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Abstract. In this paper, we consider the abc conjecture, we will give
the proof that the conjecture c < rad1.63(abc) is true. It constitutes the
key to resolve the abc conjecture.
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1. Introduction and notations

Let a be a positive integer, a =
∏

i a
αi
i , ai prime integers and αi ≥ 1

positive integers. We call radical of a the integer
∏

i ai noted by rad(a).
Then a is written as:

(1) a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i

We denote:

(2) µa =
∏
i

aαi−1
i =⇒ a = µa.rad(a)

The abc conjecture was proposed independently in 1985 by David Masser
of the University of Basel and Joseph Œsterlé of Pierre et Marie Curie
University (Paris 6) [1]. It describes the distribution of the prime factors of
two integers with those of its sum. The definition of the abc conjecture is
given below:
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Conjecture 1.1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ)
such that if a, b, c positive integers relatively prime with c = a+ b, then :

(3) c < K(ϵ).rad1+ϵ(abc)

where K is a constant depending only of ϵ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [2]. It concerned

the best example given by E. Reyssat [2]:

(4) 2 + 310.109 = 235 =⇒ c < rad1.629912(abc)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4]
proposed the following conjecture:

Conjecture 1.2. Let a, b, c be positive integers relatively prime with c =
a+ b, then:

c < rad1.63(abc)(5)

abc < rad4.42(abc)(6)

In this paper, we will give the proof of the conjecture given by (5) that
constitutes the key to obtain the proof of the abc conjecture using classical
methods with the help of some theorems from the field of the number theory.

2. The Proof of the conjecture c < rad1.63(abc)

Let a, b, c be positive integers, relatively prime, with c = a+ b, b < a and

R = rad(abc), c =

j′=J ′∏
j′=1

c
βj′

j′ , βj′ ≥ 1, cj′ ≥ 2 prime integers.

In the following, we will give the proof of the conjecture c < rad1.63(abc).

Proof. :

2.1. Trivial cases: - We suppose that c < rad(abc), then we obtain:

c < rad(abc) < rad1.63(abc) =⇒ c < R1.63

and the condition (5) is satisfied.

- We suppose that c = rad(abc), then a, b, c are not coprime, case to reject.

In the following, we suppose that c > rad(abc) and a, b and c are not all
prime numbers.

- We suppose µa ≤ rad0.63(a). We obtain :

c = a+b < 2a ≤ 2rad1.63(a) < rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63

Then (5) is satisfied.

- We suppose µc ≤ rad0.63(c). We obtain :

c = µcrad(c) ≤ rad1.63(c) < rad1.63(abc) =⇒ c < R1.63

and the condition (5) is satisfied.
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2.2. We suppose µc > rad0.63(c) and µa > rad0.63(a).

2.2.1. Case : rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a).
We can write:

µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)

 =⇒ ac ≤ rad2.63(ac) =⇒ a2 < ac ≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac) < rad1.63(abc)

=⇒ c = a+ b < R1.63

2.2.2. Case : rad1.63(c) < µc or rad1.63(a) < µa. I - We suppose that
rad1.63(c) < µc and rad1.63(a) < µa ≤ rad2(a):

I-1- Case rad(a) < rad(c):
In this case a = µa.rad(a) ≤ rad3(a) ≤ rad1.63(a)rad1.37(a) < rad1.63(a).rad1.37(c)

=⇒ c < 2a < 2rad1.63(a).rad1.37(c) < rad1.63(abc) =⇒ c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) <

rad1.63(a).rad1.63(c) =⇒ c < 2a < 2rad1.63(a).rad1.63(c) < R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):

I-3-1- We suppose rad1.63(c) < µc ≤ rad2.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒

c < rad1.63(c).rad1.37(a) < rad1.63(c).rad1.63(a).rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose µc > rad2.26(c) =⇒ c > rad3.26(c).

I-3-2-1- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a+ 1.
Then, we obtain that X = rad(a) is a solution in positive integers of the
equation:

(7) X3 + 1 = c

I-3-2-1-1- We suppose that c = radn(c) with n ≥ 4, we obtain the equation:

(8) radn(c)− rad3(a) = 1

But the solutions of the equation (8) are [5] :(rad(c) = 3, n = 2, rad(a) =
+2), it follows the contradiction with n ≥ 4 and the case c = radn(c), n ≥ 4
is to reject.

I-3-2-1-2- In the following, we will study the cases µc = A.radn(c) with
rad(c) ∤ A,n ≥ 0. The above equation (7) can be written as :

(9) (X + 1)(X2 −X + 1) = c

Let δ one divisor of c so that :

X + 1 = δ(10)

X2 −X + 1 =
c

δ
= m = δ2 − 3X(11)
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We recall that rad(a) > rad
1.63
1.37 (c).

I-3-2-1-2-1- We suppose δ = l.rad(c). We have δ = l.rad(c) < c =

µc.rad(c) =⇒ l < µc. As
c

δ
=

µcrad(c)

lrad(c)
=

µc

l
= m = δ2 − 3X =⇒ µc =

l.m = l(δ2 − 3X). From m = δ2 − 3X) and X = rad(a), we obtain:

m = l2rad2(c)− 3rad(a) =⇒ 3rad(a) = l2rad2(c)−m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and
(rad(c),m′) not coprime. We obtain:

rad(a) = l2rad(c).
rad(c)

3
−m′

It follows that a, c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 =
3(1 +X) = 3δ =⇒ δ = lrad(c) = 3 =⇒ c = 3δ = 9 = a + 1 =⇒ a = 8 =⇒
c = 9 < (2× 3)1.63 ≈ 18.55, it is a trivial case and the conjecture is true.

