
The equality P = NP on programs with infinite length as another
barrier to the proof of P ≠ NP

Evgeny Kuznetsov
eak@mail.ru

Abstract

Things become different at infinity. A school example - if you count the number of even numbers
up to 100, there are half as many of them as all numbers. And at infinity, every natural number
corresponds to an even number. And it turns out that there is an equal quantity of each of them.
Without limiting the quantity of numbers, it is impossible to mathematically prove that there are
fewer even numbers than all numbers. A similar story is observed in complexity theory. In this
paper, using a lazy Turing machine, it is proved that for programs with infinite length, the
maximum complexity is O(n). And one of the consequences of this fact is that P = NP at infinity.
And because of this, as one of the consequences of the last statement, it is impossible to prove
that P ≠ NP without limiting the program’s length. In time hierarchy theorem, diagonalization
implicitly limits the program’s length. We need a similar trick to keep progress going.

1. Introduction

The alleged inequality P ≠ NP is deeply embedded in human culture. It takes a long exponential
(NP) time to find a good answer to a question. But once a good solution is found, it can be very
quickly (P) transferred and used. For example, numbers have been known since at least the 4th
millennium BC. And the modern understanding of zero developed only in the 5th century AD.
Schoolchildren learn in one lesson what humanity has spent several thousand years to
understand. One of the reasons for our communication is to save time by getting successful
answers found by others. But there is still no mathematical proof that it is not always possible to
quickly find the answer by yourself. There is a great mathematical formulation in Stephen
Cook's "The P vs. NP Problem" [1]. Additionally, it is worth reading Scott Aaronson's review “P
?= NP” [2].

No proof that P ≠ NP has been found yet. The progress lies in the fact that approximately every
15 years there pops up another mathematical reason why this formula is so difficult to prove.
Such reasons are called barriers. We know three barriers, or rather three proof schemes
insufficient to prove that P ≠ NP: relativizing proofs [3], natural proofs [4], algebraic proofs [5].
We will prove below that no proof scheme will work until it uses the length of a program.

The point is that there are programs with O(n) complexity that accept languages from NP class
even though their size is infinite. The set of states and transition function are finite by formal

definition of Turing machine, but they can be extended to infinity through lazy evaluations. Here
is the list of theses introduced in this paper:

1. DC (Decision Tree) shows how to achieve O(n) for any input word
2. LTM (Lazy Turing Machine) shows how to get a program of infinite size
3. PSB (Program Size Barrier): the upper bound of an infinite program is O(n)
4. Infinite programs exist in any Turing complete computing models
5. Infinite programs on an LTM are a countable set
6. P = NP when program size is unlimited
7. We cannot prove P ≠ NP (aka P⊂ NP) with no restriction on program size
8. We can prove that P ≠ NP is unprovable, but it may be not proven for a limited program

size
9. Subpolynomial proofs are allowed (such as AC0 ⊂ NC1)
10. Inclusions and equalities are allowed (“simple” P⊆ NP, “impossible” P⊂ NP)
11. Proofs involving size are allowed (as diagonalization in P⊂ EXPTIME)

2. What is P and what is NP

Formally P and NP are classes of languages.

Definition 1. Language L is a subset of all possible finite strings Σ∗ containing at least two
elements Σ.

Definition 2. A Turing machine M is a tuple ⟨Σ, Γ, Q, δ⟩, where Σ is the input word alphabet, Γ (Σ
⊆ Γ) is the tape alphabet, Q is the state set, δ (δ : (Q − {qAccept, qReject}) × Γ → Q × Γ ×
{−1, 1}) is the transition function [1]. The term program can be used hereafter as a synonym for
the set of states and values of the transition function.

Definition 3. The given language L is a member of class P if there exists a corresponding
Turing machine M that accepts any string x from L in the number of steps limited by some
polynomial function f(k), where k is the length of the input string x. [1]

Definition 4. The given language L is an element of class NP a) if there exists a corresponding
Turing machine M b) for any string x from L there exists a string “witness” w from some
language L1 c) M takes (x, w) in the number of steps limited by some polynomial function f(k),
where k is the length of string x. [2]

Lemma 1. Any language L included in P is also included in NP.

Proof. We take machine M from the definition of P, w zero-length string is used as a “witness” .
Machine M accepts (x, w) in polynomial time. So L belongs to NP class.

3. DT (Decision Tree) with O(n) complexity in finite languages

It is possible to obtain a DT with O(n) complexity through a divide-and-conquer tactic: we take
each input symbol and proceed further down to the corresponding subtree. Then only one more
step will be required for each input symbol.

