an| |(Re (s)− 1) (Re (s) + 2kn)| > |an|
∣∣(Re (s)− 1)

(
Re (s)− 1

2

)∣∣, we have

|s− 1| |s− an| ≥ |an|
∣∣∣∣(Re (s)− 1)

(
Re (s)− 1

2

)∣∣∣∣
in every case.
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Thus, we have:

∣∣∣∣∣∑ 1

an (an − s) (s− 1)

∣∣∣∣∣ ≤∑
∣∣∣∣∣ 1

an (an − s) (s− 1)

∣∣∣∣∣ ≤ 1∣∣(Re (s)− 1)
(
Re (s)− 1

2

)∣∣ ∑
∣∣∣∣ 1a2n

∣∣∣∣
Therefore:

∣∣∣∣∣ ξ (s)
′

ξ(s)(s− 1)4

∣∣∣∣∣ ≤
∣∣∣∣∣ s

(s− 1)
3

∣∣∣∣∣ 1∣∣(Re (s)− 1)
(
Re (s)− 1

2

)∣∣ ∑
∣∣∣∣ 1a2n

∣∣∣∣+
∣∣∣∣∣ A

(s− 1)
4

∣∣∣∣∣+
∣∣∣∣∣ 1

(s− 1)
5

∣∣∣∣∣
And:

lim
|s|→∞

ξ(s)′

ξ(s)(s− 1)4
= 0.

Given that
∑∣∣∣ 1

a2
n

∣∣∣ < ∞ by corollary 1.

Proposition 6.

lim
N→∞

∣∣∣∣∣
∫ N

−N

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 dt

∣∣∣∣∣ < ∞,
1

2
< a < 1

Proof. Let G (s) = ξ (s) (s− 1),

G (s)
′

G (s) (s− 1)
4 =

ξ (s)
′

ξ (s) (s− 1)
4 +

1

(s− 1)
5

Integrating the left side of the equation along a square path of side 2N and center
(a+N, 0), 1

2 < a < 1, we have, according to Theorem 2:

∮
G (s)

′

G (s) (s− 1)
4 =

2πi

3

d3

d3
G (s)

′

G (s)
, s = 1

□

Note that:

∮
G (s)

′

G (s) (s− 1)
4 =

∮
ξ (s)

′

ξ (s) (s− 1)
4 +

1

(s− 1)
5 =

∮
ξ (s)

′

ξ (s) (s− 1)
4

as
∮

1
(s−1)5

= 0.
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If N → ∞ , according to proposition 5, the only remaining contribution of the
closed square path of side 2N and center (a+N, 0) is:

lim
N→∞

∫ N

−N

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 idt =

∮
ξ (s)

′

ξ (s) (s− 1)
4

=

∮
G (s)

′

G (s) (s− 1)
4 i =

2πi

3

d3

d3
G (s)

′

G (s)
, s = 1

Corollary 2.

lim
N→∞

∫ N

−N

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 dt =

2π

3

d3

d3
G (s)

′

G (s)
, s = 1 ≈ 0, 1854

Proof. According to proposition 6:

lim
N→∞

∫ N

−N

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 idt =

∮
ξ (s)

′

ξ (s) (s− 1)
4

=

∮
G (s)

′

G (s) (s− 1)
4 =

2πi

3

d3

d3
G (s)

′

G (s)
, s = 1

And utilizing Wolfram Mathematica:

(1)
d3

d3
G (s)

′

G (s)
, s = 1 ≈ 0, 0851

Thus:
2π

3

d3

d3
G (s)

′

G (s)
, s = 1 ≈ 0, 1854

□

Proposition 7. Let {an}n∈N be the set of zeros in the zeta function, then:∑ 1

a2n
∈ R

Proof. According to hypothesis 1:∑ 1

a2n
=
∑ 1

(2n)
2+
∑ 1(

1
2 + itn

)2+ 1(
1
2 − itn

)2
∑ 1(

1
2 + itn

)2 +
1(

1
2 − itn

)2 = −1

2

∑ (
t2n − 1

)(
1
4 + t2n

)2
And:

∑ 1

a2n
=

1

4

∑ 1

n2
− 1

2

∑ (
t2n − 1

)(
1
4 + t2n

)2 ∈ R

□
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Corollary 3. ∑
| 1
a2n

| = 1

2

∑ 1

n2
−
∑ 1

a2n

Proof. Trivial. □

As:

