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Abstract

The relativistic 4D space-time cover of Electrodynamics gives a roadmap for the creation of a potential
function-based field theory within the algebraic structure of Octonion Algebra. Understanding the true algebraic
nature of axial and polar vector types tells us which six Octonion basis components cover the electric and
magnetic field types. Increasing the total dimension count from space-time 4 to Octonion 8 provides additional
degrees of freedom required to accommodate Gravitation within the same structure. The Octonion framework
for mathematical physics is presented in an algebraic covariant fashion. The Octonion Algebra forms for the
analogous Maxwell’s Equations, physical fields, forces, work, energy and momentum conservation are
presented. The importance of structuring the Octonion forms in an algebraic orientation covariant fashion is

abundantly clear in this presentation.
skookoskok
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Octonion Dynamics

The proper covariant derivative definition for Octonion Algebra is the Ensemble Derivative E defined in
references [1], [6] as:

E(A(v))=1/10/0vi [ Cjj T Ax] e * el

J is the Jacobian of general basis transformation T from the Octonion intrinsic basis e to a new basis gk = Tk €1
with position v specified as v; g:. Cjj holds the cofactor of Tjj and A = Ay gs is the functional algebraic element
operated on. With nothing special about T other than its Jacobian is non-zero, the functional is best carried as an
e basis algebraic element A’| e;, where A'| = T Ak. Then all results are e basis algebraic elements with clearly
defined algebraic manipulation. Do understand the partial differentiation is on the complete [...] and it is this
which leads to a covariant definition. Result covariance requires whole applications of this form; the ensemble
of vector analysis notions like gradient, divergence and curl, which must no longer be taken as individually
fundamental. This is not to say they have no separate meaning; they do, but this understanding must come from,
and not lead fo the greater fundamental ensemble structure. They must not be separately manipulated then
indiscriminately combined if covariance is required, which it essentially always is.

The covariant Ensemble Derivative in Octonion Algebra’s intrinsic e basis with position algebraic element u; e;
defines u = v, Ty = du1, Cj; = dij, J = +1 so we can write the intrinsic basis covariant derivative as

E(A()) = 8/0ui [ Ac ] & * ex = Vi * Au).

Highlighting what is covered in detail within reference [11], when T is an algebraic basis gauge transformation
to gauge basis g defined to be an algebraic isomorphism with the Octonion intrinsic e basis, if €x * ep = Sabc €c
where sanc are the structure constants defining the particular Octonion Algebra orientation, then g defined to be
gk = T e with basis products also requiring ga * g» = sabc gc. If g 1s restricted to an algebraic isomorphism, T is
required to be a lower block diagonal limited member of SO(7).

Limiting T to J = +1 orthonormal, matrix C will equal matrix T. The covariant derivative form may then be
written as

E(A(V))=0/0vi [ Ax gi * gk ]

If the g basis description is independent of the gauge transformation position algebraic element v, that is the
gauge transformation is a global gauge, we can take g; and g outside the differentiation. In this case, the
differentiation over v can be written as a simple g system * product of the algebraic element del operator given
by V() = gi 0/0vi acting on the g basis functional algebraic element Ak gk, and this may be written as V) * A(V).
This is seen to be form invariant with the identity transformation intrinsic basis covariant derivative.

If we allow the parametrization of the SO(7) portion of T to vary with v position, we now have a local algebraic
basis gauge transformation. The * isomorphism is still required to hold at each v position, but for the covariant
derivative, we can no longer take gi and gk out of the differentiation, adding terms to the form invariant portions.

Whether we use the intrinsic e basis, or a local or global algebraic basis gauge transformation, we can define
left and right application partial covariant derivatives in like fashion:

Ei(A(u)) = 0/0u; [ Ax i * ex ] (A(u))Ei =0/0ui [ Ak ex * ei |
Ei(A(Vv)) = 0/ovi [ Ak g * g« | (A(V)Ei=0/0vi [ Ak gk * gi ]

We can assume by context which algebraic basis is in play, and simply write Ei(A) or (A)E;. Expressing
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mathematical physics expressions in terms of the Ensemble Derivative singularly provides the form for
Octonion Algebra dynamics independent of basis choice.

To cover natural dynamics with Octonion Algebra I chose a path patterning after Electrodynamics. This requires
us to formulate Octonion Algebra representations for expected physical fields built from first order
differentiations on potential functions. These set the foundation for expressing the notion of observable flow, an
Octonion 8-current formed from another differentiation on the physical fields. A further scalar result
differentiation of this 8-current must provide a continuity equation indicating the divergence of the flow in/out
of any prescribed volume is balanced by the time derivative of the total amount of flow material within the
volume. Total flow material is conserved. Notions of force and work must be formed by Octonion products of
physical fields and the 8-current. Restructuring the 8—work—force equation with an outside differentiation on all
terms, forming an equation equating the two equivalent representations, then integrating over any prescribed
volume gives equations for the conservation of energy and momentum. All will be provided below.

In reference [11] it was shown necessary to include structure constants if we hoped to represent equations with
what I call algebra orientation covariance. This requires attaching two characteristics to each product term,
odd/even parity of total variant product count throughout any product term’s full product history, and a final
disposition of either no Quaternion subalgebra product rule in play or defined by one of seven specified in its +1
structure constant orientation sabc for some chosen proper Octonion orientation which then may be singularly
used. With the mechanics of this representation understood, it might be nice to consolidate the parity with the
triplet designation. Repeating the optimal Quaternion subalgebra partitioning in reference [11] we have Qx
defined as

Q1= {e2e4¢6} Q2= {e1 ese5} Q3= {esese7}

Q4= {e1e2e3} Qs={exese7} Qs = {e1ese7} Q7= {eszeses}

I will use the following composite structure constant s, understandably and contextually separable from sabc
where n is a single integer in the range 0 to 15 rather than a triplet of single digit indexes. Index n will be an odd
integer if the product history count of variant products (parity) is odd, and an even integer if the parity is even.
Dividing n by two with truncation gives either 0 representing no triplet orientation rule in play, or the triplet
index for Q as above. This succinctly gives us the Octonion Algebra orientation variation sieve results. The
result so implies an algebraic invariant, and need not be shown. The other 15 will optimally index the algebraic
variant partitions.

Take n for s, to be a 4-bit binary number. We can use the common computer language Boolean logic operator *
for exclusive-or to determine the product sa sy = sc. Only because our Quaternion triplets were partitioned with
the index exclusive-or to zero scheme, we enumerated them as Q; above, and agreed to reduce the +1
orientation of the Quaternion subalgebra structure constants sanc to sn, we have a very simple computer language
friendly representation for the product of two composite structure constants: sa Sb = Sa*b.

Define potential functions in our bases of interest here as A(u) = A; e or A(v) = A; gi. Since Octonion Algebra is
not generally commutative, we need to define left and right physics type fields in any algebraic basis as

FL=E(A)
Fr=(A)E

Just as with Electrodynamics, we neither need nor want any scalar content within these, so we must remove the
scalar content produced, but without implying it sums to zero since this would unfavorably collide with the
analogous Lorentz Condition discussed below.

It will be more illuminating if we use the intrinsic basis del operator algebraic element here simply as e, Vi
understanding it will be form invariant with any global algebraic basis gauge transformation defining the del
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operator partial derivatives appropriate for the position algebraic element in the g basis.

FL=

{+Vo(A1) +Vi(Ao) + (Vs(As) — Va(As)) ss + (V2(As) — V3(Az2)) so + (V1(As) — V(A7) s13 } €1
{+Vo(Az2) +V2(Ao) + (Vs(As) — Va(As)) s3 + (V3(A1) — Vi(A3z)) so + (Vs(A7) — Vi(As)) s } e2
{+Vo(As) +Vi(Ao) + (V7(A4) — Va(A7)) 57+ (Vi(Az2) — V2(A1)) so + (Ve(As) — Vs(As)) s15 } €3
{+V0(A4) +V4(Ao) + (Vz(Aﬁ) - VG(AZ)) S3 + (VI(AS) - VS(AI)) Ss + (V3(A7) - V7(A3)) S7 } C4
{+Vo(As) +Vs(Ao) + (Va(A1) — Vi(A4)) ss + (V7(Az2) — V2(A7)) si1 + (V3(As) — Vs(As)) s15 | €5
{+Vo(As) +Ve(Ao) + (Va(Az2) — V2(A4)) s3 + (Vi(A7) — V(A1) s13 + (Vs(As) — V3(As)) sis | €6
{+Vo(A7) +V1(Ao) + (Va(As) — V3(A4)) s7+ (V2(As) — Vs(Az2)) sit + (Ve(A1) — Vi(As)) s13 } €7

Fr is simply Fr with all algebra structure constants sj replaced with —s;j, essentially negating all rotational
physics fields. In terms of our Octonion Algebra presentation, irrotational forms are not subjected to ordered
permutation triplet multiplication rules, and thus are algebraic invariants. Each of the rotational forms within
parentheses are defined using the rules of the same ordered permutation triplet, so are algebraic variants.

The proper form for 8-current in any algebraic basis is (ref [1] et.al.)

j=% {E(FL) + (FRIE }

Within the intrinsic e basis, the result is an algebraic invariant as expected, since it is an observable.
j=

— {— V2(Ao) + VZ1(Ao) + V%2(Ao) + VZ(Ao) + V24(Ao) + VZ5(Ao) + VZ6(Ao) + V*(Ao) } eo
— Vo{Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az2) + V3(Asz) + Vi(Aa) + Vs5(As) + Ve(As) + V7(A7)} €o

— {— VZ%(A1) + VZi(A1) + VZ(A1) + V(A1) + V(A1) + VZ(Ar) + V(A + V(AL } e
+ Vi{Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az2) + V3(As) + Va(A4) + Vs(As) + Ve(As) + V(A7) } e

— {— V3(A2) + VZiI(A2) + V2(A2) + V33(A2) + VZ4(A2) + V35(Az2) + V36(A2) + VZ(A2) | €2
+ V2{Vo(Ao) + Vi(Ai1) + Vi(Ai1) + V2(Az2) + V3(A3) + Va(As) + Vs(As) + Vs(As) + Vi(A7)} €2

— {— V%(As) + V21(Az) + VZ(A3) + V33(As) + V2(As) + VZ5(As) + V36(As) + VZ9(As) | es
+ V3{Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az2) + V3(As3) + Va(A4) + Vs(As) + Ve(As) + Vi(A7)} €3

— {— V%(A4) + V21(A4) + VZ(As) + VZ3(As) + V2(A4) + VZ5(As) + VZ6(As) + VZ5(A4) } €4
+ Va{Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az2) + V3(As) + Va(As) + Vs(As) + Ve(As) + V(A7) } ea

— {— V2(As) + V21(As) + V%(As) + VZ3(As) + V2(As) + VZ5(As) + VZ6(As) + VZ(As) | es
+ V5{Vo(Ao) + Vi(Ai1) + Vi(A1) + V2(Az2) + V3(A3) + Va(A4) + Vs5(As) + Ve(As) + Vi(A7)} es

— {— V%(As) + V21(As) + VZ(As) + V23(As) + V24(As) + VZ5(As) + V26(As) + VZ7(As) } €6
+ V6{Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az) + V3(As3) + Va(A4) + Vs(As) + Ve(As) + Vi(A7)} €6

— {— V(A7) + VZ1(A7) + V(A7) + V(A7) + V2(A7) + V35(A7) + V(A7) + VH(A7) } er
+ V7{Vo(Ao) + Vi(Ai1) + Vi(Ai1) + V2(Az) + V3(As) + Va(A4) + Vs(As) + Ves(As) + Vi(A7)} €7

The analogous Lorentz Condition is
Vo(Ao) + Vi(A1) + Vi(A1) + V2(Az) + Vi(As) + Va(As) + Vs(As) + Ve(As) + V(A7) =0
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Just as it does for 4D classical Electrodynamics, assigning a value of zero to the analogous Lorentz

Condition uncouples the j component dependence on multiple components of the 8-potential, allowing

each 8-current dimension to be produced solely from the Octonion D'Alembertian operating on only the

same dimension's coefficient of the 8-potential. Later, when we derive the conservation equations, we

will keep the analogous Lorentz condition non-zero and in place, since these equations do not require it to be 0.
Moreover, making it zero will just complicate things.

Now is the perfect time to dive into the Octonion form for Maxwell’s Equations. We can simplify the
presentation by mapping our differentiated potential function field forms to singular field types representing the
irrotational and rotational fields. Define the full complement of each as

I=>k=1107 (— VkAo— Vo Ax) ex 7 irrotational field components
R=) =116, s=r+1t07 Srs(’s) (Vr As — Vs Ar) ers 21 rotational field component indexes oriented +Ruy €ury

We can then write the left physics field as

FL=

{1 + Rsa 85+ Ra3 8o + R7s 813 } €1
{12 + Rea 83 + R31 8o + Rs7 s11 } €2
{15 + R7a 87+ Ri2 89 + Res 815 } €3
{-1s+Rasss+Risss+Rsrs7} es
{—Is + Ra1 85 + R72 s11 + Rae s15 } Cs
{~Is + Raz 83 + Ri7 813 + Rs3 815 } €6
{—17 + Ras 57+ Ras s11 + Re1 s13 } €7

Fr again is FL with all variant terms negated. From these form j = % { E(FL) + (FR)E }.
j =
{+Vi(1h) + Va(I2) + V3(Is) + Va(Is) + Vs(Is) + Ve(Is) + V(I7) } €0

{~Vo(Ii) + V2(Ri2) — V3(R31) — Va(Ra1) + Vs(Ris) — Ve(Re1) + V7(Ri17) } e
{-V3(Rs7) + V5(Rs7) +V7(Rs3) } s2 €1

{+V2(Res) + Vs(Ras) — Vs(Ras) } s6 €1

{*V}(R64) - V4(R36) - Vs(R43) } S10 €1

{+V2(R71) — Va(R72) + V7(Raz) } s14 €1

{—Vo(I2) — Vi(Ri2) + V3(R23) — Va(Ra2) + Vs5(Rzs) + Ve(Ras) — Va(R72) } €2
{+V3(R76) + Ve(R37) — V7(R36) } s4 €2
{-Vi(Res) + Vs(Re1) + Vs(Ris) } s6 €2
{+V3(Rsa) — Va(Rs3) + Vs(Raz) } s12 €2
{—Vl(RM) - V4(R17) - V7(R41) } S14 C2

{—Vo(I3) + Vi(R31) — V2(Ra23) — Va(Raz) — Vs(Rs3) + Ve(Rse) + V7(R37)} €3
{ +Vi(Rs7) — Vs(Ri7) + V7(Ris) } sz €3
{~V2(R7) + Ve(R72) + V7(Rae) } s4 €3
{+Vi(Res) — Va(Re1) + Vs(Ra1) } sio €3
{—Vz(R54) - V4(R25) - VS(R42) } S12 €3

{Vo(ls) + Vi(Ra1) + V2(Raz) + V3(Raz) — Vs(Rsa) — Vs(Rea) — V7(R74) } €4
{—VS(R76) - V6(R57) - V7(R65) } Sg €4
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{+Vi(Rs6) + V3(Re1) — Vs(R31) } 10 €4
{+V2(Rs3) + V3(Ras) — Vs(R23) } si2 €4
{+Vi(R72) + V2(R17) — V7(Ri2) } 14 €4

{~Vo(Is) — Vi(Ris) — V2(Ras) + V3(Rs3) + Va(Rsa) — Ve(Res) + V7(Rs7) } es
{~Vi(R37) + V3(R17) + V7(Ra1) } sz es

{—VI(RZG) - Vz(Rsl) - V6(R12) } Se Cs

{+V(R76) — V6(R74) + V7(Res) } 5 €5

{~V2(Ra3) + V3(Raz2) + Va(R23) } s12 €5

{~Vo(Is) + Vi(Re1) — V2(Ra26) — V3(Rs6) + Va(Res) + Vs(Res) — V7(Rae) } €6
{—Vz(R37) - Vs(Rn) - V7(R23) } S4 Ce

{+Vi(R2s) — V2(Ris) + Vs(Ri2) } se €6

{+Vi(Rs7) + Vs(R7a) — V7(Rs4) } ss €6

{+V1(Ra3) — V3(Ra1) + Va(Ra1) } si0 €6

{~Vo(I7) — Vi(R17) + V2(R72) — V3(R37) + Va(R71) — Vs(Rs7) + Ve(Rae) } €7
{—V1(R53) - Vs(Rls) - Vs(Rsl) } S2 €7

{+V2(R36) — V3(Ra6) + Vs(R23) } s4 €7

{+Vi(Res) — Vs(Res) + Vs(Rsa) } s8 €7

{-Vi(Ra2) + V2(Ra1) + Va(Ri2) } sua 7

When we determined the 8-current above using potential functions, we found it to be an algebraic invariant. We
now have variant terms when operating on rotational/irrotational field types as shown, where sets of terms
scaling the same basis element and having the same algebraic variance are collected. Reverting each of these
variant sets to their potential function form, we find each identically sums to zero as required. Rather than
having to go looking for these in the full complement of differentiated product terms with a priori knowledge,
by structuring the Octonion math in an algebraic orientation covariant fashion, we need only simply collect
(sieve out) sets of terms with common variance and basis element, then examine what Octonion Algebra tells us
to look at. This is a simple example of the utility and manifest importance of maintaining algebraic orientation
covariance.