I-3-2-1-2-2- We suppose δ = l.rad2(c), l ≥ 2. If n = 0 then µc = A and
from the equation above (11):

m =
c

δ
=

µc.rad(c)

lrad2(c)
=

A.rad(c)

lrad2(c)
=

A

lrad(c)
⇒ rad(c)|A

It follows the contradiction with the hypothesis above rad(c) ∤ A.

I-3-2-1-2-3- We suppose δ = lrad2(c), l ≥ 2 and in the following n > 0. As

m =
c

δ
=

µc.rad(c)

lrad2(c)
=

µc

lrad(c)
, if lrad(c) ∤ µc then the case is to reject. We

suppose lrad(c)|µc =⇒ µc = m.lrad(c), with m, rad(c) not coprime, then
c

δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) =
rad(a)(δ + 1) =⇒ δ = 2 = l.rad2(c), then the contradiction.

D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c).
Then the contradiction.

E - Case m ̸= 1, 3, we obtain: 3rad(a) = l2rad4(c) − m =⇒ rad(a) and
rad(c) are not coprime. Then the contradiction.

I-3-2-1-2-4- We suppose δ = l.radn(c), l ≥ 2 with n ≥ 3. c = µc.rad(c) =
lradn(c)(δ2 − 3rad(a)) and m = δ2 − 3rad(a) = δ2 − 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give con-
tradictions, it follows the reject of these cases.

G - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to m),
it follows q|(µc = l.m) =⇒ q = cj′0 =⇒ cj′0 |δ

2 =⇒ cj′0 |3rad(a). Then rad(a)
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and rad(c) are not coprime. It follows the contradiction.

I-3-2-1-2-5- We suppose δ =
∏

j∈J1 c
βj

j , βj ≥ 1 with at least one j0 ∈ J1
with:

(12) βj0 ≥ 2, rad(c) ∤ δ

We can write:

(13) δ = µδ.rad(δ), rad(c) = r.rad(δ), r > 1, (r, µδ) = 1

Then, we obtain:

c = µc.rad(c) = µc.r.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ
2 − 3X) =⇒

r.µc = µδ(δ
2 − 3X)(14)

- We suppose µc = µδ =⇒ r = δ2 − 3X = (µc.rad(δ))
2 − 3X. As δ <

δ2− 3X =⇒ r > δ =⇒ rad(c) > r > (µc.rad(δ) = A.radn(c)rad(δ)) =⇒ 1 >
A.radn−1(δ), then the contradiction.

- We suppose µc < µδ. As rad(a) = δ − 1 = µδrad(δ)− 1, we obtain:

rad(a) > µc.rad(δ)− 1 > 0 =⇒ rad(ac) > c.rad(δ)− rad(c) > 0

As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > c.rad(δ)− rad(c) > 0 =⇒ c > c.rad(δ)− rad(c) > 0 =⇒

1 > rad(δ)− rad(c)

c
> 0, rad(δ) ≥ 2 =⇒ The contradiction(15)

- We suppose µc > µδ. In this case, from the equation (14) and as (r, µδ) = 1,
it follows we can write:

µc = µ1.µ2, µ1, µ2 > 1,

c = µcrad(c) = µ1.µ2.rad(δ).r = δ.(δ2 − 3X),

We do a choice so that µ2 = µδ, r.µ1 = δ2 − 3X =⇒ δ = µ2.rad(δ).

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ cj0 so that cj0 |µ1 and cj0 |µ2. But
µδ = µ2 ⇒ c2j0 |δ. From 3X = δ2 − rµ1 =⇒ cj0 |3X =⇒ cj0 |X or cj0 = 3.

- If cj0 |(X = rad(a)), it follows the contradiction with (c, a) = 1.
- If cj0 = 3. We have rµ1 = δ2−3X = δ2−3(δ−1) =⇒ δ2−3δ+3−r.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3kµ′
1, 3 ∤ µ′

1, k ≥ 1, we obtain:

(16) δ2 − 3δ + 3(1− 3k−1rµ′
1) = 0

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1− 3k−1rµ′
1). Let us recall the

Eisenstein criterion [6]:

Theorem 2.1. (Eisenstein Criterion) Let f = a0 + · · · + anX
n be a

polynomial ∈ Z[X]. We suppose that ∃ p a prime number so that p ∤ an,
p|ai, (0 ≤ i ≤ n− 1), and p2 ∤ a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(17) R(Z) = Z2 − 3Z + 3(1− 3k−1rµ′
1)

then:
- 3 ∤ 1, - 3|(−3),- 3|3(1− 3k−1rµ′

1), and - 32 ∤ 3(1− 3k−1rµ′
1).



6 ABDELMAJID BEN HADJ SALEM

It follows that the polynomial R(Z) is irreducible in Q, then, the contradic-
tion with R(δ) = 0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we
obtain:

(18) δ2 − 3δ + 3(1− rµ′
1) = 0

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein

criterion to the polynomial R′(Z) given by:

R′(Z) = Z2 − 3Z + 3(1− rµ′
1)

and we find a contradiction with R′(δ) = 0.

** 1-2-2- We consider that:

(19) 3|(1− r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗

δ is an integer root of the polynomial R′(Z):

(20) R′(Z) = Z2 − 3Z + 3(1− rµ′
1) = 0

The discriminant of R′(Z) is:

∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive
integer. We obtain:

∆ = 32(1 + 3i−1 × 4h) = t2(21)

=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(22)

We can write the equation (18) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′
1

rad(δ)

3
.
(
µ′
1rad(δ)− 1

)
= 3i+1.h =⇒(23)

µ′
1

rad(δ)

3
.
(
µ′
1rad(δ)− 1

)
= h(24)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
1rad(δ)(µ

′
1rad(δ)− 1). Then, q

satisfies :

q2 − 1 = 12h = 4µ′
1rad(δ)(µ

′
1rad(δ)− 1) =⇒(25)

(q−1)
2 . (q+1)

2 = 3h = (µ′
1rad(δ)− 1).µ′

1rad(δ) ⇒(26)

q − 1 = 2µ′
1rad(δ)− 2(27)

q + 1 = 2µ′
1rad(δ)(28)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(29) x2 − y2 = N

with N = 4µ′
1rad(δ)(µ

′
1rad(δ) − 1) = 12h > 0. Let Q(N) be the number

of the solutions of (29) and τ(N) is the number of suitable factorization of
N , then we announce the following result concerning the solutions of the
Diophantine equation (29) (see theorem 27.3 in [7]):

- If N≡2(mod 4), then Q(N) = 0.
- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].
- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].
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[x] is the integral part of x for which [x] ≤ x < [x] + 1.