For example, let us define the input alphabet as Σ = {а, б} and language as L = {а, ба, бб}, b
as a blank symbol. And the transition function of Turing machine will be defined as:

Input Output

State Tape symbol Tape operation Next

q0 b qReject

q0 а R q1

q0 б R q2

q1 b qAccept

q1 а q3

q1 б q3

q2 b qReject

q2 а R q4

q2 б R q4

q3 b qReject

q3 а qReject

q3 б qReject

q4 b qAccept

q4 а qReject

q4 б qReject

This DT is built in a regular manner for any language containing up to 2 symbols and 2-letter
words, and can be similarly extended to any alphabet and any word length.

Turing machine views qAccept as a step, so the word “a” is taken as “|{q0, q1, qAccept}| =
length("a") + 2 = 3" steps. And the word “ба” is taken as “|{q0, q2, q4, qAccept}| =
length(“ба”) + 2 = 4” steps. By induction, any word from the finite language will be taken as its
length plus two, that is, with O(n) complexity.

Lemma 2. It’s possible to create a DT that accepts any word from the finite language with O(n)
complexity .

Proof. The construction method for such a DT has been described above.

4. LTM (Lazy Turing Machine)

The concept of lazy evaluation was introduced by Christopher Wadsworth in “The Semantics
and Pragmatics of the Lambda Calculus” [7]. With lazy evaluation, the result is calculated on the
fly, as needed. This allows to create "infinite" states and "infinite" values of transition functions.

Definition 5. LTM is a modified Turing machine, where the state set and transition function are
lazily evaluated (constructed) by another conventional Generator Turing machine.

Definition 6. Generator is a conventional Turing machine, where the input is the tag and LTM
tape symbol, and output is tape operations and the following LTM state.

Definition 7. Generator-DT generates DT for L language for LTM.

Lemma 3. Generator-DT can be created if language L is computable

Proof. For an infinite language, the tree’s nodes are where the alphabetic symbols are, and the
leaves are where the blank symbol is. Due to the regularity, tree nodes can be created by the
state tag: the only possible operations in nodes are shift to the right and transition to another
tag. Again, due to regularity, one can determine the corresponding input word in the leaves of
the tree. If language L is computable, there is a corresponding Turing machine ML. We feed this
input word to ML input in order to get qAccept or qReject for the transition function.

Lemma 4. For a finite computation, the set of states and transition function values created by
 Generator-DT are finite.

Proof. In case of a finite computation, Generator-DT is called a finite number of times.

Lemma 5. The set of infinite programs generated on LTM is countable.

Proof. Each infinite program on LTM corresponds to a finite Generator program on the
conventional Turing machine. And finite programs on Turing machine form a countable set.

Theorem 1. Computations in LTM with Generator-DT are indistinguishable from computations
on a conventional Turing machine for which a fairly large number of states and values of
transition functions were determined in advance on Generator-DT .

Proof. By induction. The same transition at the first step. Further on, a deviation to

1. transition to another state
2. number of steps
3. somewhere in output to the tape
4. final accept/reject status

suggests a different value somewhere in the transition function, but Generator-DT runs on a
deterministic Turing machine, and generates the same value for the same input.

Theorem 2. Computable language L can be computed in O(n) on LTM.

Proof. Create an LTM with the appropriate Generator-DT. The program generated by
Generator-DT has O(n) complexity.

Theorem 3. LTM concept can be carried over to any computing model.

Proof. LTM can be emulated on a Turing machine, so it can be emulated on any computing
model.

Theorem 4. For computable languages, a proof for the conventional Turing machine will also be
the proof for LTM if the size of the program is not included in the proof.

Proof. This is a corollary of Theorem 1. The chain of reasoning is the same for LTM and the
conventional Turing machine, as long as the size of the program is not included in it.

LTM is an almost invisible extension of the conventional Turing machine. The only difference is
that LTM allows to create an infinite set of states and transition function values through lazy
evaluation. And it means that for any Turing complete, i.e. computationally universal models,
programs of infinite size do exist. It turns out that from the mathematical point of view, the
program’s finite size is an artificial limitation, and not an inherent attribute of computations. The
upper bound is O(n) for any computable language in case a program is infinite.