It is interesting to point out after understanding Rij = —R;i each set is of the form {+Va(Ruc) + Vb(Rea) + Ve(Ran) }
=0, a cyclic shift of indexes. If we desire to simplify the presentation by continuing with singularly stated field
types, we must remember each of these identities and additional similar forms that for they will be needed to
simplify much of what follows. Removing them, we have

j=

{+VI(II) + Va(I2) + Vi(Is) + Va(ls) + Vs(Is) + Vs(Is) + V7(I7) } €o =Jo €o
{~Vo(Ii) + V2(Ri2) — V3(R31) — Va(Ra1) + Vs(Ris) — Ve(Re1) + V7(Ri7) } &1 =ji e
{~Vo(l2) — Vi(R12) + V3(R23) — Va(Ra2) + V5(Rzs) + Vs(Ras) — V2(R72) } €2 =2 €2
{~Vo(I5) + Vi(R31) — V2(R23) — Va(Ra3z) — V5(Rs3) + Ve(Rse) + Va(R37)} ez =js es
{*VO(I4) + Vi(Ra1) + V2(Ra2) + V3(Ras) — VS(R54) - V6(R64) - V7(R74) } €1 =ja€a
{~Vo(Is) — Vi(Ris) — V2(Ras) + V3(Rs3) + Va(Rsa) — Vs(Res) + V2(Rs7) }es =js es
{~Vo(Is) + Vi(Re1) — V2(Ras) — V3(Rs36) + Va(Res) + Vs(Res) — V2(R76) } €6 = js €6
{~Vo(I7) — Vi(R17) + V2(R72) — V3(R37) + Va(R74) — Vs(Rs7) + Vs(R76) } €7 =j7 €7

This is the result form for the two inhomogeneous Octonion Maxwell’s Equations. We just need to cast the left
side in something more directly applicable to the recognizable 4D Electrodynamics form. The familiar form of
Maxwell’s Equations are specified in terms of the magnetic (rotational) field and electric (irrotational) field, so
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it would make sense to split our Octonion fields along those lines. This is easily done with our left and right
field definitions:

Fir = Y% {FL + FR} Frot =% {FL — FR}

+hi e {+Rsa 85+ Ras so + R7s s13 } €1
+h e {+Re4 83 + R31 89 + Rs7 811 } €2
+l es {+R74 87+ Ri2 89 + Res 815 } €3
+1a €4 {+R26 s3 + Ris s5s+ R3787 } ea
+Is es {+Ra1 85 + R72 s11 + Rs6 815 } €5
+ls €6 {+Ra42 83 + Ri7 813+ Rs3 S15 } €6
+17 €7 {+Ra43 87+ Ras s11 + Re1 813 } €7

The Octonion divergence and curl of these are

V: -Fir=) k=107 VkFirk €0
V. FrotZZk:1t07 Vi Frotk €0
V x Fir = Z r=1t06, s=r+1to7 Srs(r"s) (vr Firrs — Vs Finr r) Crs
V X Frot = Z r=1t06, s=r+lto 7 Srs(r’s) (Vr Frots — Vs Frot r) Crrs

We find
V - Fir = {+Vi(11) +V2(12) +Vi(I5) +Va(la) +Vs(Is) +Ve(ls) +V7(I7)} eo

This is equal to jo €0 above so we have our first of four Octonion Maxwell’s equations V - Fix = jo €0. Next, we
have after grouping by common algebraic variance

V x Frot =

{+V2(R12) — V3(R31) — Va(Ra1) + Vs(Ris) — Vs(Rer) + V2(Ri7) } e
{~Vi(R1i2) + V3(R23) — Va(Ra2) + Vs(Ras) + Vs(Ras) — V7(R72) } €2
{+Vi(Rs1) — V2(R23) — Va(Raz) + V7(R37) — Vs(Rs3) + Vs(Rse) } €3
{+V1(Ra1) — V5(Rsa) + V2(Raz) — Ve(Res) + V3(Raz) — V7(R74)} €4
{~Vi(Ris) + Va(Rss) — V2(Rz2s) + V7(Rs7) + V3(Rs3) — Vs(Res) } es
{+V1(Re1) — V7(R76) — V2(Ra6) + Va(Res) — V3(Rse) + Vs(Res) } €6
{-Vi(R17) + Vs(R76) + V2(R72) — Vs(Rs7) — V3(R37) + Va(R7) } 7

{-V3(Rs7) + Vs(Rs7) + V7(Rs3) } sz @1
{+Vi(Rs7) + Va(Ris) — Vs(Ri7) } sz €3
{-Vi(Rs7) + V3(Ra1) + V3(Ri7) } s2 es
{—Vl(R53) - VS(R31) - Vs(Rls) } S2 €7

{+V3(R76) + Ve(R37) — V7(R36) } s4 €2
{-V2(R7) + V7(R26) + Vs(R72) } s4 €3
{—V7(R23) - Vz(R37) - Va(Rn) } S4 €6
{+Vs(R23) + V2(R36) — V3(Raz6) } s4 €7

{+V2(Rss) + Vs(Rzs) — Vs(Rzs) } ss €1
{-Vi(Res) + Vs(Ris) + Vs(Re1) } s €2
{—Vl(st) - VZ(R61) - V6(R12) } Se6 €5
{+Vi(R2s) — V2(Ris) + Vs(Ri2) } s6 €6
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{—VS(R76) - V6(R57) - V7(R65) } Sg €4
{+V(R76) + V7(Res) — V6(R74) } 2 €5
{~V(Rsa) + Va(Rs7) + Vs(R74) } ss €6
{+Vs(Rsa) — Vs(Res) + Va(Res) } ss €7

{—V3(R64) - V4(R36) - VG(R43) } S10 €1
{+V1(Res) — Va(Re1) + Vs(Ra1) } s10 €3
{+Vi(Rs6) — V6(R31) + V3(Re1) } S10 €4
{+Vi(Raz) + Va(R31) — V3(Ra1) } si0 €6

{+V3(Rs4) — Va(Rs3) + Vs(Raz) } s12 €2
{—Vz(R54) - V4(R25) - VS(R42) } S12 €3
{-Vs(R23) + V2(Rs3) + V3(Ras) } siz2 €4
{+Va(R23) — V2(Raz) + V3(Raz) } s12 €5

{+V2(R7) — Va(R72) + V2(Raz) } s1a €1
{—V1(R74) - V4(R17) - V7(R41) } S14 C2
{+Vi(R72) + V2(R17) — V7(R12) } s1a €4
{~Vi(Ra2) + V2(Ra1) + Va(Ri2) } s1a €7

We notice all variant-basis terms are the same as we found above with the vector side of j, all of which were
seen to be identically zero when written as differentiations of the potential functions. We are left with

V X Frot =

{+V2(Ri12) — V3(R31) — Va(Ra1) + Vs(Ris) — Vs(Re1) + V7(R17) } e
{~Vi(Ri2) + V3(R23) — Va(Ra2) + Vs(Ras) + Vs(Ras) — V7(R72) } €2
{+Vi(R31) — V2(R23) — Va(Raz) + V7(R37) — Vs(Rs3) + Vs(Rse) } €3
{+Vi(Ra1) — V5(Rsa) + V2(Raz) — Vs(Res) + V3(Raz) — V7(R74)} €4
{~Vi(Ris) + Va(Rss) — V2(Ra2s) + V7(Rs7) + V3(Rs3) — Ve(Res) } es
{+Vi(Re1) — V2(R76) — V2(R26) + Va(Res) — V3(R36) + Vs(Rss) } €6
{~Vi(R17) + V6(R76) + V2(R72) — Vs(Rs7) — V3(Ra7) + Va(R74) } €7

We have for the time differential of Firr

+Vo(Ih) e1 + Vo(I2) e2 + Vo(I3) €3 + Vo(l4) es + Vo(Is) es + Vo(ls) es + Vo(I7) e
Subtracting from V x Fy¢ gives our match with the non-scalar portion of our 8-current
V x Frot — Vo(Firr) = j (non-scalar)

So the two inhomogeneous Octonion Maxwell’s Equations are

V - Firr = Jo €0 V X Frot — Vo(Firr) = j (non-scalar)

The two homogeneous standard Maxwell’s Equations are simple vector identities once the proper potential
function connection was made for the electric and magnetic fields. We should then expect the same in the
Octonion framework. Writing out the divergence

V. Fi=

{+V2(Re4) + Va(Ras) + Vs(Raz) } s3 €0

{+V1(Rss) + Va(Ris) + Vs(Ra1) } s5 o
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{+V3(R7) + Va(R37) + V7(Ra3) } s7 €0
{+Vi(R23) + V2(R31) + V3(Ri2) } so €o
{+V2(Rs7) + Vs(R72) + V7(Ras) } si1 o
{+Vi(R7) + Vs(R17) + V7(Re1) } s13 €0
{+V3(Res) + Vs(Rss) + Vs(Rs3) } s15 o

These are similar to the 28 forms we have already encountered that identically sum to zero when expressed in
the potential function form, except the three indexes in each are now those of Quaternion subalgebra triplets.
These seven also identically sum to zero when represented in potential function form, and complete the 35
possible sets of three triplets of different indexes taken from 1 through 7 that each will sum to zero. Generally,
we will have for any Rys = Vi As — Vs Ar and u # v # w cyclically shifting u, v and w

ViRw+ VvRwi+ VwRw =0

So our third Octonion Maxwell’s equations gives V - Frot = 0 as expected, but in seven separate identically 0
segments, each handed to us by utilizing algebraic orientation covariance. For our final Maxwell’s equation

V x Fix =

{—Va(Is5)ss +Vs(I4)ss +Va(I3)se —V3(12)se —Ve(I7)s13 +V7(Is)s13 } €1
{—V4(16)S3 +V6(I4)S3 —V1(13)S9 +V3(11)S9 +V5(I7)Su —V7(Is)811 } C2
{—V4(I7)S7 +V7(I4)S7 +V1(12)S9 —Vz(Il)S9 —Vs(le)Sls +V6(IS)SIS } C3
{+V2(I6)ss —Ve(I2)s3 +Vi(Is)ss —Vs(I1)ss +Vi(I7)s7 —V(I3)s7 } ea
{-Vi(Ls)ss +Va(I)ss —Va(I7)s11 +Va(L2)s11 +Vi(ls)sis —Ve(Iz)sis } es
{—V2(14)S3 +V4(12)S3 +V1(I7)Sls —V7(II)SI3 —V3(15)515 +V5(13)Sls } Ce
{-Vs(I4)s7 +Va(Iz)s7 +Va(Is)s11 —Vs(I2)s11 =Vi(Ie)s1s +Vs(Ii)s13 } €7

Vo(Frot) =

{+Vo(Rs4)s5 +Vo(Ra23)s0 +Vo(R76)s13 } €1
{+V0(R64)S3 +V0(R31)S9 +VO(R57)SII } C2
{+Vo(R74)s7 +Vo(Ri12)ss +Vo(Res)s1s } €3
{+Vo(R26)s3 +Vo(Ri15)ss +Vo(R37)s7 } €4
{+Vo(Ra1)ss +Vo(R72)s11 +Vo(Ra6)s15 } €5
{+Vo(R42)s3 +Vo(Ri7)s13 +Vo(Rs3)s15 } €6
{+Vo(Ra3)s7 +Vo(Ra2s)s11 +Vo(Re1)s13 } e

Adding both of these to form our final Octonion Maxwell’s Equation, then grouping by common variance-basis
we have

V x Fix + VO(Frot) =

{~Va(Is) + Ves(Is) + Vo(Res) } s3 €2
{+V2(Is) — Ve(I2) + Vo(Ras) } s3 €4
{=Va(l4) + Va(I2) + Vo(Raz2) } s3 €6

{=Va(Is) + Vs(la) + Vo(Rss) } ss €1
{+Vi(Is) — Vs(I1) + Vo(Rus) } ss ea
{=Vi(le) + Va(I1) + Vo(Ra1) } ss es

{=Va(I7) + V(Is) + Vo(R74) } s7 €3
{+V3(I7) = Va(I3) + Vo(R37) } s7 €4
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{=V3(la) + Va(I3) + Vo(Ras) } s7e7

{+V2(I3) — V3(I2) + Vo(R23) } so €1
{=Vi(Iz) + V3(Ii) + Vo(R31) } so €2
{+Vi(I2) — Vo(Ii) + Vo(Ri2) } so €3

{+Vs(I7) — Va(Is) + Vo(Rs7) } sui ez
{=Va(I7) + Vo(I2) + Vo(R72) } s es
{+V2(I5) — Vs(I2) + Vo(Ras) } s er

{=Vs(I7) + Va(Is) + Vo(R76) } s13 €1
{+Vi(Il7) — Va(Ii) + Vo(Ri7) } s13 €6
{—Vl(ls) + VG(II) + VO(RGI) } S13 €7

{=Vs(Is) + Ve(Is) + Vo(Res) } sis €3
{+V3(Is) — Ve(I3) + Vo(R36) } s15 €5
{=V3(Is) + Vs(I3) + Vo(Rs3) } sis €6

The result is 21 separate variance-basis combinations, one for each of our 21 rotational Ryy, Each is identically 0
once we return to the potential function differentiation form, verifying V x Fir + Vo(Frot) = 0.

Now that we have finished the Octonion Algebra form for Maxwell’s Equations, expressing the Octonion
equivalent of complex conjugation ep — €¢ and e, — —e, for n # 0 with an underscore we can write

E(A(W)=1/J0/0ovi[ C;j T Ax] ¢ * e1 equivalently in the g basis = 0/0vi [ Ak g * gk ]
E(A(v))=1/10/0vi[ Cij T Ax] e * el equivalently in the g basis = 0/0vi [ Ak gi * gk |
(A(V)E =1/ 0/ovi [ Cij T Ax] el * ¢ equivalently in the g basis = 0/0v; [ Ak gk * gi |
(A(W)E =1/J0/ovi[ Cij T Ax] e * ¢ equivalently in the g basis = 0/0vi [ Ak gk * gi |

The proper form in any basis for the continuity equation expressing the conservation of 8-charge can be seen to
be

Scalar E(j) = 0 = scalar E(j) = scalar (j)E = scalar (j)E

For E and j represented in the intrinsic basis or form invariant global gauge, these equivalent continuity
equations hold identically, independent of any particular choice for the potential functions. We must require the
continuity equation holds in any basis, it therefore must also be a local algebraic basis gauge invariant.

The physics fields have algebraically variant content, and the 8-current is an algebraic invariant. Products of the
two will have variant content. Since force and work are observables, we must limit our 8-work—force
expression to the invariant content of such products. The proper covariant form for the Octonion 8—work—force
is found to be the content of the following that does not change when the Octonion Algebra orientation is
changed up (reference [1] et.al.)

wi=—"2{j*Fr+FL*j}

Working again within the intrinsic e basis or global algebraic basis gauge transformation g basis, j is a simple
native algebraic element expressible as j = jn en Or jn gn respectively. wf can then be more simply written in the
intrinsic e basis as follows:

Invariant( — % { j*Fr+FL*j }) =
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{ +31 (Vo(A1) + Vi(Ao)) + j2 (Vo(Az2) + V2(Ao)) + j3 (Vo(As) + V3(Ao)) + ja (Vo(As) + Va(Ao))

+ js (Vo(As) + Vs5(Ao)) + js (Vo(As) + Ve(Ao)) + j7 (Vo(A7) + V1(Ao)) } eo

{

+ jo (— Vo(A1) — Vi(Ao))

5 (Vi(A2) — Va(A1) — s (Vs(A1) — Vi(As))

135 (Vi(As) — Vs(A1) — s (Va(A1) — Vi(Ad))

‘}i'j7 (Vi(A7) = V(A1) — js (Vs(A1) — Vi(As))
€1

{

+ jo {— Vo(A2) — V2(Ao))

T35 (Va(As) — Va(A2) — 1 (Vi(As) — V(A1)

136 (Va(As) — Ve(As)) — s (Va(As) — Va(As))

‘}l'js (V2(As) — Vs(Az2)) — j7 (V(Az) — V2(A7))
€2

{

+jo (~Vo(As) — Va(Ao))

+1 (V3(A1) — Vi(As)) — j2 (Va(As) — Va(Az))

+ 7 (V3(A7) — V+(As)) — j4 (Va(As) — Va(As))

; js (V3(As) — Ve(A3)) — js (Vs(As) — V3(As))
(Sx]

{

+ jo (—=Vo(A4) — Va(Ao))

+ J1 (Va(A1) — Vi(A4)) — js (Vs(As) — Va(As))

+ J2 (Va(Az2) — V2(A4)) — jo (Vs(As) — Va(As))

-}i‘ J3 (Va(As) — V3(A4)) — j7 (V2(A4) — Va(A7))
€4

{

+ jo (=Vo(As) — Vs(Ao))

+ ja (Vs(As) — Va(As)) — 1 (Vi(As) — Vs(Ar))

+ j7 (Vs(A7) — Va(As)) — j2 (V2(As) — Vs(A2))

‘}f'j3 (Vs(As) — V3(As)) —js (Ve(As) — Vs(As))
Cs

{

+ jo (—=Vo(As) — Ve(Ao))

+j1 (Vs(A1) — Vi(As)) —j7 (V1(As) — Vs(A7))

+ ja (Vs(A4) — Va(As)) — j2 (V2(As) — Vs(A2))

‘}f'js (Vs(As) — Vs(As)) —j3 (V3(As) — Ve(As))
€6

{

+ jo (-Vo(A7) — V(Ao))

+ jo (V2(As) — Ve(A7)) — 1 (Vi(A7) — V(A1)
+ j2 (V2(A2) — V(A7) — js (Vs(A7) — V(As))
+ ja (V2(As) — Va(A7)) — s (V3(A7) — Vr(As))
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}67

If j was expressed in terms of its full potential function form, each of these algebraic element coefficients would
have 196 product terms, and it would be tough to see the forest for the trees so to speak. Further simplification
specifying in terms of the irrotational and rotational field representations used above we have

{1li — jala — jals — jala — jsIs — jels — j717 } eo

{+joli + j2R12 — jsR31 + jsRis — jaRa1 + j7R17 — jsRe1 } €1
{+jol2 + jsR23 — jiR12 + jsRas — jaRaz + jsR2s — j7R72 } €2
{+jols + jiR31 — j2R23 + j7R37 — jaRas + jsRas — jsRs3 } €3
{+jola + jiRa1 — jsRsa + joRaz — jeRes + jsRaz — j7R74 } €4
{+jols + jaRsa — jiR1s + jaRs3 — jsRes + j7Rs7 — j2Ra2s } s
{+jols + jiRe1 — j7R76 + jaRea — j2Ras + jsRes — jsR36 } €6
{+jol7 + jeR76 — jiR17 + joaR72 — jsRs7 + jaR7a — j3R37 } €7

Taking a clue from Electrodynamics, we see the scalar eo term is the negated inner product of the non-scalar 8—
current and the irrotational 8—field analogous to EM negated scalar product of charge current and electric field,
representing work. The non-scalar terms are the analogous Lorentz force; 8—charge density jo scaling the
irrotational portion of the 8—field, and the Octonion cross product of non-scalar 8—current density and the
rotational portion of the 8—field.