ξ(s)′

ξ(s)
= −s

∑ 1

an (an − s)
+A− 1

s− 1

We have:

ξ(0)′

ξ(0)
+ 1 = A

Utilizing Wolfram Mathematica:

A = ln (2π)− 1

and

lim
s→0

1

s

(
ξ(s)′

ξ(s)
+

1

s− 1
− ln (2π) + 1

)
= −

∑ 1

a2n
≈ −0, 3650

According to corollaries 3 and 2, respectively:

∑∣∣∣∣ 1a2n
∣∣∣∣ = π2

12
− 0, 3650 ≈ 0, 475 <

1

2∮
ξ(s)′

ξ(s)(s− 1)4
=

∫ ∞

−∞

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 dt = 0, 1854

While also utilizing proposition 5:

ξ (s)
′

ξ(s)(s− 1)4
= − s

(s− 1)
4

∑ 1

an (an − s)
+

A

(s− 1)
4 − 1

(s− 1)
5

We have:

∫ ∞

N

∣∣∣∣∣ ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4

∣∣∣∣∣dt ≤
∫ ∞

N

∣∣∣∣∣ a+ it

(a+ it− 1)
4

∑ 1

an (an − a+ it)

∣∣∣∣∣+
+

∣∣∣∣∣ A

(a+ it− 1)
4

∣∣∣∣∣+
∣∣∣∣∣ 1

(a+ it− 1)
5

∣∣∣∣∣dt
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Which follows:

≤
∫ ∞

N

∣∣∣∣∣ a+ it

(a+ it− 1)
3

∣∣∣∣∣
∣∣∣∣∣ 1

(a− 1)
(
a− 1

2

) ∣∣∣∣∣∑
∣∣∣∣∣ 1a2n

∣∣∣∣∣+
∣∣∣∣∣ A

(a+ it− 1)
4

∣∣∣∣∣+
∣∣∣∣∣ 1

(a+ it− 1)
5

∣∣∣∣∣dt
<

∫ ∞

N

∣∣∣∣∣ a+ it

(a+ it− 1)
3

∣∣∣∣∣
∣∣∣∣∣ 1

2

(a− 1)
(
a− 1

2

) ∣∣∣∣∣+
∣∣∣∣∣ ln (2π)− 1

(a+ it− 1)
4

∣∣∣∣∣+
∣∣∣∣∣ 1

(a+ it− 1)
5

∣∣∣∣∣dt
≤ 1

3
√
2N

3 ∣∣(a− 1)
(
a− 1

2

)∣∣ + ln (2π)− 1

N5
+

1

N6

Likewise:

∫ −N

−∞

∣∣∣∣∣ ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4

∣∣∣∣∣dt ≤ 1

3
√
2N

3 ∣∣(a− 1)
(
a− 1

2

)∣∣ + ln (2π)− 1

N5
+

1

N6

Thus:

∣∣∣∣∣
∫ N

−N

ξ (a+ it)
′

ξ (a+ it) (a− 1 + it)
4 dt−0, 1854

∣∣∣∣∣ ≤ 2

3
√
2N

3 ∣∣(a− 1)
(
a− 1

2

)∣∣+2 ln (2π)− 2

N5
+

2

N6

For all 1
2 < a < 1 , N .

Computing the Integral with a = 5
6 and N = 10 in Wolfram Mathematica we

have:

∣∣∣∣∣
∫ 10

−10

ξ
(
5
6 + it

)′
ξ
(
5
6 + it

) (
− 1

6 + it
)4 dt− 0, 1854

∣∣∣∣∣ ≤ 6

1000
√
2
+ 2

(
ln (2π)− 1

105

)
+

2

106

However,

∫ 10

−10

ξ
(
5
6 + it

)′
ξ
(
5
6 + it

) (
− 1

6 + it
)4 dt = 3.7007478695173663

Thus: ∣∣∣∣∣
∫ 10

−10

ξ
(
5
6 + it

)′
ξ
(
5
6 + it

) (
− 1

6 + it
)4 dt− 0, 1854

∣∣∣∣∣ > 3

Which is an absurd.
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