AsN = 4µ′
1rad(δ)(µ

′
1rad(δ)−1) =⇒ N≡0( mod 4) =⇒ Q(N) = [τ(N/4)/2].

As (q, 1) is a couple of solutions of the Diophantine equation (29), then ∃ d, d′

positive integers with d > d′ and N = d.d′ so that :

d+ d′ = 2q(30)

d− d′ = 2.1 = 2(31)

** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows:{
N + 1 = 2q
N − 1 = 2

=⇒ N = 3 =⇒ then the contradiction with N≡0(mod 4).

** 1-2-2-2 Now, we consider the case d = 2µ′
1rad(δ)(µ

′
1rad(δ) − 1) and

d′ = 2. It follows:{
2µ′

1rad(δ)(µ
′
1rad(δ)− 1) + 2 = 2q

2µ′
1rad(δ)(µ

′
1rad(δ)− 1)− 2 = 2

⇒ 2µ′
1rad(δ)(µ

′
1rad(δ)− 1) = q + 1

As q + 1 = 2µ′
1rad(δ), we obtain µ′

1rad(δ) = 2, then the contradiction with
3|δ.

** 1-2-2-3 Now, we consider the case d = µ′
1rad(δ)(µ

′
1rad(δ)−1) and d′ = 4.

It follows:{
µ′
1rad(δ)(µ

′
1rad(δ)− 1) + 4 = 2q

µ′
1rad(δ)(µ

′
1rad(δ)− 1)− 4 = 2 ⇒ µ′

1rad(δ)(µ
′
1rad(δ)− 1) = 6

As µ′
1rad(δ) > 0 =⇒ µ′

1rad(δ) = 3 =⇒ µ′
1 = 1, rad(δ) = 3 and q = 5.

From q2 = 1 + 12h, we obtain h = 2. Using the relation (19) rµ′
1 − 1 = 3ih

as µ′
1 = 1, i = 2, h = 2, it gives r − 1 = 9h = 18. As δ is the positive root of

the equation (18):

Z2 − 3Z + 3(1− r) = 0 =⇒ δ = 9 = 32

But δ = 1 +X = 1 + rad(a) =⇒ rad(a) = 8 = 23, then the contradiction.

** 1-2-2-4 Now, let cj0 be a prime integer so that cj0 |radδ, we consider the

case d = µ′
1

rad(δ)

cj0
(µ′

1rad(δ)− 1) and d′ = 4cj0 . It follows:
µ′
1

rad(δ)

cj0
(µ′

1rad(δ)− 1) + 4cj0 = 2q

µ′
1

rad(δ)

cj0
(µ′

1rad(δ)− 1)− 4cj0 = 2
=⇒ µ′

1

rad(δ)

cj0
(µ′

1rad(δ)− 1) = 2(1 + 2cj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2cj0).

** 1-2-2-5 Now, we consider the case d = 4µ′
1rad(δ) and d′ = (µ′

1rad(δ)−1).
It follows:{

4µ′
1rad(δ) + (µ′

1rad(δ)− 1) = 2q
4µ′

1rad(δ)− (µ′
1rad(δ)− 1) = 2

=⇒ 3µ′
1rad(δ) = 1 =⇒ Then the contradiction.
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** 1-2-2-6 Now, we consider the case d = 2µ′
1rad(δ) and d′ = 2(µ′

1rad(δ)−
1). It follows:{

2µ′
1rad(δ) + 2(µ′

1rad(δ)− 1) = 2q =⇒ 2µ′
1rad(δ)− 1 = q

2µ′
1rad(δ)− 2(µ′

1rad(δ)− 1) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a priori.

** 1-2-2-7 µ′
1rad(δ) and µ′

1rad(δ)−1 are coprime, let µ′
1rad(δ)−1 =

j=J∏
j=1

λ
γj
j ,

we consider the case d = 2λj′µ
′
1rad(δ) and d′ = 2

µ′
1rad(δ)− 1

λj′
. It follows:

2λj′µ
′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ
′
1rad(δ)

and d′ = 2
µ′
1rad(δ)− 1

λj′
. It follows:

2λj′µ
′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

=⇒ 4λj′µ
′
1rad(δ) = 2(q+1) =⇒ 2λj′µ

′
1rad(δ) = q+1

But from the equation (28), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the

contradiction.

** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′−r′

j′

j′ µ′
1rad(δ)

and d′ = 2
µ′
1rad(δ)− 1

λ
r′
j′

j′

. It follows:



2λ
γj′−r′

j′

j′ µ′
1rad(δ) + 2

µ′
1rad(δ)− 1

λ
r′
j′

j′

= 2q

2λ
γj′−r′

j′

j′ µ′
1rad(δ)− 2

µ′
1rad(δ)− 1

λ
r′
j′

j′

= 2

=⇒ 4λ
γj′−r′

j′

j′ µ′
1rad(δ) = 2(q + 1)

=⇒ 2λ
γj′−r′

j′

j′ µ′
1rad(δ) = q + 1

As above, it follows the contradiction. It is trivial that the other cases for

more factors
∏
j”

λ
γj”−r”j”
j” give also contradictions.
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** 1-2-2-8 Now, we consider the case d = 4(µ′
1rad(δ)−1) and d′ = µ′

1rad(δ),
we have d > d′. It follows:{

4(µ′
1rad(δ)− 1) + µ′

1rad(δ) = 2q ⇒ 5µ′
1rad(δ) = 2(q + 2)

4(µ′
1rad(δ)− 1)− µ′

1rad(δ) = 2 ⇒ µ′
1rad(δ) = 2

⇒
{

Then the contradiction as
3|δ.