The algebraic variant portions of wf follow, likewise simplified by using field type components:

wf Variance s:

{-j3Rs7 +jsRa7+ j7Rs3 } s2 ex
{+j1R57 +j7R15 —j5R17 } S2 €3
{+j7R31 — jiR3s7 + jsRi7 } s2 €5
{—j5R31 —j3R15 —j1R53 } S2 €7

wf Variance ss

{+j3R76 + jeR37 — j7R36 } s4 €2
{-j2R76 + j7R26 + jeR72 } sa €3
{—j7R23 —j2R37 —j3R72 } S4 €6
{+jeR23 — j3R26 + j2R36 } s4 €7

wf Variance se

{+j2Res + jsRas — jeRas } s6 €1
{*less +j6R15 +j5R61 } Se €2
{—j6R12 —leze —j2R61 } Se¢ €5
{+jsRi2 — j2Ris + jiR2s } s6 €6

wf Variance ss

{_j5R76 _j6R57 —j7R65 } Sg €4
{+j4R76 + j7R6s — joR74 } ss €5
{-j7Rs4 + jaRs7 + jsR7a } ss €6
{+j6Rs4 — jsRe4 + jaRss } ss €7

wf Variance sio

{—j3R64 —j4R36 —j6R43 } S10 €1
{+j1Res + jeRa1 — jaRe1 } s10 €3
{jsR31 + jiR36 + jsRe1 } s10 €4
{+j4R31 — j3Ra1 + jiR43 } s10 €6
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wf Variance si2

{+j3Rsa —jaRs3 + jsRas } s12 €2
{—j2R54 —j5R42 —j4R25 } S12 €3
{5R23 + j2Rs3 + j3R2s } si2 €4
{+j4R23 + jsRaz2 — j2R4s } s12 €5

wf Variance sia

{+j2R74 — jaR722 + j7R42 } s1a €1
{—j1R74 —j7R41 —j4R17 } S14 C2
{-j7R12 + jiR72 + j2R17 } s1a €4
{+jaRi2 + j2Ra1 — jiR42 } s1a €7

All odd variances are null sets. If we were to keep within the philosophy that all observables are algebraic
invariants, the fact that this variant section is a portion of a meaningful observable, we could assert the terms in
any given variance set scaling a single basis element sum to zero. | call these homogeneous equations of
algebraic constraint. If we take the conclusions found in references [1][2] et.al. that the polar basis the electric
field lives in is the set { es es €7 } and axial basis the magnetic field lives in is the set { e: ez es }, from wf
Variance ss, requiring the sum {—jsR — jeRs7 — j7Rss } to equal zero would be a statement that the magnetic field
is orthogonal to the electric charge current, a reasonable restriction.

Enabling us to form conservation equations by rewriting Invariant(wf) with an outside differentiation on all
terms would be a monumental task if we did not have clues from Electrodynamics, and our requirement the
form must be an algebraic invariant to match Invariant(wf) as stated. To bring this difficulty home, for grins,
and in the interest of full disclosure, it is worth some document space to show the full differentiated potential
function form for Invariant(wf):

{

+Vo(A1)V?(A1) +VoVi(Ao)Vo(Ai1) +V1(Ao)V?(A1) +V1(Ao)VoVi(Ao) +Vo(A2)VZ(Az2) +VoV2(Ao)Vo(Az2)
+V2(A0)V?0(Az2) +V2(Ao0)VoV2(Ao) +Vo(A3)V?(As) +VoVi(Ao)Vo(Az) +V3(Aoc)V30(Asz) +Vi(Ao)VoVi(Ao)
FVo(A8)V20(As) +VoVa(A0)Vo(As) +Va(A0)V20(As) +Va(A0)VoVa(Ao) +Vo(As)V20o(As) +VoVs(Ao)Vo(As)
FV5(A0)V20(As) +V5(A0)VoV5(Ao) +Vo(Ae)V2o(As) +VoVs(Ao)Vo(As) +Ve(Ao)V20o( As) +Ve(Ac)VoVe(Ao)
+Vo(A7)VZ(A7) +VoV7(A0)Vo(A7) +V7(A0) V(A7) +V7(A0)VoV7(Ao) —V2(Ao0)VZ1(Az2) +V2(A0)ViV2(A))
—Vo(A2)V?1(Az2) +V1V2(A1)Vo(Az2) —V3(Ao0)V?1(As) +V3(Ao)ViVi(A1) —Vo(A3)V21(As) +V1Vi(A1)Vo(As)
Va(Ao)V21(As) +Va(A0)V1Va(A1) ~Vo(A8)V21(As) +V1Va(A1)Vo( As) ~V5(A0)V21(As) +Vs(Ao)V1 V(A1)
—Vo(As5)V21(As) +V1Vs(A1)Vo(As) —Ve(Ao)V?1(As) +Ve(Ao)ViVe(A1) —Vo(As)V?1(As) +V1Ve(A1)Vo(As)
—V7(A0)V?1(A7) +V1(A0)ViV(A1) =Vo(A7)V21(A7) +ViV(A1)Vo(A7) =V1(Ao)V*2(A1) +Vi(Ao)ViV2(A2)
—Vo(A1)VZ%(A1) +Vo(A1)ViVa(A2) —V3(Ao0)VZ(As) +V3(Ao)V2V3(Az2) —Vo(A3)VZ(As) +V2Vi(A2)Vo(As)
—Va(Ao)V?2(A4) +Vi(Ao0)V2Vi(Az) —Vo(A4)VZ2(A4) +V2Va(A2)Vo(As) —Vs(A0)VZ(As) +Vs(Ao)V2Vs(Az)
—Vo(As5)VZ(As) +VaVs(A2)Vo(As) —Ve(Ao)VZ2(As) +Ve(Ao)V2Ve(Az) —Vo(As)VZ2(As) +V2Ve(A2)Vo(As)
—V1(Ao0)V?(A7) +V1(A0)V2V7(A2) —Vo(A7)VZ(A7) +V2V7(A2)Vo(A7) —=V1(A0)V?3(A1) +V1(Ao0)V1V3(As)
—Vo(A1)VZ(A1) +Vo(A1)V1Vi(As) —V2(Ao0)VZ3(A2) +V2(Ao)V2V3(As) —Vo(A2)V?3(Az2) +Vo(A2)V2V3(As)
—Va(Ao0)V?(A4) +Va(Ao0)V3Vi(As) —Vo(A4)V?3(As) +V3Va(A3)Vo(As) —Vs(Ao)V?3(As) +Vs(Ao)ViVs(As)
Vo(A5)V25(As) +V3Vs(As)Vo(As) —Ve(Ao)V25(As) +Ve(A0)V3Vi(As) ~Vo(As)V25(As) +VVe(A5)Vo(Ac)
—V1(A0)V?(A7) +V7(Ao0)V3V1(As) —Vo(A7)V?(A7) +V3Vi(A3)Vo(A7) =Vi(Ao)VZ(A1) +V1i(Ao)ViVa(As)
—Vo(A1)V2(A1) +Vo(A1)ViVa(As) —V2(Ao0)VZi(Az2) +V2(Ao)V2Va(As) —Vo(A2)VZ(Az2) +Vo(A2)V2Va(As)
V3(A0)V24(As) +V3(A0)V3Va(As) —Vo(As)V2(As) +Vo(As)V3Va(As) —Vs(A0)V2i(As) +Vs(A0)VaVs(As)
Vo(A5)V24(As) +VaVs(A)Vo(As) —Ve(A)V2(As) +Ve( Ao)VaVie(As) ~Vo(Ac)V2i( As) +VaVs(A8)Vo(Aq)
—V1(A0)V21(A7) +V7(Ao)VaV1(As) —Vo(A7)V2(A7) +ViV(A4)Vo(A7) —V1(A0)V35(A1) +V1(Ao)ViVs(As)
—Vo(A1)V35(A1) +Vo(A1)ViVs(As) —V2(Ao)V35(Az) +V2(Ao)V2Vs(As) —Vo(A2)V35(Az) +Vo(A2)V2Vs(As)
V3(A0)V25(As) +V3(A0)V3V5(As) —Vo(As)V25(As) +Vo(As)VaVs(As) —Va(Ao)V25(As) +Va(A0)VaVs(As)
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—Vo(A4)V?5(A4) +Vo(A1)VaVs(As) —Vs(Ao)V?5(As) +V6(Ao)V5Ve(As) —Vo(As)V?s(As) +V5Ve(As)Vo(As)
—V7(A0)V?5(A7) +V1(A0)V5V7(As) —Vo(A7)V?s(A7) +V5V(As)Vo(A7) =V1(Ao)VZ6(A1) +Vi(Ao)V1Ve(As)
—Vo(A1)VZ3(A1) +Vo(A1)ViVe(As) —V2(A0)VZ(Az2) +V2(Ao)V2Ve(As) —Vo(A2)VZ(Az2) +Vo(A2)V2Ve(As)
—V3(Ao0)V3(As) +V3(Ao)V3Ve(As) —Vo(A3)VZ(As) +Vo(A3)V3iVe(As) —Va(Ao)VZ(As) +Va(Ao)VaVe(As)
—Vo(A4)V?6(As) +Vo(A2)VaVs(As) —Vs(Ao)VZ6(As) +V5(A0)V5Ve(As) —Vo(As)VZ6(As) +Vo(As)VsVe(As)
—V7(A0)V?6(A7) +V1(A0)VsV7(As) —Vo(A7)VZ6(A7) +V6V7(As)Vo(A7) =V1(Ao)V*1(A1) +Vi(Ao)ViV7(A7)
—Vo(A1)VZ(A1) +Vo(A1)ViVi(A7) —=V2(A0)V?(Az2) +V2(Ao0)V2V7(A7) —Vo(A2)V?7(Az) +Vo(A2)V2V7(A7)
—V3(Ao0)V?7(As) +V3(Ao)V3iVi(A7) —Vo(A3)V?(As) +Vo(A3)V3iVi(A7) —Via(Ao)V?(As) +Va(Ao)VaV7(A7)
—Vo(A4)V?7(As) +Vo(A2)VaV(A7) —=V5(Ao)V?7(As) +V5(Ao)VsV (A7) —Vo(As)V?1(As) +Vo(As)VsV(A7)
—Vs(Ao)V?7(As) +Ve(Ao)VsV7(A7) —Vo(As)V?7(As) +Vo(As)VsV7(A7)

}eo

{

FVoVa(Ao)V1(Az) ~VoVa(Ad)Va(Ar) +V1(A2)V20(Az) ~Va(A1)V0(A2) +VoVa(A0)Vi(As) —VoVa(Ao) V(A1)
FV1(A5)V20(As) —V5(A1)V20(As) +VoVa(Ao)Vi(As) —VoVa(A0)Va(A1) +Vi(As)V20(As) —Va(A1)V20(As)
FVoV5(A0)V1(As) —VoVs(Ao)Vs(A1) +V1(As)V20(As) —Vs(A1)V2o(As) +VoVe(A0)Vi(As) —VoVe(A) V(A1)
FV1(A6)V20(As) —~Ve(A)V20( As) +VoVr(A0)V1(A7) —VoV(A0)Vr(A1) +V1(A7)V20(Ar) —V(A)V20(A7)
—Vi(A2)V21(Az2) +V1V2(A1)Vi(Az2) +V2(A1)VA(A2) —Va2(A1)ViVa(A1) —Vi(A3)VZi(As) +ViVi(A1)Vi(As)
+V3(A1)V21(As3) =V3(A1)V1V3(A1) =Vi(A1)VZA(A4) +ViVa(A1)Vi(As) +Va(A1)V21(As) —Va(A1)V1Va(Ad)
V(A9 V21(As) +V 1 VS(A)Vi(As) +V5(ANV21(As) —Vs(A)V1Vs(Ar) ~Vi(A)V21(Ag) +V1Ve(A1)V1(As)
FVHANV2(As) VoAV Ve(A1) ~Vi(A) V(A7) +V1VA(ADVi(A7) +Vo(ANVE(A7) —Vo(ADViVA(A)
+Vo(A1)VoVi(A1) +VZ(Ao0)Vo(A1) +Vi(Ao)VoVi(Ar) +Vi(Ao)VZA(Ao) +V2V3(A2)Vi(Asz) —Vi(A3)VZ(As)
VA ADV2V(Az) +V3(ADNV2(As) +VaVa(A)Vi(As) ~V1(Ad)V2a(As) ~Va(A1)V2Vi(Az) +Va(A1)V22(Ad)
+V2Vs(A2)Vi(As) —Vi(As)V?2(As) —Vs(A1)V2Vs(Az) +Vs(A1)VZ2(As) +V2Ve(A2)Vi(As) —Vi(As)V?2(As)
—Vs(A1)V2Ve(Az) +Ve(A1)VZ3(As) +V2Vi(A2)V1(A7) —=V1(A7)VZ(A7) —V1(A1)V2V1(Az2) +V7(A1) V(A7)
+V1(A0)V22(Ao) +V1(A0)VoVa(A2) +V22(Ao)Vo(A1) +Vo(A)VoVa(Az) +Vi(A2)V2V5(As) —Vi(A)V2(As)
Va(A)VaV3(As) Vo ANV5(A2) +V3Va(A3)Vi(As) —V1(A8)V25(As) Va(A)V5Va(As) HVi(A)V2(Ad)
+V3Vs(A3)Vi(As) —Vi(As)VZ(As) —Vs(A1)ViVs(Az) +Vs(A1)VZ(As) +ViVe(A3z)Vi(As) —Vi(As)V?3(As)
—Vs(A1)V3iVe(As) +Ve(A1)VZ3(As) +V3iVa(A3)Vi(A7) —=V1i(A7)VZ(A7) —V1(A1)V3iVi(As) +V7(A1) V(A7)
+V1(A0)V25(Ao) +V1(A0)VoV3(As) +V25(A0)Vo(A1) +Vo(A)VoVi(As) +V1(A2)V2Va(As) —Vi(A2)V2(As)
Va(A)VaVa(As) Vo ANV24(Az) +V1(A5)V3Va(As) —V1(A5)V2(As) V(A5 Va(A) HV5(A)V2(As)
+ViVs(A4)Vi(As) —Vi(As)V2(As) —Vs(A1)VaVs(Aa) +Vs(A1)V2(As) +VaVe(A1)Vi(As) —V1(As)V24(As)
—Vs(A1)VaVe(As) +Ve(A1)VZ4(As) +VaV7(A1)V1(A7) —Vi(A7)VZ4(A7) —=V7(A1)ViVi(As) +Va(A1) V(A7)
+V1(Ao0)VZ4(Ao) +V1(A0)VoVi(As) +V24(A0)Vo(A1) +Vo(A1)VoVa(As) +Vi(A2)V2Vs(As) —Vi(A2)VZs5(Az)
—V2(A1)V2Vs(As) +Va(A1)V3s5(Az) +Vi(A3)ViVs(As) —Vi(A3)VZs5(As) —V3(A1)ViVs(As) +Vi(A1)VZs(As)
+V1(A4)VaVs(As) —Vi(A1)V?5(As) —Va(A1)VaVs(As) +Va(A1)V?5(As) +V5Ve(As)Vi(As) —V1(As)Vs(As)
—Vs(A1)VsVe(As) +Ve(A1)VZ5(As) +VsV7(As)Vi(A7) —Vi(A7)V?5(A7) —=V1(A1)VsVa(As) +Va(A1) V(A7)
+V1(Ao0)V?5(Ao) +V1(A0)VoVs(As) +V5(Ao)Vo(A1) +Vo(A1)VoVs(As) +Vi(A2)V2Ve(As) —Vi(A2)VZ6(Az2)
—V2(A1)V2Ve(As) +V2(A1)VZ36(Az2) +V1(A3)V3Ve(As) —Vi(A3)VZ6(As) —V3(A1)V3Ve(As) +V3i(A1)VZ6(As)
+V1(A4)ViVe(As) —V1(A1)V36(As) —Va(A1)VaVe(As) +Va(A1)V?6(As) +V1(As5)V5Ve(As) —V1(As)VZ6(As)
—Vs(A1)VsVe(As) +Vs(A1)VZ6(As) +VsV7(As)V1(A7) —Vi(A7)VZ6(A7) —V1(A1)V6V1(As) +V1(A1)VZ6(A7)
+V1(A0)VZ6(Ao) +V1(A0)VoVe(As) +VZ6(A0)Vo(A1) +Vo(A1)VoVe(As) +V1(A2)V2V7(A7) —Vi(A2)VZ(A2)
VA ANV2Vi(Ar) +Va(ADV2(A2) +Vi(A3)V3VA(A7) —Vi(A5)V2(As) —V3(A1V3Va(Ar) +V3(A1)V2H(As)
+V1(A4)ViVi(A7) —Vi1(A1)V?(As) —Va(A1)VaV7(A7) +Va(A1)V?1(As) +V1(As5)V5V(A7) =V1(As)V?(As)
—Vs(A1)VsVi(A7) +Vs(A1)VZ3(As) +Vi(As)VeV7(A7) —Vi(As)V*(As) —Vs(A1)VsV7(A7) +Ve(A1)V*1(As)
+V1(Ao)V*1(Ao) +V1(Ao)VoV7(A7) +V?7(Ao)Vo(A1) +Vo(A1)VoV7(A7)