5. PSB (Program Size Barrier)

DT allows any number of special cases to be included in a program. This complicates the first
part of “proof by induction”: “let us assume P ≠ NP for some k”. Because, as a matter of fact, the
opposite is true. A program with linear complexity exists for any k if it is of a sufficient size.
Theorem 2, i.e. LTM with Generator-DT, makes things even more complicated. So much so
that it could be called the Program Size Barrier - PSB.

Corollary 1. For an unlimited program size, i.e. on LTM, P = NP.

Proof. According to Theorem 2, any language L from NP has an upper bound O(n), i.e., is
included in the extended (on LTM) understanding of class P. Any language from P is also
included in NP. That is, NP and P classes are equal on LTM.

Corollary 2. It is impossible to prove P ≠ NP without using the program size.

Proof. It follows from Theorem 4, that the same proof will be true for LTM. But P = NP on LTM.
That is, such proof cannot exist.

Corollary 3. Without using the program size, it is impossible to prove that P = NP is unprovable.

Proof. Similar to Corollary 2.

Conjecture 1. Without limiting the length of the program, it is possible to “prove” that P ≠ NP is
unprovable.

Rationale. A counterexample exists on LTM. Most likely, it can be plausibly approached in other
ways, "losing" the length limitation for programs in Turing machine along the way. And it turns
out that we must always make sure that this kind of proof is also true for finite programs.

Corollary 4. PSB does not restrict subpolynomial proofs.

Proof. Subpolynomial algorithms have lower complexity than polynomial ones. If the complexity
is already limited stronger than O(n), Theorem 2 does not change anything.

Corollary 5. Unlike strict inclusion (⊂), PSB does not restrict proofs with equality (=) and
non-strict (⊆) inclusion.

Proof. Because of Theorem 2, it turns out that many classes are equal at infinity. Accordingly, it
is problematic to prove the inequality of classes, but it does not interfere with equality or
non-strict inclusions.

Corollary 6. PSB does not restrict proofs with a finite program length.

Proof. If the size of program is included in the proof, no case of program of infinite length
occurs, i.e. Theorem 2 is not applicable.

Indeed, the easiest way to avoid PSB is to "diagonalize", i.e. feed the description of a Turing
machine as an input to another Turing machine. As, for example, in the proof of time hierarchy
theorem. Diagonalization also hides the existence of PSB because it limits the size of program
in a rather implicit way - as an input to another machine. It is impossible to process the entire
infinite program in finite time. Unfortunately, proof by diagonalization is in turn complicated by
the relativizing barrier.

6. Conclusion

It is known that the size of program matters in P vs NP . However, it seems that this issue has
not been thoroughly explored yet. While other barriers prohibit transferring the existing proofs to
P vs NP problem, PSB requires that a certain detail be provided in the proof. We do not need to
try all the proofs, but only those with restrictions on program length. It is necessary to limit the
size of program no matter what is being proved. So hopefully this is the last major barrier before
the final proof. Other good news is that now we know that P = NP if program length is not
limited.

Acknowledgments

Thanks to my beloved family and friends Ksenia Kuznetsova, Alexander Kuznetsov, Tatiana
Kuznetsova, Alena Drozhdina and Vitaly Moskovkin for their support and helpful discussions.
Thanks to my recently deceased cat Semyon for waiting for the first version of this paper.

References

[1] S. Cook. The P versus NP Problem. Manuscript prepared for the Clay Mathematics Institute
for the Millennium Prize Problems, http://www.claymath.org/millennium/ P vs NP/pvsnp.pdf,
November 2000.

[2] Scott Aaronson, P ?= NP, https:/ /www.scottaaronson.com/papers/pnp.pdf

[3] TP Baker; J. Gill; R. Solovay. (1975). "Relativizations of the P =? NP Question". SIAM
Journal on Computing. 4(4): 431–442. doi:10.1137/0204037.

[4] Razborov, Alexander A.; Steven Rudich (1997). "Natural proofs". Journal of Computer and
System Sciences. 55(1): 24–35. doi:10.1006/jcss.1997.1494.

[5] S. Aaronson & A. Wigderson (2008). Algebrization: A New Barrier in Complexity Theory
(PDF). Proceedings of ACM STOC'2008. pp. 731–740. doi:10.1145/1374376.1374481.

[6] Rosenberger, Jack (May 2012). "P vs. NP poll results". Communications of the ACM.
55(5):10.

[7] Hudak, Paul (September 1989). "Conception, Evolution, and Application of Functional
Programming Languages". ACM Computing Surveys. 21(3): 383–385.
doi:10.1145/72551.72554. S2CID 207637854.