** 1-2-2-9 Now, we consider the case d = 4u(µ′
1rad(δ) − 1) and d′ =

µ′
1rad(δ)

u
, where u > 1 is an integer divisor of µ′

1rad(δ). We have d > d′

and:
4u(µ′

1rad(δ)− 1) +
µ′
1rad(δ)

u
= 2q

4u(µ′
1rad(δ)− 1)− µ′

1rad(δ)

u
= 2

=⇒ 2u(µ′
1rad(δ)− 1) = µ′

1rad(δ)

Then the contradiction as µ′
1rad(δ) and (µ′

1rad(δ)− 1) are coprime.

In conclusion, we have found only one case (** 1-2-2-6 above) where there
is no contradictions a priori. As τ(N) is large and also [τ(N/4)/2], it follows
the contradiction with Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

From the equation rµ1 = δ2 − 3X and the condition rad(a) = X >

rad1.63/1.37(c) ⇐⇒ δ − 1 = X > rad1.19(c), we obtain the following inequal-
ity:

δ − 1 > (r.rad(δ))1.19 =⇒ −3(δ − 1) < −3r.rad(δ).(r.rad(δ))0.19 =⇒
rµ1 = δ2 − 3(δ − 1) < (r.rad(δ))2 − 3r.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ)− 3.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ)

(
1− 3

(r.rad(δ))0.81

)
(32)

As a = rad3(a) < c, we can write:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad
2(c)

(
1− 3

(r.rad(δ))0.81

)
but (r, rad(δ)) = 1, r.rad(δ) ≥ 6 =⇒ (r.rad(δ))0.81 ≥ (60.81 ≈ 4.26) and
δ = µ2.rad(δ), it follows:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad
2(c) =⇒ rad3(a) < δ.rad2(c) < 1.6rad(a).rad2(c)

As rad(a) > (rad1.62/1.37(c) = rad1.19(c)) =⇒ rad1.19(c) < rad(a) < 1.27rad(c),
then we obtain:

rad1.19(c) < 1.27rad(c) =⇒ rad(c) < 3.5 =⇒ rad(c) ≤ 3, but rad(c) = r.rad(δ) ≥ 6

Then the contradiction.

It follows that the case µc > rad2.26(c) ⇒ c > rad3.26(c) and a = rad3(a) is
impossible.
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I-3-2-2- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a+ b.
Then, we obtain that X = rad(a) is a solution in positive integers of the
equation:

(33) X3 + 1 = c̄

with c̄ = c − b + 1 = a + 1 =⇒ (c̄, a) = 1. We obtain the same result as of

the case I-3-2-1- studied above considering rad(a) > rad
1.63
1.37 (c̄).

I-3-2-3- We suppose µc > rad2.26(c) ⇒ c > rad3.26(c) and c large and
µa < rad2(a), we consider c = a+b, b ≥ 1. Then c = rad3(c)+h, h > rad3(c),
h a positive integer and we can write a+ l = rad3(a), l > 0. Then we obtain
:

(34) rad3(c) + h = rad3(a)− l + b =⇒ rad3(a)− rad3(c) = h+ l − b > 0

as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

(35) rad3(a)− rad3(c) = h+ l − b = m > 0

Let X = rad(a)− rad(c), then X is an integer root of the polynomial H(X)
defined as:

(36) H(X) = X3 + 3rad(ac)X −m = 0

To resolve the above equation, we denote X = u + v, It follows that u3, v3

are the roots of the polynomial G(t) given by:

(37) G(t) = t2 −mt− rad3(ac) = 0

The discriminant of G(t) is ∆ = m2 + 4rad3(ac) = α2, α > 0. As m =
rad3(a)− rad3(c) > 0, we obtain that α = rad3(a)+ rad3(c) > 0, then from
the expression of the discriminant ∆, it follows that the couple (α = x,m =
y) is a solution of the Diophantine equation:

(38) x2 − y2 = N

with N = 4rad3(ac) = 4rad3(a).rad3(c) > 0. Here, we will use the same
method that is given in the above sub-paragraph ** 1-2-2 - of the paragraph
I-3-2-1-2-5-. We have the two terms rad3(a) and rad3(c) coprime. As
(α,m) is a couple of solutions of the Diophantine equation (38) and α > m,
then ∃ d, d′ positive integers with d > d′ and N = d.d′ so that :

d+ d′ = 2α(39)

d− d′ = 2m(40)

I-3-2-3-1- Let us consider the case d = 2rad3(a), d′ = 2rad3(c). It follows:{
2rad3(a) + 2rad3(c) = 2α =⇒ α = rad3(a) + rad3(c)
2rad3(a)− 2rad3(c) = 2m =⇒ m = rad3(a)− rad3(c)

It follows that this case presents a priori no contradictions.

I-3-2-3-2- Now, we consider for example, the case d = 4rad3(a) and d′ =
rad3(c) =⇒ d > d′. We rewrite the equations (39-40):

4rad3(a) + rad3(c) = 2(rad3(a) + rad3(c)) ⇒ 2rad3(a) = rad3(c))

4rad3(a)− rad3(c) = 2(rad3(a)− rad3(c)) =⇒ 2rad3(a) = −rad3(c))
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Then the contradiction.