} e
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{

+VoV1(Ao)V2(A1) —VoVi(Ao)Vi(Az2) +V2(A1)VZ(A1) —VZ(A1)Vi(Az2) +VoV3(Ao)V2(As) —VoV3(Ao)Vi(A2)
+V2(A3)V?0(As) —V3(A2)VZ0(Asz) +VoVa(Ao)V2(A4) —VoVia(Ao)Va(Az2) +V2(A4)V20(A4) —Va(A2)V0(A4)
FVoV5(A0)Va(As) —VoVs(A0)V5(Az) +Va(As)V20(As) —Vs(A2)V20(As) +VoVe(Ao)Va(As) —VoVie(Ao)Ve(A2)
+V2(As)V?0(As) —V(A2)VZ0(As) +VoV7(Ao)V2(A7) —VoV1(Ao)V7(Az2) +V2(A7)V?(A7) —V(A2) V(A7)
+ViV3(A1)V2(As) —V2(A3)VZ4(As) —ViV3(A1)V3(Az2) +V3(A2)V21(As) +ViVa(A1)Va(As) —V2(A4)V?1(As)
—ViVa(A1)Va(Az) +Vi(A2)V2i(A4) +V1iVs(A1)V2(As) —V2(As)VZi(As) —=ViVs(A1)Vs(Az) +Vs(A2)VE(As)
FVIVo(A)Va(As) -Va(A6)V21(A) ViV A)Ve(A2) HVe(A2)V1(As) +V1VA(ANV(A7) —Va( A7)V (A7)
—ViVi(A1)Vi(Az2) +V1(A2) V(A7) +V2(A0)VZi(Ao) TV2(Ao)VoVi(Ai1) +V21(A0)Vo(Az2) +VoVi(A1)Vo(Az2)
—Vi(A2)ViVa(Az) +VZ(A1)Vi(Az2) +V2(A1)ViV2(Az) —V2(A1)VZ2(A1) —V2(A3)VE(As) +V2Vi(A2)V2(As)
+V3(A2)V%2(As) —V3(A2)V2Vi(Az) —V2(A1)V*2(As) +V2Va(A2)V2(As) +Va(A2)V2(A4) —Va(A2)V2Va(A2)
Va(A9)V22(As) +VaV5(A2)Va(As) +Vs(A2)V22(As) ~Vs(A2)VaVs(Az) ~Va(Ae)V22( As) +V2Vs(A2)Va(Aq)
FVo(A2)V22(Ae) —Ve(A2)VaVe(A2) —Va(A1)V22( A7) +VaV(A2)Va(Ar) +V(A2)V22( A7) ~V+(A2)VaVo(As)
FVo(A2)VoVa(Az) +V2(A0)Vo(Az) +Va(A0)VoVa(A2) +Va(A0)V22(Ao) +Va( AV Vi(As) —Va(AD)V25(A1)
Vi(A)ViV5(As) HV3(ANV(A2) +V5Va(As)Va(As) —Va(Aa)V25(As) —Va(A2)V3Va(As) +Va(A2)V35(As)
+V3Vs(A3)V2(As) —V2(As)VZ(As) —Vs5(A2)ViVs(Az) +Vs(A2)VZ(As) +ViVe(Az)Va(As) —V2(As)V?3(As)
—V6(A2)V3Ve(As) +Ve(A2)VZ3(As) +V3Vi(A3)V2(A7) —V2(A7)VZ(A7) —V1(A2)V3Vi(As) +V7(A2) V(A7)
FV2(A0)V25(Ao) +Va(A0)VoV3(As) +V25(A0)Vo(As) +Vo(A2)VoV(As) +Va(ANV:1Va(As) -Va(A1)V(A1)
Vi(A)ViVa(As) VAV 1(A2) +Va(A3)V3Va(As) —Va(A5)V4(As) —V3(A2)V3Va(As) +V3(A2)V2i(As)
+ViVs(A4)V2(As) —V2(As)V2(As) —Vs5(A2)VaVs(Aa) +Vs(A2)V2(As) +VaVe(A1)V2(As) —V2(As)V24(As)
—Vs(A2)VaVe(As) +Ve(A2)VZ4(As) +VaV7(A1)V2(A7) —V2(A7)VZ(A7) —V7(A2)ViVi(As) +V1(A2) V(A7)
+V2(A0)V24(Ao) +V2(A0)VoVia(As) +V24(A0)Vo(Az2) +Vo(A2)VoVa(As) +V2(A1)ViVs(As) —V2(A1) V(A1)
Vi(A))V1Vs(As) HV25(A)Vi(A2) +Va(As)V3Vs(As) —Va(As)V25(As) —Vs(A2)V5V5(As) +V5(A2)V25(As)
+V2(A4)VaVs(As) —V2(A1)V?5(As) —Va(A2)VaVs(As) +Va(A2)V?5(As) +V5Ve(As)V2(As) —V2(As)Vs(As)
—V6(A2)VsVe(As) +Ve(A2)V35(As) +VsVi(As)Va(A7) —Va(A7)V35(A7) —V1(A2)VsVi(As) +V7(A2)V2s(A7)
FV2(A0)V25(A0) +V2(A0)VoV5(As) +V25(A0)Vo(As) +Vo(A2)VoVs(As) +Va(AV1Ve(As) —Va(A)V2(A1)
Vi(A))V1Ve(As) HV2(A)Vi(A2) +Va(As)V3Vi(Ae) —Va(As)V2e(As) ~V3(A2)V3Ve(As) +V5(A2)V26(As)
+V2(A4)ViVe(As) —V2(A1)VZ6(As) —Va(A2)VaVe(As) +Va(A2)VZ6(As) +V2(As5)V5Ve(As) —V2(As)VZ6(As)
—Vs5(A2)VsVe(As) TVs(A2)VZ6(As) +VeV7(As)V2(A7) —V2(A7)VZ6(A7) —V7(A2)VsV1(As) +V1(A2)VZ6(A7)
FV2(A0)V26(A0) +V2(A0)VoVe(As) +V26(A0)Vo(As) +Vo(A2)VoVi(As) +Va( AV V(A7) —Va(A)V2(A1)
Vi(A)ViVA(A7) HV2(A)Vi(A2) +Va(As)V3Vr(A7) —Va(As)V2(As) ~Vs(A2)V5V(A7) +V5(A2)V2(As)
+V2(A4)VaVi(A7) —V2(A1)V?(As) —Va(A2)VaV7(A7) +Va(A2)V?1(As) +V2(As5)V5V(A7) —=V2(As)V?(As)
—Vs5(A2)VsVi(A7) +Vs(A2)VZ(As) +V2(As)VeV7(A7) —V2(As)V*(As) —Vs(A2)VsV7(A7) +Ve(A2)VZ1(As)
+V2(Ao0)V?7(Ao) +V2(A0)VoV7(A7) +V?7(A0)Vo(Az2) +Vo(A2)VoV7(A7)

} e

{

FVoV1(A0) V(A1) ~VoVi(Ad)Vi(As) +Va(A1)V20(A1) ~V2o( A1)V i(As) +VoVa(A0)Va(Az) ~VoVa(Ac)Va(As)
FV3(A2)V20(Az) —V20(A2)Va(As) +VoVa(A0)V3(A) —VoVa(Ao)Va(As) +V3(As)V20(As) —Va(As)V0( Ad)
+VoVs5(Ao0)Vi(As) —VoVs(Ao)Vs(As) +Vi(As)VZ(As) —Vs(Az)V2(As) +VoVe(Ao)V3(As) —VoVes(Ao)Ve(As)
FV3(A6)V20(Ag) —Vs(A3)V20( As) +VoV7(A0) V(A7) ~VoV(A0)V(As) +V(Ar)V2o( A7) —V(As)V20(Ar)
FVAVa(ANV5(Az) —V3(A2)V21(Az) ~V1Va(A1)Va(As) HV2(A2)Va(As) +V1Va(AV5(As) -V(As)V2(As)
—V1iVa(A1)Va(As) +Vi(A3)V2i(As) +V1Vs(A1)V3(As) —V3(As)VZi(As) —=ViVs(A1)Vs(As) +Vs(Az)VA(As)
+V1Vs(A1)Vi(As) —V3(As)VZ1(As) —V1Ves(A1)Ve(A3) +Ve(A3)V1(As) +ViV7(A1)V3(A7) —V3(A7) V(A7)
—ViV(A1)Vi(As) +V7(A3)V21(A7) +V3(Ao)VA(Ao) +V3(A0)VoVi(A1) +VZ1(Ao)Vo(As) +VoVi(A1)Vo(As)
FVH(ANVIVa(As) —V3(ADV2(A1) —V1Va(A)V1(As) HV2a( AV i(As) +VaVa(A2)V(As) -V(As)V2(As)
—V2Va(A2)Va(As) +Va(As3)VZ(As) +V2Vs(A2)V3(As) —V3(As)VZ(As) —V2Vs(A2)Vs(As) +Vs(Az)V3(As)
+V2Vs(A2)Vi(As) —V3(As)VZ2(As) —V2Ve(A2)Ve(As) +Ve(A3)VZ2(As) +V2V7(A2)V3(A7) —V3(A7) V(A7)
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—V2V7(A2)Vi(As) +V7(A3)VZ(A7) +V3(Ao)VZ2(Ao) +V3(A0)VoV2(Az2) +VZ2(Ao0)Vo(As) +VoV2(A2)Vo(As)
_Vi(A5)V1V3(As) +V25(A1)Vi(As) HV3(A)ViVi(As) —Va(A) V(A1) —Va(A5)VaVs(As) +V25(A2)Va(As)
+V3(A2)V2Vi(Asz) —V3(A2)VZ3(Az2) —V3(A4)VZ3(As) +V3Va(A3)Vi(As) +Va(As)V2(As) —Va(As3)V3Va(As)
—Vi3(As)VZ3(As) +ViVs(Az)Vi(As) +Vs(A3)V3(As) —Vs(A3)ViVs(As) —Vi(As)V3(As) +V3Ve(As)V3(As)
FVe(A3)V25(As) ~Vie(As)V3Ve(As) —V3(A7)V25(A7) TV5Vr(A3)V5(Ar) +V(As)V3(A7) —V(As)V3V(As)
+Vo(A3)VoVi(As) +V23(A0)Vo(As) +V3(Ao)VoV3(As) +Vi(Ao)VZ(Ao) +Vi(A1)ViVa(As) —Vi(A1)VZ4(Ad)
—V1(A3)ViVa(As) +V2(A1)Vi(As) +V3(A2)V2Va(As) —V3(A2)VZ(A2) —V2(A3)V2Va(As) +V24(A2)V2(As)
+V4Vs(A1)Vi(As) —V3(As)V24(As) —Vs5(A3)VaVs(As) +Vs(A3)V24(As) +VaVe(A1)Vi(As) —V3(As)V24(As)
Vo(A3)VaVe(As) +Ve(As)V2(Ac) +VaVr(As)V5(A7) —V5(A7)V24( A7) ~V(A5)VaV(As) +V(As) V(A7)
+V3(Ao0)VZ4(Ao) +V3(Ao)VoVa(As) +V24(A0)Vo(As) +Vo(A3)VoVa(As) +V3(A1)V1Vs(As) —Vi(A1)VZs(Ar)
—Vi(A3)ViVs(As) +V25(A1)Vi(As) +V3(A2)V2Vs(As) —Vi(A2)V35(Az2) —V2(A3)V2Vs(As) +V25(A2)V2(As)
+V3(A4)ViVs(As) —V3(A1)V?5(As) —Va(A3)VaV5(As) +Va(A3)V?5(As) +V5Ve(As)Vi(As) —Vi(As)V?s(As)
—V6(A3)VsVe(As) +Ve(A3)V35(As) +VsVi(As)V3(A7) —Vi(A7)V35(A7) —V1(A3)VsVi(As) +V7(Az)V3s(A7)
+V3(Ao)V?s5(Ao) +V3(Ao)VoVs(As) +V25(Ao)Vo(As) +Vo(A3)VoVs(As) +Vi(A1)ViVe(As) —V3(A1) V(A1)
Vi(As)ViVe(Ae) +V2(A1)Vi(As) +V5(A2)VaVe(As) —V3(A2)V2e(A2) ~Va(As)VaVe(As) +V2( A2)Va(As)
FV5(A8)VaVo(As) —V5(As)V26(As) —Va(As)VaVe(As) +Va( As)V6(As) +V35(A5)VsV(As) —V3(As)V2(As)
—Vs(A3)VsVe(As) +Vs(A3)V23(As) +VeVi(As)V3(A7) —V3(A7)V3(A7) —V1(A3)VsV1(As) +V7(A3)V36(A7)
+V3(Ao)V3Z6(Ao) +V3(A0)VoVe(As) +V?6(A0)Vo(As) +Vo(A3)VoVe(As) +V3(A1)ViV(A7) —Vi(A1) V(A1)
Vi(As)ViVi(A7) +V2(A)Vi(As) +V5(A2)VaVr(A7) —V3(A2)V2(A2) ~Va(As)VaV(Ar) +V2(A2)Va(As)
FV5(As)VaVr(A7) ~V3(A8)V2(As) ~Va(A3)VaV(Ar7) +Va(A3)V2(As) +V3(A5)VsVr(Ar) —V(As)V2(As)
—Vs5(A3)VsVi(A7) +Vs(A3)VZ3(As) +Vi(As)VeV7(A7) —Vi(As)V*(As) —V6(A3)VsVr(A7) +Ve(A3)VZ2(As)
+V3(Ao0)V?1(Ao) +V3(Ao)VoV7(A7) +V?2(A0)Vo(As) +Vo(A3)VoV(A7)