Addresses

https://docs.google.com/document/d/1pCCWqBLSg4ucMYRdwgsg_LOg8Pl7sW7X76WEBgU-A
kY/

Medium:
https://medium.com/@evgenykuznetsov_93995/the-equality-p-np-on-programs-with-infinite-leng
th-as-another-barrier-to-the-proof-of-p-np-f52255a1b56f

Mirror: https://cloud.mail.ru/public/5TfP/odYmnfqx4

Endorsement request: https://arxiv.org/auth/endorse?x=FY949X

Discussion

https://www.reddit.com/r/computerscience/comments/z22np0/another_barrier_to_the_proof_of_
pnp/

https://www.scottaaronson.com/papers/pnp.pdf
https://docs.google.com/document/d/1pCCWqBLSg4ucMYRdwgsg_LOg8Pl7sW7X76WEBgU-AkY/
https://docs.google.com/document/d/1pCCWqBLSg4ucMYRdwgsg_LOg8Pl7sW7X76WEBgU-AkY/
https://medium.com/@evgenykuznetsov_93995/the-equality-p-np-on-programs-with-infinite-length-as-another-barrier-to-the-proof-of-p-np-f52255a1b56f
https://medium.com/@evgenykuznetsov_93995/the-equality-p-np-on-programs-with-infinite-length-as-another-barrier-to-the-proof-of-p-np-f52255a1b56f
https://cloud.mail.ru/public/5TfP/odYmnfqx4
https://arxiv.org/auth/endorse?x=FY949X
https://www.reddit.com/r/computerscience/comments/z22np0/another_barrier_to_the_proof_of_pnp/
https://www.reddit.com/r/computerscience/comments/z22np0/another_barrier_to_the_proof_of_pnp/

FAQ

1. I can't understand some or all parts, so they are not correct.

Other people's text is difficult to understand. But in this case, if you try, it is possible.

2. Some or all parts are trivial, it's unclear why so much should be written.

Details are needed for those who cannot understand some parts immediately.

3. Is LTM something like an oracle?

No, this is an operation opposite to the addition of an oracle. Oracles are added to Turing
machines. Here, on the contrary, we remove the axiom of finiteness from the Turing machine
and obtain infinite programs and LTM as one of the possible implementations of infinite
programs.

4. Endless program is suspicious and something bad might happen there.

The LTM with Generator-DT is specifically constructed to be finite at any given time with finite
input data. Strictly speaking, on the contrary, it is more correct to make an infinite tape in TM
through lazy execution.

5. Is it true that P = EXP on LTM?

Yes, that's true. For infinite programs it is generally true that all complexity classes from
polynomial and higher have collapsed to linear.

6. If on infinite programs P = EXP, then infinite programs are not needed.

Infinite programs are needed at least to prove the PSB. In general, the aggregate of
infinite+finite programs is a more universal and basic concept than just finite programs. Although
infinite programs are indeed less diverse than finite ones, if we consider, for example,
complexity classes.

7. It is incorrect that LTM does not count steps on the Generator machine.

LTM is one way of finite description of infinite programs. For example, the number 2 can and
should be described mathematically as the result of adding two 1s. But in fact, the number 2
exists regardless of how we got it or described it. In the same way, infinite programs exist

regardless of the way they are described. And since we don't count the steps of writing a finite
program, we also don't need to count the steps of writing an infinite program.

8. Previous barriers are more important, so they are better.

It all depends on the criteria of importance. You can define the criterion of importance through
the reduction of search: the previous barriers prohibit one method each, and the PSB prohibits
all methods except one. PSB is the only known result that partially defines what the proof of P
!= NP should look like.

9. The previous barriers are more complex, so they are better.

The relativizing barrier is roughly at the same level of complexity as the PSB. But the complexity
of PSB is rather conceptual. It turned out that it is possible to separate the finiteness of
programs as an independent axiom in the manner of the parallel postulate. For many, this is a
very difficult moment and it takes some time to stop looking for flaws simply because it is too
unexpected and not generally accepted.

10. Some results already use program size and/or do not violate PSB.

Valid results and cannot violate PSB. The point is to save effort by not trying to prove something
by violating the PSB.

11. No one will try to prove P != NP without using program size.

It is not clear from what this follows.

12. Anything else?

Ok, briefly. There are more EXP languages than possible traces of polynomial programs, so the
diagonalization proof works there. And P and NP languages are the same number, since they
can be derived from each other, which is why these languages are so difficult to distinguish
mathematically. Hehe.