I-3-2-3-3- We consider the case d = 4rad3(c)rad3(a) and d′ = 1 =⇒ d > d′.
We rewrite the equations (39-40):

4rad3(c)rad3(a) + 1 = 2(rad3(c) + rad3(a)) =⇒
2(2rad3(c)rad3(a)− rad3(c)− rad3(a)) = −1 ⇒ a contradiction

4rad3(c)rad3(a)− 1 = 2(rad3(c)− rad3(a))

Then the contradiction.

I-3-2-3-4- Let c1 be the first factor of rad(c). We consider the case d =

4c1rad
3(a) and d′ =

rad3(c)

c1
=⇒ d > d′. We rewrite the equation (39):

4c1rad
3(a) +

rad3(c)

c1
= 2(rad3(a) + rad3(c)) ⇒

2rad3(a)(2c1 − 1) =
rad3(c)

c1
(2c1 − 1) ⇒ 2rad3(a) = rad2(c).

rad(c)

c1

c1 = 2 or not, there is a contradiction with a, c coprime.

The other cases of the expressions of d and d′ not coprime so that N = d.d′

give also contradictions.

Let Q(N) be the number of the solutions of (38), as N≡0(mod4), then
Q(N) = [τ(N/4)/2]. From the study of the cases above, we obtain that
Q(N) ≤ 1 is ≪ [(τ(N)/4)/2]. It follows the contradiction.

Then the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.

II- We suppose that rad1.63(c) < µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒ c <

rad1.63(c).rad1.37(a) < rad1.63(ac) < rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a):

As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c) =⇒ c < rad1.63(c).rad1.63(a) <

rad1.63(abc) =⇒ c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1-We suppose rad1.63(a) < µa ≤ rad2.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a)
=⇒ a < rad1.63(a).rad1.37(c) =⇒ c = a+ b < 2a < 2rad1.63(a).rad1.63(c) <

rad1.63(abc) =⇒ c < R1.63 =⇒ c < R1.63 .

II-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a) and µc ≤ rad2(c).
Using the same method as it was explicated in the paragraphs I-3-2- (per-
muting a, c see in Appendix II’-3-2-), we arrive at a contradiction. It follows
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that the cases µc ≤ rad2(c) and µa > rad2.26(a) are impossible.

2.2.3. Case µa > rad1.63(a) and µc > rad1.63(c): Taking into account the
cases studied above, it remains to see the following two cases:

- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and
a > rad2.63(a). We can write c = rad3(c) + h and a = rad3(a) + l with h a
positive integer and l ∈ Z.

III-1- We suppose rad(c) < rad(a). We obtain the equation:

(41) rad3(a)− rad3(c) = h− l − b = m > 0

Let X = rad(a) − rad(c), from the above equation, X is a real root of the
polynomial:

(42) H(X) = X3 + 3rad(ac)X −m = 0

As above, to resolve (42), we denote X = u + v, It follows that u3, v3 are
the roots of the polynomial G(t) given by :

(43) G(t) = t2 −mt− rad3(ac) = 0

The discriminant of G(t) is:

(44) ∆ = m2 + 4rad3(ac) = α2, α > 0

As m = rad3(a) − rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0,
then from the equation (44), it follows that (α = x,m = y) is a solution of
the Diophantine equation:

(45) x2 − y2 = N

with N = 4rad3(ac) > 0. Let Q(N) be the number of the solutions of
(45) and τ(N) is the number of suitable factorization of N , and using the
same method as in the paragraph I-3-2-3- above, we obtain a contradiction.

III-2- We suppose rad(a) < rad(c). We obtain the equation:

(46) rad3(c)− rad3(a) = b+ l − h = m > 0

Let X be the variable X = rad(c)− rad(a), we use the similar calculations
as in the paragraph above I-3-2-3- permuting c, a, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

IV - We suppose µa > rad2(a) and µc > rad1.63(c), we obtain a > rad3(a)
and c > rad2.63(c). We can write a = rad3(a) + h and c = rad3(c) + l with
h a positive integer and l ∈ Z.

The calculations are similar to those in the cases of the paragraph III. We
obtain a contradiction.
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It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible.

All possible cases are discussed. □

We can state the following important theorem:

Theorem 2.2. Let a, b, c positive integers relatively prime with c = a + b,
then c < rad1.63(abc).

From the theorem above, we can announce also:

Corollary 2.2.1. Let a, b, c positive integers relatively prime with c = a+b,
then the conjecture c < rad2(abc) is true.
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Appendix

II’-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a).

II’-3-2-1- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a+1.
Then, we obtain that Y = rad(c) is a solution in positive integers of the
equation:

(47) Y 3 − 1 = a

II’-3-2-1-1- We suppose that a = radn(a) with n ≥ 4, we obtain the
equation:

(48) rad3(c)− radn(a) = 1

But the solutions of the Catalan equation [5] xp − yq = 1 where the un-
knowns x, y, p and q take integer values, all ≥ 2, has only one solution
(x, y, p, q) = (3, 2, 2, 3), but the solution of the equation (48) are (rad(c) =
3, rad(a) = 2, 3 ̸= 2, n ≥ 4), it follows the contradiction with n ≥ 4 and the
case a = radn(a), n ≥ 4 is to reject.

II’-3-2-1-2- In the following, we will study the cases µa = A.radn(a) with
rad(a) ∤ A,n ≥ 0. The above equation (47) can be written as :

(49) (Y − 1)(Y 2 + Y + 1) = a

Let δ one divisor of a so that :

Y − 1 = δ(50)

Y 2 + Y + 1 =
a

δ
= m = δ2 + 3Y(51)
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We recall that rad(c) > rad
1.63
1.37 (a).