}es

{

FVoV1(A0)Va(A1) ~VoVi(Ad)Vi(As) +Va(A1)V20(A1) ~V2o( A1)V i(As) +VoVa(A0)Va(Az) ~VoVa(Ac)Va(As)
FVa(A2)V20(Az) ~V20(A2)Va(As) +VoV3(A0)Va(As) —VoV3(A0)V3(As) +Va(As)V20(As) —V2o( As)V5(As)
FVoVs(A0)Vi(As) —VoVs(Ao)Vs(A) +Va(As)V20(As) ~Vs(As)V20(As) +VoVi( Ao)Va(As) ~VoV(A0)Ve(Ad)
FVa(As)V20(As) —Vo(Ad)V20( As) +VoVr(A0)Va(A7) ~VoV2(A0)Vr(As) +Va(A7)V20( A7) —Vr(Ad)V2o( A7)
FVAVa(A)Vi(Az) ~Va(A2)V21(Az) ~V1Va(A1)Va(A) +V21(A2)Va(As) +V1Va(A)Va(As) —Vi(As)V2(As)
_V\Vs(A)V5(As) HV21(A3)V3(As) ViV5(ADNVa(As) —Va(As)V21(As) —V1Vs(A1)Vs(As) +Vs(As)V2i(As)
+V1Ve(A1)Va(As) —Va(As)V?1(As) —V1Ve(A1)Ve(A4) +Vs(A1)V?1(As) +ViVH(A1)Va(A7) =Va(A7)V?1(A7)
—V1Vi(A1)Vi(As) +V1(A2)VA(A7) +Va(Ao)VZ1(Ao) +Vi(Ao)VoVi(A1) +V21(A0)Vo(A4) +VoVi(A1)Vo(A4)
+Va(A1)ViV2a(Az) V(A1) VZ(A1) —ViV2(A2)Vi(A4) +V2(A1)Vi(A4) +V2V3(A2)Va(As) —Va(A3)VZ2(As)
—V2Vi3(A2)V3(As) +V?2(A3)Vi(As) +V2Vs(A2)Va(As) —Va(As)V*2(As) —V2Vs(A2)Vs(Aa) +Vs(A1)VZ2(As)
+V2Ve(A2)Va(As) —Va(As)V22(As) —V2Ve(A2)Ve(As) +Vs(A1)VZ2(As) +V2V7(A2)Va(A7) =Va(A7)VZ2(A7)
—V2Vi(A2)Vi(As) +V1(A1)V*2(A7) +Va(Ao)VZ2(Ao) +Vi(Ao)VoV2(Az) +V?2(A0)Vo(As) +VoV2(A2)Vo(A4)
+Va(A1)ViVi(As) V(A1) V(A1) —ViVi(A3)Vi(As) +V2(A1)Vi(Ag) +Va(A2)V2V3(As) —Va(A2)V(A2)
—V2Vi3(A3)Va(As) +VZ3(A2)V2(As) +V3Vs(A3)Va(As) —Va(As)V?(As) —V3iVs(As3)Vs(Aa) +Vs(A1)VZ(As)
+V3Ve(A3)Va(As) —Va(As)V?3(As) —V3Ve(A3)Ve(As) +Ve(A1)V?3(As) +V3V7(A3)Va(A7) =Va(A7)VZ(A7)
—V3Vi(A3)Vi(As) +V1(A1)VZ3(A7) +Va(Ao)VZ3(Ao) +Via(Ao)VoVi(As) +V2(A0)Vo(As) +VoV3(A3)Vo(A4)
Vi(A)V1Va(As) V(AN 1(A) +Vi(A)V1Va(As) —Va(ADV2(A1) —Va(A)VaVa(As) +V24(A2)Va(As)
FVa(A2)VaVi(As) —Vi(A2)V24(Az) ~V3(A8)V3Va(A) +V2(A3)V3(As) +Va(A5)V3Va(As) ~Vi(A3)V2(As)
—Vi(As)V?4(As) +VaVs(A4)Va(As) +Vs(A1)V2(As) —V5(A4)VaVs(As) —Vi(As)V?4(As) +VaVe(A4)Va(As)
+V6(A1)VZ4(As) —Ve6(A1)ViVe(As) —Va(A7)V24(A7) +ViVi(A1)Va(A7) +V(A4)V24(A7) =V1(A1)ViV1(As)
FVo(As)VoVi(As) +V2(A0)Vo(As) +Va(A0)VoVa(As) +Vi(A0) V(o) +Va(ANV1Vs(As) —Vi(A)V25(A1)
Vi(A)ViV5(As) VAV 1(As) +Vi(A2)VaVs(As) —Va(A2)V25(A2) —Va(Aa)V2Vs(As) +V25(A2)Va(As)
+Vi(A3)V3iVs(As) —Va(A3)V?5(Az) —V3(A4)V3Vs(As) +V25(A3)Vi(As) +V5Ve(As)Va(As) —Va(As)Vs(As)
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_Vo(A)VsVe(As) HVe(A)Vs(As) +VsV(A5)Vi( A7) —Va(A7)V25(A7) —V(As)V5V(As) +V(As)V25(A)
+V4(Ao)V?s5(Ao) +Vi(Ao)VoVs(As) +V5(Ao0)Vo(As) +Vo(A1)VoVs(As) +Va(A1)ViVe(As) —Va(A1) V(A1)
—V1i(A4)ViVe(As) +VZ6(A1)V1(As) +Va(A2)V2Ve(As) —Va(A2)VZ36(A2) —V2(A4)V2Ve(As) +V26(A2)V2(As)
+V4(A3)V3Ve(As) —Va(A3)V36(As) —V3(A1)V3Vs(As) +V36(A3)V3(A4) +Va(As5)VsVe(As) —Va(As)V36(As)
_Vs(A))VsVe(As) HV5(A)V2(As) +VeV(A6)Va( A7) —Va(A7)V2e( A7) —VA(A6)VsV(As) +V(As)V2(A)
+Va(Ao)V?6(Ao) +Va(Ao)VoVs(As) +V26(A0)Vo(A4) +Vo(A4)VoVe(As) +Va(A1)V1Vi(A7) —Va(A1)VZ(Ar)
—Vi(A4)ViVi(A7) +VZ1(A1)Vi(As) +Va(A2)V2V7(A7) —Va(A2)V?(Az2) —V2(A4)V2V1(A7) +V22(A2)V2(As)
+V4(A3)V3Vi(A7) —Va(A3)V*(As) —V3(A1)ViV(A7) +V2(A3)Vi(As) +Va(As)VsVi(A7) —Va(As)V?9(As)
_Vs(A)VsVo(Ar) HVs(A)V21(As) +Va(As)VeVr(A7) —Va(As)V2r(As) —Ve(As)VsVr(A7) +V(As)V2(As)
+Va(Ao)V?1(Ao) +Va(Ao)VoV7(A7) +V?7(Ao)Vo(A4) +Vo(A4)VoV7(A7)

}es

{

FVoV1(A0)Vs(A1) ~VoVi(Ad)Vi(As) +V5(A)V20(A1) ~V2o(A)Vi(As) +VoVa(A0)Vs(Az) —VoVa(Ao)Va(As)
FV5(A2)V20(Az) ~V2o(A2)Va(As) +VoV3(A0)Vs(As) —VoVs(A0)V3(As) +Vs(As)V2o(As) —V2o(As)V(As)
FVoVa(A0)Vs(Ax) —VoVi(Ao)Va(As) +V5(Ad)V20(As) —V2o(A8)Va(As) +VoVo(A0)Vs(As) —VoVie(A)Ve(As)
FV5(As)V20(As) Ve As)V20( As) +VoVr(A0)Vs(Ar) ~VoV(A0)Vr(As) +Vs(A7)V20o(Ar) —V(As)V2o(A7)
+V1V2(A1)Vs(Az2) —Vs(A2)V4(Az2) —ViVa(A1)V2(As) +V2(A2)V2(As) +ViVi(A1)Vs(As) —=Vs(Az)V21(As)
V(A1) V3(As) V21(A3)V3(As) +V1Va(A1)Vs(As) —Vs(Ax) V21(As) ~ViVa(A1)Va(As) +V21(A8)Va(As)
FVAVo(ADV5(A6) ~V3(A6)V21(Ae) ~V1 Vo(A1)Ve(As) +Ve(As)V21(As) +V1VA(ANV5(A7) ~Vs(A7)V(Ar)
—ViV(A1)Vi(As) +V1(As)V?1(A7) +Vs(Ao)V*1(Ao) +V5(Ao)VoVi(A1) +V21(Ao)Vo(As) +VoVi(A1)Vo(As)
+Vs5(A1)V1V2(Az2) —Vs(A1)VZ2(A1) =ViVa(A2)Vi(As) +V2(A1)Vi(As) +V2Vi(A2)Vs(As) —Vs(Az)V2(As)
VaVi(A2)Vs(As) HV22(As)V3(As) +VaVa(A2)Vs(As) —Vs(As)V22( As) ~VaVa(A2)Va(As) +V22(As)Va(As)
+V2Ve(A2)Vs(As) —Vs(As)V2(As) —V2Ve(A2)Ve(As) +Ve(As)V22(As) +V2V1(A2)Vs(A7) =Vs(A7)VZ2(A7)
—V2V7(A2)Vi(As) +V1(As)VZ(A7) +Vs(Ao)VZ2(Ao) +V5(A0)VoV2(Az) +VZ(Ao)Vo(As) +VoV2(A2)Vo(As)
+Vs(A1)ViVi(As) —Vs(A1)V23(A1) —ViVi(A3)Vi(As) +V2(A1)Vi(As) +Vs(A2)V2Vi(As) —Vs(A2)V3(A2)
VaVi(As)Va(As) HV25(A2)Va(As) +V3Va(An)Vs(As) —Vs(Ad)V25(As) —V:Va(A3)Va(As) +V25(A8)Va(As)
+V3Ve(A3)Vs(As) —Vs(As)V23(As) —V3Ve(A3)Ve(As) +Ve(As)V23(As) +ViV(A3)Vs(A7) —=Vs(A7)VZ(A7)
—V3V(A3)Vi(As) +V1(As)VZ3(A7) +Vs(Ao)VZ(Ao) +Vs5(A0)VoVi(Az) +VZ(Ao)Vo(As) +VoVi(A3)Vo(As)
FVSADVIV(As) ~Vs(A)V2(A1) ~ViVa(Aa)Vi(As) HV2(ADV1(As) +Vs(A2)VaVa(As) Vs(A2)V24(Ax)
VaVa(Ad)Va(As) HV2(A2)Va(As) +V(As)VaVia(As) —Vs(As)V2i(As) —V:Va(Aa)V3(As) +V2(A3)V3(As)
+ViVe(A4)Vs(As) —Vs(As)V2a(As) —VaVe(A1)Ve(As) +Vs(As)V2(As) TVaV(A4)Vs(A7) —=Vs(A7)V24(A7)
—ViVi(A1)Vi(As) +Vi(As)VZ(A7) +V5(Ao)VZa(Ao) +V5(Ao)VoVa(As) +V24(A0)Vo(As) +VoVi(A1)Vo(As)
—V1(As)ViVs(As) +V35(A1)Vi(As) +Vs(A1)ViVs(As) —Vs(A1)VZs5(A1) —V2(As)V2Vs(As) +V2s5(A2)V2(As)
FV5(A2)VaVs(As) —Vs(A2)V25(As) —Vs(As)V3Vs(As) +V2s(A5)V3(As) +V5(As)V3Vs(As) —Vs(As)V25(As)
—Vi(As5)VaVs(As) +V?5(A4)Va(As) +Vs(A1)VaVs(As) —Vs(A1)VZ5(As) —=Vs(As)V?5(As) +V5Ve(As)Vs(As)
+Vs(As)V?s5(As) —Ve(As)VsVe(As) —Vs(A7)V?5(A7) +VsVa(As)Vs(A7) +V(As)V3s(A7) =Vi(As)VsVa(As)
FVo(As)VoVs(As) +V25(A0)Vo(As) +Vs(A0)VoVs(As) +Vs(A0)V25(Ac) +Vs(ANV1Ve(As) -Vs(A1)V2(A1)
—V1(As)ViVe(As) TV36(A1)Vi(As) +Vs(A2)V2Ve(As) —Vs(A2)VZ6(Az2) —V2(As)V2Ve(As) +V36(A2)V2(As)
+V5(A3)ViVe(As) —Vs(A3)V2(A3) —V3(As)ViVe(As) +V26(A3)V3i(As) +Vs(A4)VaVe(As) —Vs(A1)VZ6(As)
—Vi(As5)VaVe(As) +V36(A4)Va(As) +VsV7(As)Vs(A7) —Vs(A7)VZ6(A7) —V1(As)VsV1(As) +V1(As)VZ6(A7)
+V5(Ao0)VZ6(Ao) +Vs5(A0)VoVe(As) +VZ6(Ao)Vo(As) +Vo(As)VoVe(As) +Vs(A1)ViV(A7) =Vs(A1)VZ3(Ar)
Vi(A)ViVi(A7) VAV (As) +Vs(A2)VaVA(A7) —Vs(A2)V2o(A2) —Va(As)VaV(Ar) +V2(A2)Va(As)
+Vs(A3)ViVi(A7) —Vs(A3)V?2(Az) —V3(As)ViV7(A7) +V21(A3)Vi(As) +Vs(A4)VaV(A7) —=Vs(A1)V?(As)
—Vi(As5)VaVi(A7) +V?(A4)Va(As) +Vs(As)VeV7(A7) —Vs(As)V*(As) —V6(As)VsV7(A7) +Ve(As)V?1(As)
+V5(Ao0)V*7(Ao) +Vs5(Ao)VoV7(A7) +V?7(Ao)Vo(As) +Vo(As)VoV(A7)

}es
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{

+VoV1(Ao)Vs(A1) —=VoV1(Ao)Vi(As) +Ve(A1)V?0(A1) —VZ(A1)Vi(As) +VoV2(Ao)Ve(Az2) —VoV2(Ao)V2(As)
+V6(A2)VZ0(Az2) —V?(A2)V2(As) +VoV3(Ao)Ve(As) —VoV3(Ao)V3(As) +Ve(A3)V20(Asz) —V3(A3)V3(As)
FVoVa(Ao)Ve(As) ~VoVa(A)Va(As) +Ve(As)V20(As) —V20(As)Va(As) +VoV5(A0)Vs(As) —VoVs(Ao)Vs(As)
+V6(As)V?(As) —V?(As)Vs(As) +VoV7(Ao)Ve(A7) —VoV1(Ao)V7(As) +Ve(A7)V?(A7) —V(As) V(A7)
+ViV2(A1)Ve(Az2) —Ve(A2)VZ1(A2) —ViVa(A1)V2(As) +V21(A2)V2(As) +ViV3(A1)Ve(As) —Ve(A3)V?1(As)
—V1iV3(A1)Vi(As) +V21(A3)V3(As) +V1Va(A1)Ve(As) —Ve(A1)VZ1(As) —V1Va(A1)Vi(As) +V21(A4)Va(As)
FVIVS(AWVe(As) —Ve(As)V21(As) —V1Vs(AV5(As) +V21(As)Vs(A) +V1VA(ADVe(Ar) ~Ve(Ar)V2(A)
—V1iV(A1)Vi(As) +V7(As)V?1(A7) +Ve(Ao)V*1(Ao) +V6(Ao)VoVi(A1) +VZ1(Ao)Vo(As) +VoVi(A1)Vo(As)
+Vs(A1)V1V2(Az2) —Ves(A1)V*32(A1) —ViV2(A2)Vi(As) +VZ3(A1)Vi(As) +V2V3(A2)Ve(As) —Ve(A3)V22(As)
—V2Vi3(A2)Vi(As) +V22(A3)V3(As) +V2Va(A2)Ve(As) —Ve(A1)VZ2(As) —V2Va(A2)Vi(As) +V22(A4)Va(As)
FVaV5(A2)Ve(As) —Vo(As)V2a(As) —VaVs(A2)V5(As) +V22(As)Vs(As) +VaV(A2) V(A7) —Ve(Ar)V22(Ar)
—V2V7(A2)Vi(As) +V7(As)VZ2(A7) +Ve(Ao)VZ2(Ao) +Ve(Ao)VoV2(Az2) +VZ(Ao)Vo(As) +VoV2(A2)Vo(As)
FVHANVIV5(As) —Ve(ANV3(A1) ~V1V3(As)V1(As) HV25(A1)Vi(Ae) +Ve(A2)VaV5(As) ~Ve(As)V2(As)
_VaVs(A5)Va(As) +V25(A2)Va(Ae) +V5Va(As)Ve(As) —Ve(A)V25(As) —V3Vi(A3)Va(As) +V25(Ad)Va(Ad)
+V3Vs5(As3)Ve(As) —Ve(As)V23(As) —ViVs(Az)Vs(As) +V23(As)Vs(As) +ViV(A3)Ve(A7) —Vs(A7) V(A7)
—V3V(A3)Vi(As) +V1(As)V?(A7) +Ve(Ao)V?(Ao) +Vs(Ao)VoV3(Az) +V2(Ao)Vo(As) +VoV3(A3)Vo(As)
FV(ADVIV(As) Ve(A)V2(A1) ~ViVa(Aa)Vi(As) +V2( A1)V 1(As) +Ve(A2)VaVa(As) —Ve(A2)V24(As)
_VaVa(A8)Va(As) +V2(A2)Va(Ae) +Ve(A3)V3Va(As) —Ve(As)V24(As) —V3Vi(As)V3(As) +V24(A5)V5(Ad)
+ViVs(A4)Ve(As) —Ve(As)V2(As) —VaVs(Aa)Vs(As) +V2(As)Vs(As) +VaV(A1)Ve(A7) —Vs(A7)V24(A7)
—ViVi(A1)Vi(As) +V1(As) V(A7) +V6(A0)VZa(Ao) +Vs(Ao)VoVa(As) +V24(A0)Vo(As) +VoVa(A1)Vo(As)
FVHANVIVs(As) ~Ve(ANV5(A1) ~V1Vs(As)V1(As) +V25(A)Vi(As) +Ve(A2)VaV5(As) ~V(As)V25(As)
VaVs(As)Va(As) +V25(As)Va(As) +Ve(As)V3Vs(As) —Ve(As)V25(As) ~V3Vs(As)V3(As) +V25(A3)V5(As)
+V6(A1)VaVs(As) —Ve(Aa)V?5(As) —VaVs(As)Va(As) +V25(A1)Va(As) +V5V(As)Ve(A7) —Vs(A7) V(A7)
—VsV(As)Vi(As) +V1(As)V35(A7) +Ve(Ao)V?5(Ao) +Ve(Ao)VoVs(As) +V25(Ao)Vo(As) +VoVs(As)Vo(As)
Vi(AV1Ve(As) HV2(A)Vi(As) +Ve(ADV1Vs(A) —Ve(A)V2o(A1) ~Va(A6)V2Ve(As) +V26(A2)Va( As)
FVo(A2)VaVo( As) —Vo(A2)V26(A2) —V3(Ac)V3Ve(As) +V26(As)V3(As) +Vie(As)V3V(As) —Ve(As)V2o(As)
—Vi(As)VaVs(As) TVZ6(A4)Va(As) +V6(A1)VaVe(As) —Ve(A1)VZ6(A4) —V35(As)V5Ve(As) +VZ6(As)Vs(As)
FVo(A5)V5V(As) -Ve(As)V26(As) —Ve(A1)V2e( A7) +V6V(As)Ve( A7) +V(A6) V(A7) ~Vr(Ae)VeV(As)
FVo(Ae)VoVe(As) +V26(A0)Vo(As) +Ve(Ao)VoVe(As) +Ve(Ao)V26(Ao) +Ve(AV1Vr(A7) —Ve(A)V2(A1)
Vi(AV1VA(A7) HV2(A)Vi(As) +Ve(A2)VaVr(A7) —Ve(A2)V2(Az) ~Va(A6)VaV(A7) +V2(A2)Va( As)
+Vs(A3)V3iVi(A7) —Ve(A3)V?1(A3) —V3(As)V3V7(A7) +V?1(A3)V3i(As) +Ve(A4)VaV(A7) =Ve(A1)V?(As)
—Vi(A6)VaVi(A7) +V?(A4)Va(As) +Ves(As)VsV7(A7) —Ve(As)V?(As) —=Vs(As)VsVi(A7) +V?1(As)Vs(As)
+V6(Ao)V?7(Ao) +V6(Ao)VoV7(A7) +V?7(A0)Vo(As) +Vo(As)VoV7(A7)

}es

{

FVoV1(Ao)V(A1) —VoV1(A0)Vi(Ar) +Vr(ANV2o(A1) —V2o(A)V1(A7) +VoVa(A0)Va(Az) —VoVa(Ao) V(A7)
FV(A2)V2o( Az)—V20o(A2) V(A7) +VoVs(A0)VA(As) —VoVs(A0) V(A7) +V(As)V20(As) —V20(As) V(A7)
+VoVa(Ao0)V7(A4) —VoVi(Ao)Va(A7) +V1(A1) V(A1) —V?(A2)Va(A7) +VoV5(Ao)V7(As) —VoVs(Ao)Vs(A7)
FVA(A5)V2o( As) ~V2o(As)V5(A7) +VoVs(Ao)Vr(As) —VoVs(A0)Vo(A7) +V(As)V20o(As) —V2o(Ae) V(A7)
+V1Va(ADVA(Az) ~V(A2)V2(A2) —V1Va( A1) Va(A7) +V2(A2)Va(A7) +V1V3(A1)VA(As) —Va(A5)V2(As)
—V1V3(A1)Vi(A7) +V21(A3)V3(A7) +ViVa(A1)V7(As) —V1(A4)VZ1(As) —V1Va(A1) V(A7) +V21(A4)Va(A7)
+V1Vs(A1)V7(As) —V1(As)VZi(As) —ViVs(A1)Vs(A7) +V24(As)Vs(A7) +ViVe(A1)V7(As) —V7(As)V*1(As)
—V1iVs(A1)Ve(A7) +V21(A6)Ve(A7) +V7(A0)VZ1(Ao) +V7(A0)VoVi(A1) +VZ1(Ao)Vo(A7) +VoVi(A1)Vo(A7)
FVAANV1Va(A2) ~Vr(AV23(A1) —ViVa(A2)Vi(Ar) +V2(AD)Vi(A7) +VaV3(A2)V(As) —Vr(A5)V2(As)
—V2Vi3(A2)Vi(A7) +V22(A3)V3(A7) +V2Va(A2)V7(As) —V1(A4)VZ(As) —V2Va(A2)Vi(A7) +V22(A4)Va(A7)
+V2Vs(A2)Vi(As) —V1(As)VZ2(As) —V2Vs(A2)Vs(A7) +V2(As)Vs(Ar) +V2Ve(A2)Vi(As) —V7(As)VZ2(As)
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—V2Vs(A2)Ve(A7) +V22(As)Ve(A7) +V7(A0)VZ2(Ao) +V7(A0)VoV2(Az2) +V?2(Ao)Vo(A7) +VoV2(A2)Vo(A7)
FV(ADV1V5(As) ~Vr(ADV25(A1) ~V1V3(A5)Vi(A7) +V2(ADVi(A7) +V(A2)VaV3(As) —V(A2)V25(As)
—V2Vi3(As3)Va(A7) +V23(A2)Va(A7) +V3Va(A3)V7(As) —V1(A1)V?(As) —V3Va(A3)Vi(A7) +V23(A4) V(A7)
+V3Vs(A3)V1(As) —V1(As)V3(As) —ViVs(Asz)Vs(Ar) +V23(As)Vs(A7) +ViVe(A3)Vi(As) —V(As)V?3(As)
—V3Vs(A3)Ve(A7) +V?3(As) V(A7) +V7(A0)V?3(Ao) TV7(A0)VoVi(As) +V23(A0)Vo(A7) +VoV3(A3)Vo(A7)
FVH( ANV 1Vi(As) ~Vo(ADV24(A1) —V1Va( AV 1(A7) +V2(ADVi(A7) +V(A2)VaVa(As) ~V(A2)V2(As)
—V2Va(A4)V2(A7) +V24(A2)V2(A7) +V7(A3)ViVa(As) —V1(A3)V2(As) —V3Va(A4)V3(A7) +V24(A3)V3(A7)
+VaVs(A1)V1(As) —V1(As)V24(As) —VaVs(A1)Vs(A7) +V2(As)Vs(A7) +VaVe(A1)Vi(As) —V(As)V?4(As)
—ViVe(A1)Ve(A7) +V24(As) V(A7) +V7(A0)VZ1(Ao) +V7(A0)VoVa(As) +V24(A0)Vo(A7) +VoVi(As)Vo(A7)
FVA(ADV1V5(As) —~Vr(A)V5(A1) ~V1V5(As)V1(A7) +V25(A1Vi(Ar) +V(A2)VaVs(As) ~V(A2)V25(As)
—V2Vs(As)Va(A7) +V25(A2)Va(A7) +V7(A3)ViVs(As) —Vi(A3)V35(As) —V3Vs(As)Vi(A7) +V25(As)V3(Ar)
+V1(A4)ViVs(As) —V1(A1)V?5(As) —VaV5(As)Va(A7) +V25(As)Va(A7) +VsVe(As)Vi(As) —V(As)V?5(As)
—VsVs(As)Ve(A7) +V?5(As) V(A7) +V7(A0)V?5(Ao) +V7(A0)VoVs(As) +V25(Ao)Vo(A7) +VoVs(As)Vo(A7)
+V1(A1)V1Ve(As) —V7(A1)VZ6(A1) —V1Vs(As)V1(A7) +V236(A1)V1(A7) +V7(A2)V2Ve(As) —V(A2)V?6(A2)
VaVe(Ae)Va(Ar) +V26(As)Va(A7) +Vr(A3)VsVe(Ae) —V(A3)V2e(A3) ~VaVe(Ae) V(A7) +V2(As)V5(A7)
FV1(As)VaVe(Ae) ~Vr(A8)V2(As) ~VaVs(Ae)Va(Ar) +V2e( Ae)Va(A7) +V(A5)VsVe(As) —Vr(As)V2e(As)
—VsVs(As)Vs(A7) +V26(As)Vs(A7) +V7(Ao)VZs(Ao) +V7(A0)VoVe(As) +V36(A0)Vo(A7) +VoVs(As)Vo(A7)
~V1i(A7)V1iVi(A7) V(A1) V(A7) +VH(A1)ViV(A7) =V(A1) V(A1) —V2(A7)V2Va(A7) +V?(A2)V2(A7)
FV1(A2)VaVr(A7) ~Vo(A2)V2(Az) ~V3(A7)VsV(Ar) +V2(A3)V5(A7) +V(As)V3Vr(Ar) —Vr(As)V2(As)
Vi A)WViVr(Ar) +V2(A)Va(A7) +Vr(As)VaV(A7) ~V(As)V2(As) ~Vs(A7)V5V( A7) +V2(As)Vs(A7)
+Vi1(As)VsV(A7) —=V(As)V?1(As) —Ve(A7)VeV7(A7) +V?1(As)Ve(A7) +V(As)VsV7(A7) =V1(As)V?7(As)
+Vo(A7)VoV1(A7) +V27(A0)Vo(A7) +V7(A0)VoVi(A7) +V1(Ao)VZ(Ao)

}es

We expect the foundation for Octonion conservation of energy and momentum to be based on a form
comparable to the Lorentz covariant 4D space-time differential contraction (divergence) of a stress—energy—
momentum tensor, composed from our now Octonion physics field components. Leaving no stone unturned,
and for simplicity staying within the intrinsic e basis, it makes sense to try all algebraic invariant products of the
form (reference [1] et.al.)

n[Viei ]| *[ {ViAk(ej*ex)} * {ViAm) (e1 * em )}]

The constant n is anticipated by our knowledge of the 4D classical stress—energy—momentum tensor

where some terms will need scaling by a factor of +1 or £%. The Octonion stress—energy—momentum
equivalent components, call S are then represented by select Octonion algebraic elements in the form of the
product of two physics field components:

SG, k, Lm)=[{VjAk(ej*ex)+ VkAj(ex *ej)} * {ViIAm(e1 * em )+ Vm Al (em * €1)}]

We will be selecting all invariant forms for the ordered products e * [ (ej * ex ) * (e1 * em ) ] even though the
form S(j, k, 1, m) also includes commuted selections. These additional forms have identical algebraic orientation
variance since it is the ordered permutation product rule involved and not the order of any two basis elements in
a product that determines the variance/invariance.

Our 8—work—force equivalence outside differentiation algebraically invariant components will then be of the
form

[Viei ] *nS(, k, 1, m)
Algebraic invariant results with this structure partition into nine separate forms which have parallels with
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Electrodynamics. When summed, the result will match the invariant portion of wf. They are as follows:
Invariant Form 1; fori: 1 to 7
— Y% [Voeo]*SG, 0,1, 0)

We should recognize this as representing the scalar time rate of change of the energy density maintained within
the irrotational fields, and we observe both their energy density and scalar time derivatives are both Octonion
algebraic invariants as we might expect.

Invariant Form 2; fori,j: 1 to 7,1 #
+[Voeo]*8(, 0, ], 1)

Looking at indexes representative of our fields from classical Electrodynamics, we find the differential
expression for the negated scalar time rate of change of the cross product of the electric and magnetic fields,
known as the Poynting Vector. So S(i, 0, j, 1) must represent the negated Octonion equivalent of the Poynting
Vector. Since energy flux is an observable, the Octonion Poynting Vector must be and is an algebraic invariant
as is its scalar time derivative.

Invariant Form 3; fori: 1 to 6, j: i+1 to 7,1 #
— Y [VO €o ] * S(1>J> 1>J)

We can easily see the differential expression for this algebraic invariant represents the scalar time rate of change
for the energy density maintained within the rotational fields. Once again, their energy density and scalar time
derivatives are both algebraic invariants.

Invariant Form 4; fori,j: 1 to 7
+%s[Viej] *S(1,0,1,0) s=+1if i#jelses=-1

We can recognize this as representing selectively + or — the gradient of the energy density maintained within the
irrotational fields. The selection of s = —1 when the outside differential index is the same as the index of the
irrotational field is necessary to match the 8—work—force without outside differentiation.

Invariant Form 5; fori,j: 1 to 7, 1 #]
+[Viej1* 83, 0, j, 0)

Examining selected differential results for inside S(i, 0, j, 0), we see the dyadic products of different electric
field components (e.g. Ex Ey ) just as found in the classical Electrodynamics 4D stress—energy—momentum
tensor. But now we have additional irrotational field types. This algebraically invariant form represents the
differential contraction of the dyadic products of all irrotational field components.

Invariant Form 6; for i,j: 1to 7,1#]
+[Viei]1* 83, 0,), 1)

The resultant differential expression for this combination of indexes represents the divergence of the Octonion
Poynting Vector.

Invariant Form 7; fori: 1 to 6, j:i+1to 7,i#jand k: 1 to 7
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+%s[Vkec] * S, J,1,)) =—lif k#1iandk#jelses=+1

We can recognize this as representing selective negation of the gradient of the energy density maintained within
the rotational fields. The selection of s = +1 when the outside differential index is the same as one of the indexes
of the rotational field components is necessary to match the 8—work—force without outside differentiation.

Invariant Form 8; for i,j,k: 1 to 7, 1#j#k, with 1"j"k # 0 implying {ei ¢j ex} is not a Quaternion triplet

+[Vkex]1* 83, 5,5, k)
Here again, “*” is the binary bit-wise exclusive or (xor) logical operator. It only works for us here because the
Quaternion subalgebra triplets were partitioned such that the xor of all three indexes is zero.

The final Invariant Form is like Invariant Form 8 but requires rather than excludes 1)k = 0, implying {e;i ¢j ex}
is a Quaternion subalgebra triplet.

Invariant Form 9; for i,j,k: 1 to 7, 1#j #k, with i"j"k =0
- [Vk Ck ] * S(lo.]a.]:» k)
Invariant Forms 8 and 9 contain properly signed rotational field dyadic terms.

If we sum all algebraic elements n S(j, k, I, m) for each separate outside differentiation index i in our set of nine
forms specified above, the result will be our analogous stress—energy—momentum form, call ;. Since it is a set
of Octonion algebraic elements, this could be written generally in the intrinsic e basis as Quy ev, and our
Invariant(wf) matching differential “contraction” written as

Invariant(wf) = [Vu ey ] * Qu=[Vueu] * Quv ey

The scalar coefficient matrix Quy is the analogous Octonion stress—energy—momentum “tensor”. Keep in mind
we are not doing associative tensor (matrix) algebra here, we are doing non-associative Octonion Algebra. The
row-column structure for Quy is set up for the Octonion product * in [V, ey | * Q4 to give the correct result. Now
we could manipulate things by first doing the basis products making the del operator then “look™ like a scalar
differential contraction ala tensor differential contraction, and make things look more recognizable. We will do
this further down to explicitly show the match with EM expectations.

The equality Invariant(wf) = [Vyeu ] * Qu=[Vueu ] * Quv ey is appropriately form invariant for a global
algebraic basis gauge transformation by replacing the e basis references with the gauge g basis and
understanding the del operator is a partial on the g basis v position.

As above, we can greatly simplify the presentation if we again singularly represent the irrotational and
rotational field types, and define singular representations for each component of the Octonion Poynting vector,
the irrotational energy density EI and rotational energy density ER.

Before dipping in, an important aside. The irrotational energy density EI and rotational energy density ER are
scalar squared magnitudes. The magnitude of an Octonion algebraic element A is called its norm, defined as
[A*A]"2, so we should look at half of the norm squared of the full left side field to represent the total energy
density: ET = EI + ER = 2 FL*FL. The result has both algebraic invariant and variant content. Energy density
must be an algebraic invariant. The variant portion is:

{+R31Rs7 + RisR37 + R17Rs3 } s2 €o
{—12R64 — [4R26 — I6R42 } S3 Co
{+R23R76 + R26R37 + R36R72 } s4 €o
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{—11R54 — LiRis — [sRas } Ss €o
{+R12Re5 + R15R26 + R25Re1 } s6 €0
{—13R74 — LRs7 — [7R43 } S7 €o
{+Rs4R76 + Rs7Re4 + ResR74 | ss €0
{—11R23 — LRsi — R } S9 o
{+R31R64 + R36Ra1 + Ra3Re1 } s10 €0
{—12R57 — IsR72 — I7R>s } S11 Co
{+R23R5s4 + Ra2Rs3 + R2sRas } s12 €0
{—11R76 — IsR17 — [7Re61 } S13 Co
{+R12R71 + Ra1R72 + R17R42 } s14 €0
{—IsRss — IsR36 — I6Rs3 } S15 Co

If we were to have used Fr instead, all odd variances would change sign, unimportant for what follows. Notice
the indexes on the rotational field components in the even parity variances are select permutations of the basic
quad indexes for the Quaternion subalgebra associated with the structure constant s,. If we were to require each
variance to individually sum to zero, ER = Frot*Frot becomes an algebraic invariant as required. Each is seen
to be an inner product of rotational components living within the Quaternion subalgebra associated with the
structure constant. Zero sums would express orthogonality requirements on select rotational field components.

The odd variances are seen to be index permutations of the associated Quaternion subalgebra triplet indexes,
now the negated inner product of the three irrotational field components living in that subalgebra with the three
remaining rotational components also living in the subalgebra but not in the even variance just above. By also
assigning zero values to each sum here, we will form select orthogonality requirements that will make ET = /2
FL*FL an algebraic invariant. Incorporating these orthogonality restrictions, the total field energy density will
then be the algebraic invariant sum of rotational and irrotational field energy densities given by ER = 2 Frot™*Frot
and EI = ' Fix*Fir and each of these will be equivalent to the definitions just below.

When we move on to local algebraic basis gauge transformations, we will find both %2 Fi*Firr and Y2 Frot™Frot
will have variant content, whereas for intrinsic basis and global algebraic gauge basis forms 2 Fix*Firr will have
no variant content.