II’-3-2-1-2-1- We suppose δ = l.rad(a). We have δ = l.rad(a) < a =

µa.rad(a) =⇒ l < µa. As δ is a divisor of a, then l is a divisor of µa,
a

δ
=

µarad(a)

l.rad(a)
=

µa

l
= m = δ2 + 3Y , then µa = l.m. From µa = l(δ2 + 3Y ), we

obtain:

m = l2rad2(a) + 3rad(c) =⇒ 3rad(c) = m− l2rad2(a)

A’- Case 3|m =⇒ m = 3m′, m′ > 1: As µa = ml = 3m′l =⇒ 3|rad(a) and
(rad(a),m′) not coprime. We obtain:

rad(c) = m′ − l2rad(a).
rad(a)

3

It follows that a, c are not coprime, then the contradiction.

B’ - Case m = 3 =⇒ µa = 3l =⇒ a = 3lrad(a) = 3δ = δ(δ2 + 3Y ) =⇒ δ2 =
3(1− Y ) = −3δ < 0, then the contradiction.

II’-3-2-1-2-2- We suppose δ = l.rad2(a), l ≥ 2. If n = 0 then µa = A and
from the equation above (51):

m =
a

δ
=

µa.rad(a)

lrad2(a)
=

A.rad(a)

lrad2(a)
=

A

lrad(a)
⇒ rad(a)|A

It follows the contradiction with the hypothesis above rad(a) ∤ A.

II’-3-2-1-2-3- We suppose δ = lrad2(a), l ≥ 2 and in the following n > 0.

As m =
a

δ
=

µa.rad(a)

lrad2(a)
=

µa

lrad(a)
, if lrad(a) ∤ µa then the case is to reject.

We suppose lrad(a)|µa =⇒ µa = m.lrad(a), with m, rad(a) not coprime,

then
a

δ
= m = δ2 + 3rad(c).

C’ - Case m = 1 = a/δ =⇒ δ2 + 3rad(c) = 1, then the contradiction.

D’ - Case m = 3, we obtain 3(1 − rad(c)) = δ2 =⇒ δ2 < 0. Then the
contradiction.

E’ - Case m ̸= 1, 3, we obtain: 3rad(c) = m − l2rad4(a) =⇒ rad(a) and
rad(c) are not coprime. Then the contradiction.

II’-3-2-1-2-4- We suppose δ = l.radn(a), l ≥ 2 with n ≥ 3. From a =
µa.rad(a) = lradn(a)(δ2+3rad(c)), we denote m = δ2+3rad(c) = δ2+3Y .

F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give
contradictions, it follows the reject of these cases.

G’ - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to
m), it follows q|µa =⇒ q = aj′0 =⇒ aj′0 |δ

2 =⇒ aj′0 |3rad(c). Then rad(a) and
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rad(c) are not coprime. It follows the contradiction.

II’-3-2-1-2-5- We suppose δ =
∏

j∈J1 a
βj

j , βj ≥ 1 with at least one j0 ∈ J1
with:

(52) βj0 ≥ 2, rad(a) ∤ δ
We can write:
(53)
δ = µδ.rad(δ), rad(a) = r.rad(δ), r > 1, (r, rad(δ)) = 1 ⇒ (r, µδ) = 1

Then, we obtain:

a = µa.rad(a) = µa.r.rad(δ) = δ(δ2 + 3Y ) = µδ.rad(δ)(δ
2 + 3Y ) =⇒

r.µa = µδ(δ
2 + 3Y )(54)

- We suppose µa = µδ =⇒ r = δ2 + 3Y = (µa.rad(δ))
2 + 3Y . As δ <

δ2 + 3Y =⇒ r > δ =⇒ rad(a) > r > (µa.rad(δ) = A.radn(a)rad(δ)) =⇒
1 > A.radn−1(δ), then the contradiction.

- We suppose µa < µδ. As rad(c) = µδrad(δ) + 1, we obtain:

rad(c) > µa.rad(δ) + 1 > 0 =⇒ rad(ac) > a.rad(δ) + rad(a) > 0

As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > a.rad(δ) + rad(a) > 0 =⇒ a+ 1 ≥ a.rad(δ) + rad(a) > 0 =⇒

a ≥ a.rad(δ) + rad(δ) =⇒ 1 ≥ rad(δ) +
rad(a)

a
> 0, rad(δ) ≥ 2 =⇒ The contradiction

- We suppose µa > µδ. In this case, from the equation (14) and as (r, µδ) = 1,
it follows we can write:

µa = µ1.µ2, µ1, µ2 > 1(55)

a = µarad(a) = µ1.µ2.r.rad(δ) = δ.(δ2 + 3Y )(56)

so that r.µ1 = δ2 + 3Y, µ2 = µδ =⇒ δ = µ2.rad(δ)(57)

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ aj0 so that aj0 |µ1 and aj0 |µ2. But
µδ = µ2 ⇒ a2j0 |δ. From 3Y = rµ1 − δ2 =⇒ aj0 |3Y =⇒ aj0 |Y or aj0 = 3.

- If aj0 |(Y = rad(c)), it follows the contradiction with (c, a) = 1.
- If aj0 = 3. We have rµ1 = δ2+3Y = δ2+3(δ+1) =⇒ δ2+3δ+3−r.µ1 = 0.