Define:

Pi=Y k=117 (= Vk Ao — Vo Ax) (Vj Ak — Vk Aj) ¢ 7 components of the Octonion Poynting vector
El=%Y k=107 (VkAo+ Vo Ak eo irrotational field energy

ER="%Y =116 217, s>r (Vi As— Vs Ar)? €0 rotational field energy

Using the intrinsic e basis representation for simplicity, we have for Q

Qo=

(+EI +ER) eo
—P1 e

—P2 e

—Ps es

—P4 €4

—Ps es

—Ps €6

—P7 e7

Q, =
{+ER — Ri22 = R3:2 = R42 — Ri5> = Rei2 — Ri2 — EI + 12 } €o
—Pier
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{+R12 R23 — Ra1 R4z + Ris Rss + Rss Rer —Ri7 Rs7 + 11 Is | so €2
{~R23 R31 + Ra1 Re2+ Ris R2s —R2s Ret —Ri7 Rz —Ti 2 } so €3
{~Ri2 R2s — R31 Rs3 — Ra1 Rsa + Re1 Res + Ri7 Rs7 — 11 Is } ss ea
{~Ri2 Ra2+ R31 Razs + Ris Rsa —Re1 Rea + Ri7 R7a + 11 1a } ss es
{+Ri2 R72+ R31 Rs37—Ra1 Ra —Ris Rss—Re1 Ris — 11 17 } sz €6
{+R12 R26 — R31 R36 + Ra1 Rea — Ris Res + R17 Rz + 11 16 } 813 €7

Q, =

{+ER — R12> — R23> — R42> — R25> — R26> = R72> — El + 22 } eo
{~Ri2 R31 + R2R43 —R2s Rss + R2s Rss —R37 R — L I3 } so e
—P2e:

{+R23 Rs1 —Ra1 Re2 — Ri5 Ras + R2s Ret + Ri7 R+ 11 2 } so €3
{~Ri2 Re1 — R23 R36 — R42 Rea + R2s Res + R22 R7s — 12 16 | s3 €4
{~Ri2 R17 + R23 R37 + R42 R7a + R2s Rs7 —Ra6 R7s + 12 17 } su1 es
{+Ri2 Ra1 —R23 R4z + R2s Rsa + Ras Rea —R72 R7a + 1214 } s3 €6
{+Ri2 Ris + R23 Rss — Ra2 Rsa — R26 Res — Rs7 Rz — L2 Is } siier

Qs =

{+ER — R31 — R23> — R43> — Rs3> — R36> — Rs7?» — El + 5% } eo
{+R12 R3s1 —Ra2 R + R2s Rs3 —R26 Rss * Rs7 Rz + 12 I3 } so €1
{~Ri2 R2s + Ra1 Rs—Ris Rss —R3ss Ret + RivRsv—1i I3 } so €2
—Pses

{~R17R31 —R23 R72—R43 R7a + Rss Rs7 + Rss Ris — I3 17 | s7 e
{+R31 Re1 + R23 R26 — R43 Rea — Rs3 Res — R37 R7s — I3 s } sis €5
{+Ri5 R31 — R23 R2s + R43 Rsa + R3s Res — R37 Rs7 + I3 Is } s15 €6
{~R31 Ra1 + R2s Re2— Rss Rsa + Rss Rea + Rs7 Raa + s 1a } s7 €7

94 =

{+ER — R41? — R42?> — R43> — Rsa?> = Re4> — R74> — El + 14? } eo
{+Ri5 Ra1 + R2s Ra2 — Ra3 Rss — Rea Res + Rs7 R7a + 14 Is } ss e
{~Ra1 Re1 + Ra6 Ra2 + R36 R4s + Rsa Res — R7a R7s + 1a I6 } s3 €2
{+R17 Ra1 —R42 R72+ R37 R43 — Rsa Rs7+ Rea R7s + 14 I7 } s7 €3
—Pses

{+Ri2 R42 — R31 Ras —Ri5 Rsa + Re1 Rea — Ri7 Rza — L1 14 } ss €5
{~Ri2 Ra1 + R23 R4s — R25s Rsa — R2s Rea + Rz R7a— L2 14 } s3 €6
{+R31 Ra1 —R23 Rae2 + Rss Rsa = Rss Rea — Rs7 Rua — I3 1a } s7 €7

Qs =

{+ER — Ri5> — R25s* — Rs3? — Rsa?> — Res> — Rs7? — EI +15% } eo
{~Ri5s Ra1 —R25s Ra2 + Ras Rss + Rea Res —Rs7 Rua —1a Is } ss e
{+Ris Ri7—R2s R2—R37Rss + Rsa R.a —Res Ris — Is 17 } sui ez
{+R15 Re1 — Ra2s R26 + R36 Rs3 — Rsa Rea + Rs7 R7s + 15 Is } s15 €3
{+R12 R2s + R31 Rs3 + R41 Rsa — Re1 Res —R17 Rs7 + 11 Is } ss ea
—Ps es

{~Ri5 R31 + R23 Ras — Ras Rsa — R3s Res + R37 Rsv— 3 Is } sis e
{~Ri2 Ris = R23 Rs3s + Ra2 Rsa + R2s Res + Rs7 Rz + 12 Is } su1 €7

Q6=

{+ER — Re1? — R26* — R36> — Rea> — Res> — R76> — EI + I6* } €0

{+R17R61 + R26 R72 — R36 R37—Rea R7a + Rs7 Res + I I7 } s13 €1
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{+Ra1 Re1 — R26 Ra2 — R36 R4 — Rsa Res + R7a R7s —la Is } s3 €2

{~Ri5 Re1 + Ras Ras — R3s Rss + Rsa Rea — Rs7 R7s — Is Is } s15 €3
{+Ri2 Re1 + R23 R36 + Ra2 Rea — R2s Res — R72 R76 + 12 Is } s3 €4
{~Rs1 Re1 — R23 R26 + Ras Rea + Rs3 Res + R37 R76 + I3 L6 } s15 €5
—Ps es

{~Ri2 R26 + R31 R3s — Ra1 Rea + Ris Res — Ri7 R7s — 11 Is } s13 €7

Q; =

{+ER — Ri* — R72> = R37* — R74> = Rs7* — R76* —El + 7 } eo
{~R17R61 — R26 R 72 + R36 R37+ Rea R7a —Rs7 Res — Is I7 } s13 €1
{~Ri5s Ri7+ Ras R72+ R37 Rs3 — Rsa Rza + Res R7s + Is 17 | sui ez
{~R17Ra1+ R2R72—R37Ras + Rsa Rsv—Rea Ris — 1 17 } s7 €3
{+R17 R3s1 + R23 R72+ R43 R74a —Rs3 Rs7— Rss R7s + Is 17 } s7 ea
{+R12 Ri7—R23 R37—R42 R74 —R2s Rs7+ Ras Ris — L2 I } S11 €5
{~Ri2 R72 — R31 R37 + Ra1 R74 + Ris Rs7+ Re1 R7s + 11 17 } s13 €6
—P7es

We are looking for this methodology to properly represent the conservation of Electrodynamics energy and
momentum as a subset of the presentation. In references [1][2] et.al. it was shown a proper home for the electric
field is the basis triplet {es es €7} and for the magnetic field and additionally the gravitational field is the triplet
{e1 ez es}, both in rectangular coordinate {x y z} order. Limit the potential functions to Ao €0, As s, As €6 and A7
e7 with all others 0 which will zero out the gravitational field. We must reduce the I, R, P, ER and EI definitions
as follows

Ik =— ViAo — Vo Ak 3 irrotational field component index k=5 to 7 : Is Is I7 all others 0

Rix = Vj Ak — VK Aj 3 rotational field component index where ej * ex = +ejx : R76 Rs7 Res only
Ps=IsRes—I7Rs7  Ps=17R76—15sRes  P7=1s Rs7 —Is Ry all others 0

El =1 {I’s + s + 1?7}

ER =1 {R?%76 + R?%s7 + R%s}

Doing the reductions on Qo Qs Q6 Q7 we are left with

Qo=

(+EI +ER) eo
—Ps es

—Ps €6

—P7 e7

Qs =

{+ER — Re¢s> — Rs7* — E1 +15? } eo
{— Res R76 —Is Iz } S11 €2
{+Rs7R76+ 1516 } s15€3

—Ps es

Qs =
{+ER — Re¢s> — R76* — EI + I6* } €0
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{+Rs7Res + 1617 } sz e
{— Rs7 R —1Is Is } S15 €3
—Ps €6

Q;=

{+ER —Rs7* —Rs* — El + I* } eo
{— Rs7 Res — Is I } S13 €1

{+Res R7s + Is 17 } sui ez

—P7e;

Now for easier comparison, replace magnetic field components Rz = Bx, Rs7 = By, Res = B, and electric field
components Is = Ex, Is = Ey, I = E,. Then do the * by ey product in Invariant(wf) = [V eu | * Qu to make the
differential contraction with V, look more matrix like. The result after some rearrangement follows. Notice the
result is fully an algebraic invariant. This should be expected since our result needs to be an algebraic invariant
and we have cast things here such that the analogous “tensor differential contraction” is a scalar operation on a
matrix form.

Qo =
(EI+ER) eo
—Ps es

—Ps ¢

—P7 e7

Qs =

+Ps eo
{Bx>~ER+Ex*-El} es
{BxBy+ExEy} es
{BxB,+Ex E;} e-

Qs =

+Ps €o

{ByBx+EyEx} es
{By*~ER+E*~EI} es
{ByB,+EyE;} e;

Q;=

+P7 eo

{B:Bxt+ExE;} es
{B-By+EzEy} es
{B~ER+E*-EI} es

Using the Q index for the row and the e index for the column, suppressing the e basis gives the following

EI+ER —P;s —Ps P,

+Ps B,>~ER+E>EI B.B,+ExEy B.B,E, E,
+Pe B,By+E, Ex B,>-ER+E,>EI B,B,+E,E,

+P, B.B,+E,E, B.B,+E,E, B2-ER+E2-EI
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But for missing w and speed of light ¢ coefticient scalings that can be absorbed by a choice of units, unnecessary
imaginary unit scaling, and the asymmetry on the Poynting vector components, this is precisely the relativistic
4D Electrodynamics stress—energy—momentum tensor. Doing the math here fully using scalar differential
contractions on real components gives the correct result set by the expectations of relativistic Electrodynamics.
Its stress—energy—momentum tensor is only symmetric because it includes the imaginary unit scaling not
utilized here, where we actually have seven “imaginaries” that have properly been used on the path leading to
here.

This result speaks volumes. First, our choice of where to park the electric and magnetic fields in an Octonion
framework is legitimized by the fact that the same scope limitations just done on £ shows the wf side
Electrodynamics work and Lorentz force forms are properly reproduced from the Octonion EM portion SEM
“contraction” just covered. The equality of the space-time covariant work—force with the differential contraction
of the stress—energy—momentum tensor is the foundation for space-time EM conservation of energy and
momentum. We should expect then that our full blown € algebraic product formulation analogous to SEM
tensor contraction, which restates the full 8-D Octonion work—force with an outside differentiation * product,
properly frames the forces, work, conservation of energy and momentum for Octonion Dynamics. From the
derivation of the Ensemble Derivative, it is apparent that Gauss’s Law for integration equating the integral of a
vector divergence over an arbitrary volume and the scalar product of the vector and the surface normal over the
enclosing surface holds for the Ensemble Derivative. In our Octonion setting, we can thus also integrate over
arbitrary volumes, convert divergences into fluxes entering or leaving through the surface enclosing the volume,
and balance this out with a change in volume content. This the essence of our conservation of momentum and
energy from a physics field perspective.

Drilling down a bit more on conservation, the algebraically invariant scalar result forms are Invariant Forms 1,
3, and 6. They are respectively the time rate of change in EI, the time rate of change in ER, and the divergence
of P. These three forms sum to an equivalent representation for the scalar (work) portion of the Octonion 8—
work—force expression. Thus, for j, k=1 to 7 we have

[ViPi+Vo(ER+ED]Jeo = — jk(—VoAx —VkAo) €o

This equation provides the mathematical statement of the conservation of energy after both sides are integrated
over any arbitrary volume. The volume integral over the divergence of P is converted to an integral of the scalar
product of P and the outward pointing surface normal vector over the enclosing surface. This represents the net
flux of energy leaving the prescribed volume. The volume integral over the time rate of change in field energy
density represents the time rate change in the total field energy within the prescribed volume. The volume
integral over the Octonion work expression on the right-hand side is the negative rate of increase in mechanical
energy within the volume. Moving over the expression on the right side of the equality, all three sum to zero,
stating an increase in one necessarily requires a decrease in one or both of the other two. Total energy is neither
created or destroyed, it can only move from place to place or change form.

The algebraically invariant non—scalar result forms are Invariant Forms 2, 4, 7, 5, 8 and 9. They are respectively
minus the time rate of change for P, the modified gradient of EI, the modified gradient of ER, the differential
contraction of the irrotational field dyadic products, and the differential contraction of the rotational field dyadic
products.

The selectively sign modified gradients on field energy density components summing Invariant Forms 4 and 7
is equivalent to

Vi[ (ER —ED) + (Vj Ao+ Vo Aj)* — (VjAx— VkAj)? ] g forj,k=1to7

Notice that the sum over j,k of [ ( ER — EI) + (Vj Ao + Vo Aj)> — (Vj Ak — Vi Aj)? ] is zero.
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Thus we have the following fors,j,k,n=1to 7 withj#k#sandj#n,j#m

—VoPjej+ Vi[ (ER—ED+ (V;Ao+ Vo Aj)? — (V;An— Vo Aj)? ] g
+ Vi [(=VoAj —VjAo) (—VoAx —VikAo) +(VjAs— Vs Aj)(Vs Ak — Vi As)] ¢
=Jo(=VoAj —VjAo) € + jm (VjAm— Vm Aj) €

This equation is a statement of the conservation of momentum when integrated over an arbitrary volume. The
first term on the left side of = represents the negative time rate of change for field momentum within the
prescribed volume. The remainder of the left side is converted to an integral over the enclosing surface,
representing the net flow of momentum into the volume. The Octonion Lorentz force on the right side of the
equation integrates to the time rate of change for mechanical momentum within the volume. Thus, the change in
total momentum within the prescribed volume is balanced by the flux of momentum across its enclosing
surface, equivalent to the force applied on the prescribed volume by the outside world.

While this has nicely shown the reconstruction of the work-force equation with an outside differentiation on all
product terms, it suffers by being a bit “by hand”, cherry picking algebraic invariant basis product
combinations. It was constructed quite rectilinearly, potentially not adequately producing a fully covariant
presentation. Once again, we can look to the proper representation of relativistic Electrodynamics for a better
path forward.

At this point, it would be remiss of me not to give thanks to the person whose insight put me on the path I have
followed getting to this point. I had the distinct privilege to have a year-long course in Electrodynamics taught
by Professor Melvin Schwartz (prior to his Nobel Prize award) while I was an undergraduate Physics major at
Stanford University (gack!) a half century ago. His presentation was strictly relativistic, as covered in his book
(ref.[10]) which we used in manuscript form since it was not printed until the third quarter of that school year.
The book and his lectures stressed the importance of structure and covariance. I smile every time I hark back to
his pat answer on why such structure was present, he always said “because it is beautiful”. Indeed, it was, and I
immediately adopted beautiful structure as a requirement for mathematical physics. Being left fully unsatisfied
with Einstein’s use of intrinsic curvature to explain Gravitation, I was left thinking relativistic Electrodynamics
was only half-correct. Additional structure was missing but had to be consistent with the intrinsic beauty of this
cover of Electrodynamics. It became immediately clear to me so many years ago the answer had to come from
an increase in dimensions, doubling to twice 4D space-time seemed the way to go. I knew nothing about
Octonion Algebra at the time, and spent too many years trying my own “by hand” 8D structures with only a
modicum of success. When I finally stumbled across the Kantor and Solodovnikov book on Hypercomplex
Numbers (ref.[12]) in the Stanford Bookstore, and saw Octonion Algebra for the first time, I said to myself,
“Well, there it is”. Thirty-five years later, I am still amazed by the beautiful and directive nature of Octonion
Algebra structure.

The relativistic cover of Electrodynamics beautifully presented by Schwartz uses two 4D second-rank field
tensors. The divergence of one, F provides the inhomogeneous pair of Maxwell’s Equations yielding the
relativistic 4-current. The divergence of the other, G yields the two homogeneous Maxwell’s Equations. Both
are required to form the covariant stress—energy—momentum tensor Schwartz called T, given by

Tpc =1/8=n { va Fus + GpU Gus }

It is quite reasonable to presume a more covariant Octonion Algebra cover should pattern off of this, and indeed
it is possible. Once again, we will absorb the m leaving it out of the presentation. I hazard to call our Octonion F
and G forms “tensors” for any other reason except familiarity. They are matrices, now with each element a full
8D Octonion algebraic element, but do not transform as tensors do. Covariance is provided by the proper
application of a segment of the Ensemble Derivative used to form each matrix element. This is analogous to
what I presented in the paper on the derivation of this generally covariant derivative form (reference [6]), where
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e.g., the spherical-polar divergence was provided by limiting the intrinsic basis index pair to summed like
values. The Octonion algebraic structure is ever-present, and intrinsically directive for forming proper
covariance.

In typical fashion, we must respect the fact the field components can be formed with left and right applications
of the Ensemble Derivative. From the 8-current form above, the analogous left application Fy, form LF,, is

LFpn =
0 —Le —Ize2 —Izes —lse4 —Ises —Ises —I-e;

—liei 0 +Ri2s0e3  +tRsisoe2  +Raisses  +Risssea  +Reisizer +Ruizsi3€6
—Lze2 +Ri280€3 0 +Ra23so€1 +Razszes  +Rossiier +RasSzea +R72811€5
—Izes +Rs180e2 +Rassoen 0 +Ru3s7€7  +Rsssises  +RseSises +Rszs7e4
—lsea +Ru1Sses +Ru8366  +tRazs7e7 0 +Rs485€1 +Reas3e2 tR7ss7€3
—Ises +Risssea  +Rassii€7 +Rsssises +Rsasser 0 +Ressi1ses  +Rs7s11€2
—Ises  +Re1S13¢7 +R26S36a  +Raes1ses  +Reassez  +Ressises 0 +R76S13€1
—I7e7 +Ri7s13€6  +R7281165 +R3787€a +Ras7es +Rszs1ie2 +RassS13€1 0

The required right side Ensemble Derivative application form RF,, is LF, with all rotational field components
R negated. The differential contraction or divergence of RF, is differentiation from the right, yielding the same
result as the differential contraction of LF, from the left. Both are representations of the Octonion 8-current,
where each component is its own algebraic element with non-zero basis element scaling only in the appropriate
index.

Unlike the Electrodynamics form, these are fully symmetric instead of fully anti-symmetric. This is necessary
because the elements are Octonion and the divergence will include products of basis elements which by design
provide the proper result. If instead of forming the divergence, we contract the matrix with a “vector”
representation for the 8-current, the result is seen to properly represent the invariant work-force as presented
above. The j contraction product is from the left for LF, and from the right for RF;., yielding identical results.

We found above the homogeneous Octonion Maxwell’s Equations were indeed vector identities, but they
cleanly partitioned into multiple forms clearly separated by doing the representation in an orientation covariant
fashion. We cannot sum all, and then form a matrix product of the sum and properly account for this separate
covariance. We must matrix product them individually to properly form their contribution to the Octonion
stress—energy—momentum “tensor”. Their left application forms LG are as follows with right application forms
similarly negating just the rotational field components. Their construction matricizes each partition of the two
homogeneous Maxwell’s Equations relevant to Quaternion subalgebra triplet Q; within G;. As with standard
Electrodynamics, the two homogeneous Maxwell’s Equations are left side differential contractions on LG; and
right side differential contractions on RG;.

LGip =
0 0 +Reas3€2 0 +R2683€4 0 +R4283€6 0
0 0 0 0 0 0 0 0
+Reas3€2 0 0 0 +lses 0 +laea 0
0 0 0 0 0 0 0 0
+R2683€4 0 +lses 0 0 0 +lze2 0
0 0 0 0 0 0 0 0
+R4283€6 0 +laea4 0 +lz2e2 0 0 0
0 0 0 0 0 0 0 0
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LGZpU =
0
+Rs485€1
0
0
+R1585€4
+R4185€5

+R74s7€3
+R3787€4
0
0
+Ruazs7¢7

LG4pU =
0
+R2380€1
+R3180€2
+Ri280€3
0

0
0
0

LGsp =

0

0
+Rs7S11€2

0

0
+R72811€5

0
+Rass11€7

LG6pU =

| o
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+Rs4s5€1 0 0
0 0 0
0 0 0
0 0 0
+ses 0 0
+laea 0 0
0 0 0
0 0 0
0 0 +R7487€3
0 0 0
0 0 0
0 0 0
0 0 +I7e7
0 0 0
0 0 0
0 0 +lae4
+R2380€1 +R3180€2
0 +Ises
+lses 0
+hae2 +lier
0 0
0 0
0 0
0 0
0 +Rs7811€2 0
0 0 0
0 0 0
0 0 0
0 0 0
0 +l7e7 0
0 0 0
0 +Ises 0
+R76813€1 0 0

+Ris8s€4 +Ra418s€s
+Ises +laea

0 0

0 0

0 +lie:
+lie: 0

0 0

0 0
+R3787€4 0 0

0 0 0

0 0 0
+l7e7 0 0

0 0 0

0 0 0

0 0 0
+lses 0 0
+Ri280€3 0 0
+lae2 0 0
+lie: 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
0 +R7811€5 0
0 0 0
0 +l7e7 0
0 0 0
0 0 0
0 0 0
0 0 0
0 +lze2 0
0 0 +R17S13€6
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+R76S13€1

0

0

0

0
+R17S13€6
+Re1513€7

LG7pv =

0

0

0
+ResS15€3

0
+R36S15€5
+Rs3815€6

0

There are additional homogeneous equations we will need that we discovered above, when we made V x Fot an
algebraic invariant by forcing sums of like variance results to zero results. As they are zero divergence like the
Gi just covered, we will continue indexing them as follows, requiring the right application forms as always,
negating all rotational field components. These are matricized within each G;i by including rotational field

(e R R el e)

+l7e7
+lses

SO OO OO OO
SO OO OO OO

S OO OO OO
S OO OO OO

+ResS15€3

S OO OO OO

SO OO OO O

0 +I7e7 +leses

0 0 0

0 0 0

0 0 0

0 0 0

0 0 +lie:

0 +lie: 0

+R36S15€5 +Rs3S15€6 0
0 0 0
0 0 0

+lses +Ises 0
0 0 0
0 +Ises 0

+lses 0 0
0 0 0

elements within the four non-zero indexes not found in Quaternion subalgebra triplet Q;.7.

LGSpU =

0
0
0
0

0

LGopy =

SO OO OO OO
SO OO OO OO

0

0

0

0 +Rs7811€2
0

0 +R3787€4
0

0

+Rs3815€6

0
0
0
0
0
0
0
0
0
0
0
+R76s13€1
0
0
+R3787€4
+R36S15€5

0
+Rs7811€2

0

0

0
+R17S13€6

0
+Ris8s5€4

0

0
+R76S13€1

0

0

0
+R72811€5
+R2683€4
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0 0
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0 0
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0 0
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LGIOpU =

0 0 0 0 0 0 0 0
0 0 +ResS15€3 0 0 +R2683€4 +Ra2s811€7 0
0 +Ress15€3 0 0 0 +Re1513€7 +R158s€4 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 +R2683€4 +Re1513€7 0 0 0 +R1250€3 0
0 +Ra2ss11€7 +Ris8s€4 0 0 +R1280€3 0 0
0 0 0 0 0 0 0 0
LGllpD =
0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 0 0 0 0 +R76S13€1 +Rs7811€2 +ResS15€3
0 0 0 0 +R76s13€1 0 +R7487€3 +Reas3€2
0 0 0 0 +Rs7S11€2 +R7487€3 0 +Rs485€1
0 0 0 0 +Ress15€3 +Reas3€2 +Rs485€1 0
LGlZpU =
0 0 0 0 0 0 0 0
0 0 0 +Reas3€2 +R36515€5 0 +Ra3s7€7 0
0 0 0 0 0 0 0 0
0 +Reasse:2 0 0 +Re1513€7 0 +Ra18s€s 0
0 +R36S15€5 0 +Re1513€7 0 0 +R3180€2 0
0 0 0 0 0 0 0 0
0 +Ruzs7€7 0 +R418ses +R3180€2 0 0 0
0 0 0 0 0 0 0 0
LG13pu =
0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
0 0 0 +Rs485€1 +R53S15€6 +Ra3s7€7 0 0
0 0 +Rsass€1 0 +Ra2ss11€7 +R4283€6 0 0
0 0 +Rs3815€6 +R2ss11€7 0 +R2380€1 0 0
0 0 +Ru3s7€7 +R4283€6 +R2380€1 0 0 0
0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
LG14pU =
IV 0 0 0 0 0 0 0 0
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0 0 +R7487€3 0 +R72811€5 0 0 +R4283€56
0 +R7s7€3 0 0 +R17S13€6 0 0 +Ra18s€s5
0 0 0 0 0 0 0 0
0 +R72811€5 +R17S13€6 0 0 0 0 +R1280€3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 +R4283€6 +Ra418s€s 0 +R1280€3 0 0 0

We will require the matrix product of the left side application field matrix with the right-side application field
matrix for each of these individually. Define

LFRFp(j = LFpU RFUG LGRGlpG = LGipU RGiUG

The stress—energy—momentum matrix of Octonion algebraic elements is found to be built from 15 separate
tensor analogous Octonion matrices instead of the two required for the more simplistic 4D EM stress—energy—
momentum tensor

SEMps = — 2{ LFRF 6 — X i=1 0 7 LGRGips — Z p=6, i=8 to 14 LGRGips + 3 X po, i=8 to 14 LGRGips }
The stress—energy—momentum “tensor” produced by the select products method above is found to be
Qp = Zc SEMpG

You might be wondering where the scale by 3 comes from in the last term above. It turns out for particular p#c
in LFRF s, the wrong sign is produced on terms requiring non-fractional magnitudes after the indicated division
by two. Basically, we have forms analogous to 2 (—a + 3a) = +a accomplishing this sign change, nicely
accommodated by all LGRG;ps as indicated.

Once again, our algebraic invariant work—force equivalence with an outside differentiation on all product terms
is given by

Invariant(wf) = [Vueu ] * Qu

Moving to a local algebraic basis gauge transformation requires us to account for the additional terms related to
the covariant derivative connection. Reviewing what was covered in some detail in reference [11], the covariant
derivative E takes the form

E(A(V)) = sikik) { girx) 0/0vi [Ak] + gp IPik Ak } where the transformation specific connection takes the form
Fpik = 6/8V1 [T(iAk)n] Tpn

The first part of the sum gives the results we just produced in the intrinsic basis, form invariant with any global
algebraic basis transformation representation, where I'?jx = 0 for all 1,k,p. The covariant Ensemble Derivative
takes the shape of the del operator algebraic element * product used above.

For the 8—work—force side of the conservation equations, we have full applications of the covariant derivative.
They are fully covariant representations, needing no form modification for any transformed basis whether or not
we have a non-zero connection. If the transformation is an algebraic basis gauge transformation yielding a basis
system isomorphism with the Octonion intrinsic e basis, our analogous SEM differential contraction is also
form appropriate as stated above. Each individual i,k: (Vi ei) * (Ax ex) = Vi Ak sikirk) €irk) used above must be
replaced with the following
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Ei (Ax) = sikirk) { gi) 0/0vi [Ax] + gp IPik Ak } where only the sum over p remains.

Our Octonion analogy to stress—energy—momentum tensor differential contraction for local algebraic basis
gauge transformations now is written as

Invariant(wf) = E, * Q,

The SEM component general form S[i,j,k,1] becomes [{Ei (Aj) + E;j (Ai)} * { Ex (A1) + E1 (Ax)}]
Expanding

{Ei (Aj) + Ej (Ai)} = g { sijivy) 0/0vi [Aj] + sjir) 0/0vj [Ai] } + gp { sijei) TP Aj + sjinp) TP Ai §

{Ex (A1) + E1 (A} = gy { sk 0/0vi [Al] + sikaeny 0/0vi [Ax] b+ gq { skaaen T Ar + sicaen Tx Ak }

If we generally have { sijirj) st At + sjiginj) s As } = 0 for each r, s and t, then our local algebraic basis gauge
SEM matrix Quy will be form invariant with the intrinsic/global basis form. At this point it is informative to
point out that since the exclusive-or logic function commutes, the differentiated components of transformation
matrix T are the same for [ as they are for ['. The only difference between "5 and Iy s the differentiation
index changes from s to t.

Assume the local algebraic basis gauge parametrization of T is the set [am] where generally all have full position
dependency. We can apply the chain rule for differentiation to each scalar piece of the connection:

Fpij = a/aVi [T(iAj)n(am)] Tpn = a(am)/a\/i 8/50Lm [T(iAj)n(am)] Tpn thus, we have
{ siiir TP Aj + sjidng) TP Ai b = 1 sijiny) 0(am)/0vi Aj + Sjiirj) O(0m)/0Vj A } 0/00m [Tirjn(0tm)] Tpn

From this, we will have form invariance between the local algebraic basis gauge form and the intrinsic/global
form for both the SEM matrix Quy and all physics field components if we restrict the potential function
solutions with { ssisrt) O(0r)/OVs At + Stssnt) O(0)/Ove As } =0 for each 1, s and t.

There is great parsimonious utility in doing this, but is it physically meaningful? On the Octonion SEM
“contraction” side, if € is a local gauge invariant, since the outside differentiation applied is the sum of the
intrinsic/global basis differentiation and the non-differentiation connection, the result will be the sum of the
intrinsic/global gauge invariant differentiated form and a new product of the connection form and . On the wf
side, cutting off terms added to the physics fields early keeps them from propagating into the next order level of
differentiations, which will have their own additions that we may want to or need to also dispatch with further
restrictions on the potential functions to remove them.

The end of the compounded differentiation road is the 8—current continuity equation, which is a third
application. This is a conservation equation we should expect to be valid in any basis. This differentiation is a
scalar divergence, where the differentiating basis index matches the basis index of the functional. Reviewing the
scalar divergence connection forms for a local algebraic basis gauge transformation we have

I'Pix = 0/0vi [T(iAk)n] Tpn — I'Pyi = 0/0v; [TOn] Tpn

The only non-zero term for Toxn is Too and it is a constant. The scalar divergence connection terms for each index
are I'P; = 0, making the divergence always index by index a local algebraic basis gauge invariant, independent
of any T parametrization. If the 8—current is made a local algebraic basis gauge invariant, then the continuity
equation will end up identically the required zero value as it is for the intrinsic and global gauge basis. If the 8—
current is not a local gauge invariant, the continuity equation will carry forward the 8—current added connection
terms. This would likely take the result to a non-zero value which would need to be offset by added
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requirements on the potential functions.

Furthermore, we need the equality Invariant(wf) = E, * Q, to hold. This mandate may be rewritten as equations
of constraint identifying a zero result for each algebraic variance-basis element combination in

Invariant(wf) — E, * Q, =0 where 0 is the null Octonion algebraic element

Opening up to local algebraic basis gauge transformations leaves us many paths to follow. The continuity
equation zero result and Invariant(wf) — E, * Q, = 0 are absolutes. We could carry the complexity of
unrestricted potential functions all the way to these two requirements, then dig in. The alternative is to nip
things in the bud at earlier, that is lower order differentiation constructions, forming restrictions on the potential
functions. At this point, we are given no clear-cut way to proceed other than not violating the two
aforementioned requirements. We also have a bit of a “chicken or the egg” thing. Do we pick a transformation
parametrization and force restrictions on potential functions, or do we pick the potential functions and force a
compatible parametrization, or maybe a bit of both?

Rather than continuing on with the complexities of even a simple local algebraic basis gauge transformation, I
think I will close out this document with some concluding remarks.

Is the full mathematical cover of nature intrinsically associative? Or does it require an algebraic structure with
some degree of non-associative product structure? If the latter, it might be suboptimal to follow a discovery path
steeped in associative group theory, or tensor calculus and the like. One cannot argue with the success in
advancing knowledge these fundamental constructs have provided over the years, but issues finding something
that could reasonably be called Grand Unification in some sense, seems to be saying something is missing. Will
the missing link be found by hammering harder on the Standard Model group theoretical structure? If something
more is required, will the associative nature group concepts of the Standard Model be directive enough? These
are all important questions without definitive answers.

In contrast, Octonion Algebra involves commutative, non-commutative, associative and non-associative product
content with algebraic structure defining how all of these play well together. A betting person might hedge their
position by betting on a path that covers all of the bases. So why then have Octonions gotten so little attention?

The answer is mostly two-fold. The complexity of the algebra makes pencil on paper work impractical. One
cannot do meaningful work without the aid of a computer and suitable software. Personal computers are readily
available, but the application software for the most part is not. Even if effective software would be available, its
use would require significant computer programming skills on top of math and physics ability, cutting off
people whose specialization path limited one or more of these skill sets. But it is somewhat worse than this.
Purchased software is what it is, and does only as much as the software developers knew to put in it. As
knowledge through use progresses, so progresses demands for enhanced software capabilities. Software for sale
requires a big enough market to profitably offset the development and maintenance costs, a fundamental
obstacle for Octonions in the first place with such a small number of interested people that would be willing to
buy. Enhancements must also be justified on a profit basis. So even if front line mathematical physicist users
desire enhanced functionality, there may be no business justification for it.

Then there is the paradigm the professional academic must live within. Academia is structured for incremental
improvements to dogmatic ideological practices. A maverick with new ideas and approaches would have a
tough sell, and the risks involved not demonstrating significant and consistent progress could make such a
decision a career ender.

I embarked on my chosen career path when microprocessors were first becoming available. Besides making
personal computers possible, they created a paradigm shift in electronics, where today the use of
microprocessors has become ubiquitous. Designing microprocessor-based product hardware, firmware and
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support software provided a good career as well as an opportunity for me to develop my programming skills to
the benefit of my long-standing love of mathematical physics. Recognizing the need years ago for a good
symbolic algebra software tool to do the heavy lifting applying Octonion Algebra to mathematical physics, I
started development of my software tool which is now on its third major revision. The beauty of having
developed it myself is that when I found it beneficial to add functionality, I could make the changes myself,
rather than being dependent on business concerns and mathematical physics understanding of career software
engineers. With thousands of hours of development/use/debug time, my software has become quite useful.
Without it the conclusions I have come to in the several papers I have put into the public domain would not
have been possible.

For now, this software is private to me. The market for it is too small at this time to monetize it. I would be
surprised if I could recoup 10 cents for every hour of development time invested, and this would come at lost
opportunity cost not being able to adequately continue my own creative work due to necessary support efforts. I
fully appreciate difficulties people may have absorbing the information I have provided to the point of not being
able to do an adequate peer review that might enhance acceptance, leading to increased interest in Octonion
Algebra, stimulating growth of a suitable market size where today it is inadequate.

I hold out hope readers will appreciate the structural beauty Octonion Algebra provides us. Its generally non-
associative nature scares off some people who look to necessarily associative group theory for answers. This is
short-sighted since there are many connections to be made between Octonion Algebra and group theory. At the
bedrock level, what might be called pre-algebraic, there is a very nice group connection for every order 2"
hypercomplex algebra and the Boolean logic exclusive-or operator put to good use above. Assigning basis
element indexes zero for scalar and non-scalar bases 1 through 2" — 1, all basis element products may be
expressed within sign as €. * ey = + ear. Binary integers 0 through 2" — 1 form Dedekind groups under group
operation *. These groups and all of their (always normal) subgroups provide the basis element product
structure of each hypercomplex algebra and all of its subalgebras one-for-one if basis element product negative
signage is dropped (hence the notion pre-algebraic). This is covered in detail in reference [4].

Orientation choices for all division algebras are found to be given by Hadamard Matrices, whose rows or
columns form a group under positional product composition. This is covered in detail in references [1], [5] et.al.
These matrix compositions also give us the outline for the proof of the product of variance indicators presented
above and covered in detail within reference [2] et.al.

Then of course there is the group PSL(2,7), the automorphism group of the Fano Plane and hence for all
Octonion Algebra orientations respecting Quaternion subalgebra triplet partitioning. It gives us the full group of
basis element permutations providing the full set of equivalent basis element multiplication tables. This is
discussed in nearly all of my public works.

The two algebraic basis gauge transformations discussed in detail within reference [11] were shown to each
form groups under composition.

With so many connections to group theory, fear of the non-associative nature of Octonion Algebra should be set
aside. Previous work forming matrices from left and right actions of basis products to achieve an associative
framework suitable for direct injection to group theory (reference [13]) to me cuts the beautiful Octonion
Algebra and its directive nature off at the knees.

I find it hard to believe Octonion Algebra Dynamics gives plausible potential function mathematical physics by
accident or coincidence. The cover of Electrodynamics as a subset of the presentation of its dynamics is
complete, and the additional structure provides a home for a compatible integrated potential function cover of
Gravitation (reference [1] et.al.). As so titled in this reference, Octonion Algebra truly is The Algebra of
Everything.
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