As 3|µ1 =⇒ µ1 = 3kµ′
1, 3 ∤ µ′

1, k ≥ 1, we obtain:

(58) δ2 + 3δ + 3(1− 3k−1rµ′
1) = 0

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1− 3k−1rµ′
1). Let us recall the

Eisenstein criterion [6]:

Theorem 2.3. (Eisenstein Criterion) Let f = a0 + · · · + anX
n be a

polynomial ∈ Z[X]. We suppose that ∃ p a prime number so that p ∤ an,
p|ai, (0 ≤ i ≤ n− 1), and p2 ∤ a0, then f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

(59) R(Z) = Z2 + 3Z + 3(1− 3k−1rµ′
1)

then:
- 3 ∤ 1, - 3|(+3),- 3|3(1− 3k−1rµ′

1), and - 32 ∤ 3(1− 3k−1rµ′
1).
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It follows that the polynomial R(Z) is irreducible in Q, then, the contradic-
tion with R(δ) = 0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we
obtain:

(60) δ2 + 3δ + 3(1− rµ′
1) = 0

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein

criterion to the polynomial R′(Z) given by:

R′(Z) = Z2 + 3Z + 3(1− rµ′
1)

and we find a contradiction with R′(δ) = 0.

** 1-2-2- We consider that:

(61) 3|(1− r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗

δ is an integer root of the polynomial R′(Z):

(62) R′(Z) = Z2 + 3Z + 3(1− rµ′
1) = 0

The discriminant of R′(Z) is:

∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive
integer. We obtain:

∆ = 32(1 + 3i−1 × 4h) = t2(63)

=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗(64)

As µδ = µ2 and 3|µ2 =⇒ µ2 = 3µ′
2, then we can write the equation (60) as :

δ(δ + 3) = 3i+1.h =⇒ 33µ′
2

rad(δ)

3
.
(
µ′
2rad(δ) + 1

)
= 3i+1.h =⇒(65)

µ′
2

rad(δ)

3
.
(
µ′
2rad(δ) + 1

)
= h(66)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
2rad(δ)(µ

′
2rad(δ) + 1). Then, q

satisfies :

q2 − 1 = 12h = 4µ′
2rad(δ)(µ

′
2rad(δ) + 1) =⇒(67)

(q−1)
2 . (q+1)

2 = 3h = µ′
2rad(δ)(µ

′
2rad(δ) + 1). ⇒(68)

q + 1 = 2µ′
2rad(δ) + 2(69)

q − 1 = 2µ′
2rad(δ)(70)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

(71) x2 − y2 = N

with N = 4µ′
2rad(δ)(µ

′
2rad(δ) + 1) = 12h > 0. Let Q(N) be the number

of the solutions of (71) and τ(N) is the number of suitable factorization of
N , then we announce the following result concerning the solutions of the
Diophantine equation (71) (see theorem 27.3 in [7]):

- If N≡2(mod 4), then Q(N) = 0.
- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].
- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].
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[x] is the integral part of x for which [x] ≤ x < [x] + 1.

AsN = 4µ′
2rad(δ)(µ

′
2rad(δ)+1) =⇒ N≡0( mod 4) =⇒ Q(N) = [τ(N/4)/2].

As (q, 1) is a couple of solutions of the Diophantine equation (71), then ∃ d, d′

positive integers with d > d′ and N = d.d′ so that :

d+ d′ = 2q(72)

d− d′ = 2.1 = 2(73)

** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows:{
N + 1 = 2q
N − 1 = 2

=⇒ N = 3 =⇒ then the contradiction with N≡0(mod 4).

** 1-2-2-2 Now, we consider the case d = 2µ′
2rad(δ)(µ

′
2rad(δ) + 1) and

d′ = 2. It follows:{
2µ′

2rad(δ)(µ
′
2rad(δ) + 1) + 2 = 2q

2µ′
2rad(δ)(µ

′
2rad(δ) + 1)− 2 = 2

⇒ µ′
2rad(δ)(µ

′
2rad(δ) + 1) = q − 1

As q − 1 = 2µ′
2rad(δ), we obtain µ′

2rad(δ) = 1, then the contradiction.

** 1-2-2-3 Now, we consider the case d = µ′
2rad(δ)(µ

′
2rad(δ)+1) and d′ = 4.

It follows:{
µ′
2rad(δ)(µ

′
2rad(δ) + 1) + 4 = 2q

µ′
2rad(δ)(µ

′
2rad(δ) + 1)− 4 = 2 ⇒ µ′

2rad(δ)(µ
′
2rad(δ) + 1) = 6

As µ′
2rad(δ) ≥ 2 =⇒ µ′

2rad(δ) = 2 =⇒ µ′
2 = 1 ⇒ µ2 = 3 = µδ and

rad(δ) = 2 but 3 ∤ 2, then the contradiction.

** 1-2-2-4 Now, let aj0 be a prime integer so that aj0 |radδ, we consider the

case d = µ′
2

rad(δ)

aj0
(µ′

2rad(δ) + 1) and d′ = 4aj0 . It follows:
µ′
2

rad(δ)

aj0
(µ′

2rad(δ) + 1) + 4aj0 = 2q

µ′
2

rad(δ)

aj0
(µ′

2rad(δ) + 1)− 4aj0 = 2
=⇒ µ′

2

rad(δ)

aj0
(µ′

2rad(δ) + 1) = 2(1 + 2aj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2aj0).

** 1-2-2-5 Now, we consider the case d = 4µ′
2rad(δ) and d′ = (µ′

2rad(δ)+1).
It follows:{

4µ′
2rad(δ) + (µ′

2rad(δ) + 1) = 2q
4µ′

2rad(δ)− (µ′
2rad(δ) + 1) = 2

=⇒ 3µ′
2rad(δ) = 3 =⇒ Then the contradiction.

** 1-2-2-6 Now, we consider the case d = 2(µ′
2rad(δ)+1) and d = 2µ′

2rad(δ).
It follows:{

2(µ′
2rad(δ) + 1) + 2µ′

2rad(δ) = 2q =⇒ 2µ′
2rad(δ) + 1 = q

2(µ′
2rad(δ) + 1)− 2µ′

2rad(δ) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a prior.
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** 1-2-2-7 µ′
2rad(δ) and µ′

2rad(δ)+1 are coprime, let µ′
2rad(δ)+1 =

j=J∏
j=1

λ
γj
j ,

we consider the case d = 2λj′µ
′
2rad(δ) and d′ = 2

µ′
2rad(δ) + 1

λj′
. It follows:

2λj′µ
′
2rad(δ) + 2

µ′
2rad(δ) + 1

λj′
= 2q

2λj′µ
′
2rad(δ)− 2

µ′
2rad(δ) + 1

λj′
= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ
′
2rad(δ)

and d′ = 2
µ′
2rad(δ) + 1

λj′
. It follows:

2λj′µ
′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

=⇒ 4λj′µ
′
1rad(δ) = 2(q+1) =⇒ 2λj′µ

′
1rad(δ) = q+1

But from the equation (28), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the

contradiction.

** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′−r′

j′

j′ µ′
2rad(δ)

and d′ = 2
µ′
2rad(δ) + 1

λ
r′
j′

j′

. It follows:



2λ
γj′−r′

j′

j′ µ′
2rad(δ) + 2

µ′
2rad(δ) + 1

λ
r′
j′

j′

= 2q

2λ
γj′−r′

j′

j′ µ′
2rad(δ)− 2

µ′
2rad(δ) + 1

λ
r′
j′

j′

= 2

=⇒ 4λ
γj′−r′

j′

j′ µ′
2rad(δ) = 2(q + 1)

=⇒ 2λ
γj′−r′

j′

j′ µ′
2rad(δ) = q + 1

As above, it follows the contradiction. It is trivial that the other cases for

more factors
∏
j”

λ
γj”−r”j”
j” give also contradictions.

** 1-2-2-8 Now, we consider the case d = 4(µ′
2rad(δ)+1) and d′ = µ′

2rad(δ),
we have d > d′. It follows:{

4(µ′
2rad(δ) + 1) + µ′

2rad(δ) = 2q ⇒ 5µ′
2rad(δ) = 2(q + 2)

4(µ′
2rad(δ) + 1)− µ′

2rad(δ) = 2 ⇒ µ′
2rad(δ) = 2

⇒
{

Then the contradiction as
3|δ.

** 1-2-2-9 Now, we consider the case d = 4u(µ′
2rad(δ) + 1) and d′ =

µ′
2rad(δ)

u
, where u > 1 is an integer divisor of µ′

2rad(δ). We have d > d′



A COMPLETE PROOF OF THE CONJECTURE c < rad1.63(abc) 19

and:
4u(µ′

2rad(δ) + 1) +
µ′
2rad(δ)

u
= 2q

4u(µ′
2rad(δ) + 1)− µ′

2rad(δ)

u
= 2

=⇒ 2u(µ′
2rad(δ)+1) = µ′

2rad(δ)+1 ⇒ 2u = 1

Then the contradiction.

In conclusion, we have found only one case (** 1-2-2-6 above) where there
is no contradictions a prior. As τ(N) is large and also [τ(N/4)/2], it follows
the contradiction with Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

We recall that rad(c) = Y > rad1.63/1.37(a), δ + 1 = Y , rad(a) =
r.rad(δ), (r, rad(δ)) = 1, δ = µ2rad(δ) and rµ1 = δ2 + 3X, it follows:

(74) U(δ) = δ2 + 3δ + 3− rµ1 = 0

** 2-1- We suppose 3|(3 − rµ1) and 32 ∤ (3 − rµ1), then we use the Eisen-
stein criterion [6] to the polynomial U(δ) given by the equation (74), and
the contradiction.

** 2-2- We suppose 3|(3 − rµ1) and 32|(3 − rµ1). From 3|(3 − rµ1) =⇒
3|rµ1 =⇒ 3|r or 3|µ1.

- If 3|r =⇒ (3, radδ) = 1 =⇒ 3 ∤ δ. Then the contradiction with 3|δ2 by
the equation (74).

- If 3|µ1 =⇒ 3 ∤ µ2 =⇒ 3 ∤ δ, it follows the contradiction with 3|δ2 by the
equation (74).

** 2-3- We suppose 3 ∤ (3 − rµ1) =⇒ 3 ∤ rµ1 =⇒ 3 ∤ r and 3 ∤ µ1. From
the equation (74), U(δ) = 0 =⇒ rµ1≡δ2(mod3), as δ2 is a square then
δ2≡1(mod3) =⇒ rµ1≡1(mod3), but this result is not all verified. Then
the contradiction.

It follows that the case µa > rad2.26(a) ⇒ a > rad3.26(a) and c = rad3(c) is
impossible.

II’-3-2-2- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a+ b.
Then, we obtain that Y = rad(c) is a solution in positive integers of the
equation:

(75) Y 3 + 1 = c̄

with c̄ = a + b + 1 = c + 1 =⇒ (c̄, c) = 1. We obtain the same result as of

the case I-3-2-1- studied above considering rad(c̄) > rad
1.63
1.37 (c).

II’-3-2-3- We suppose µa > rad2.26(a) ⇒ a > rad3.26(a) and c large and
µc < rad2(c), we consider c = a + b, b ≥ 1. Then a = rad3(a) + h, h > 0,
h a positive integer and we can write c + l = rad3(c), l > 0. As rad(c) >
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rad
1.63
1.37 (a) =⇒ rad(c) > rad(a) =⇒ h+ l + b = m > 0, it follows:

(76)
rad3(c)− l = rad3(a)+h+ b > 0 =⇒ rad3(c)− rad3(a) = h+ l+ b = m > 0

We obtain the same result (a contradiction) as of the case I-3-2-3- studied

above considering rad(c) > rad
1.63
1.37 (a). Then, this case is to reject.

Then the cases µc ≤ rad2(c) and a > rad3.26(a) are impossible.
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