
Suggestions for an educational programming language PL/2, Alexey Podorov, 2022

Hundreds of languages are offered for teaching programming, including control of

graphic elements. Therefore, the proposal of a new language for teaching requires additional

justification.

I will try to describe the advantages of the proposed programming language (working title

PL/2) and game programming (working title PL/2 script), and I suggest finding flaws in the

approach.

The main paradigms are assumed to be the following:

Assembly code that allows you to control the processor

Logical programming, represented by Prolog, SQL languages

Functional programming

Imperative programming described by algorithms

Object programming, consisting in the transmission and processing of signals

Currently, these techniques are combined in extensions of existing programming

languages. An approach is proposed to combine paradigms in a single syntax that resolves

conflicts between different approaches in advance, which will reduce the time spent on learning

different syntaxes.

So, the key elements of an educational programming language.

Source text

The source text file consists of arbitrary text (comments, description of the algorithm),

which can include [named] fragments in various programming languages — PL/2, SQL, HTML,

text, PL/2 script.

the beginning of the code insertion is indicated by the source keyword in the first

position of the line

the end of the insertion is indicated by the sequence /source in the first position of the

line

The PL/2 syntax includes uniform indentation requirements, in particular, the program

text is shifted at least 4 positions from the beginning of the line.

Structure of the program text

The size of the shift between the nesting levels is 4 spaces. The continuation of a

statement on the next line is shifted by at least 3 spaces relative to the statement level

The main level of the program is shifted by 4 spaces relative to the source markup

character of the source file, respectively, no program character can be indented less than 4 spaces

Syntax

For different types of blocks, different types of brackets are assumed:

parentheses (...) used to describe and pass parameters when calling methods

square brackets [...] are used to describe the dimension of arrays and specify the index

when accessing an array element.

curly brackets {...} are used to indicate various elements of the program structure. To

localize errors, curly brackets are provided with additional characters.

{-... -} — analog of parentheses — used when describing the body of a relational class

{#... #} — used when describing the body of a function block

{$...$} — external framing brackets when describing a constant of a structural class

{*... *} — description of the class body or interface or unit

{&... &} — description of the method body

{@... @} — namespace body

{|... |} — blocks executed in parallel

{%... %} — managed block

{=... =} — responsibility class

{... } — internal block in the method body

Operators

== equality comparison

=/= comparison on inequality

:= assigning a value to a variable

++ prefix increment

-- prefix decrement

+ addition

- subtraction

* multiplication

/ division

-/- rational division (highlighted only for clarity of formulas, including in the IDE)

(? boolean ? value_true :: value_false ?) - ternary operator

Imperative programming

The following syntax for structural programming is proposed:

The operators enclosed between brackets {& and &} are executed sequentially in the

order specified in the program text

Loop and branch operators are used to change the execution order

execution when condition is met

if (condition){

 ...

}

execution of the block when the first of the conditions is met and the else block when

none of the conditions are met

decision{

 if (<condition1>)

 ...

 if (<condition2>)

 ...

 else

 ...

}

switch by numerical value with indication of a constant or enumeration member

switch (<expression>){

 case <value1>:

 ...

 case <value2>:

 ...

 else

 ...

}

The ternary selection operator can also be used in expressions

Loop statement

loop [explicit] [label]

{

 for <[type] variable [:= initializer]>;

 from <container>;

 while <condition under which the loop continues iterating>;

 next <iteration operator>;

 where <loop body execution condition>

 ...

 continue;

 ...

 break [block label];

 ...

}

Here:

loop - loop start operator

explicit - the loop is executed at least once, the loop exit condition is not checked before

the first pass

for - list of loop variables and their initialization

while - the condition under which the loop continues to iterate

next - commands to be executed after iteration

from - the container from which elements are selected when passing through the loop

where - condition for executing the loop body

continue - operator of early transition to the next iteration

break is an operator for early exit from the current or specified loop

Error Handling

transaction and site management with the possibility of failure

transaction{

 finalize

 {

 }

 catch

 {

 }

 {

 throw // execute catch and finalize

 revoke // undo all changes to the program state, clear the queue of outgoing signals

and execute finalize code

 }

}

Object-oriented programming

new — creating a new object

drop — deleting an object

working with collections

select ::= - getting information about the named objects of the collection

insert += - inserting a new object into the collection

delete -= - deleting an object from the collection

update - multiple updates in the collection

managing the rights of an object's actions over objects of the specified class or its

properties/methods

grant += - assign object permissions to a class or property

deny += - assign deny rights to an object on a class or property

revoke - remove the rights of an object on a class

Class types

Classes are divided into the following types:

domain class — elementary runtime class

relation class - a relationship between the specified objects (similar to Prolog sentences, a

list of function parameters), there are no methods and properties, access occurs only to public

members. Similar in capability to a set returned from a relational database

structure class - a structure with public elements. The word this is used to access an

element of the current object. May contain methods for processing.

system class - a system that can contain private and protected inherited members.

process class - a process to which you can pass initialization values and get the resulting

values. Corresponds to the service. Any method receives not only a pointer to itself (this), but

also a pointer to the calling class or object (sender). This allows you to check the authorization of

the object accessing the method. Contains standard methods.

Non-imperative programming

operators for working with lambda expressions and lists

::= — definition of expression disclosure

|> — pipeline for all items from the left collection, specified by the right expression

quantifiers of existence and universality on ordered lists

&> — a collection of all elements from the left collection satisfying the right expression

!> — pipeline for all items from the left collection that do not satisfy the specified right

expression

%> — collection of the first element from the left collection that satisfies the right

expression (arithmetically, the remainder of the division)

~> — all elements of the list, except the first, satisfying the right condition

$> — a collection of all elements from the left list, except the last one satisfying the

specified right expression

?> — collection of the last element from the left list that satisfies the specified right

expression

for example,

head ::= collection %> (\true),

tail ::= collection ~> (\true)

Assembler

The processor class is used, the arguments of the methods of which are the arguments of

assembler commands, and the properties are the registers of the processor core.

This approach makes it possible to use inheritance as a transition to a new generation of

the processor line, as well as to use full command names instead of short mnemonics and the

possibility of an equal description in the help systems.

Comments

// inline comment

/* … */ - block comment

/% … %/ - identifier comment

Hallo, world

hallo.pl2

When using program, the code is placed in the default.Default.Main() method

source mode ="pl2" name="example2"

 using user.OS.IO; // using OS Console interface

 program (String arguments[] /% execution time command line parameters%/)

 {&

 Console.write_line("Hallo, world!");

 &}

/source

*** hallo.pl2 ***

PL/2 script

The PL/2 script language provides the ability to describe scripts and extend classes while

describing a variable for game programming.

Instead of a functional variable, it is proposed to use a string that (as in Excel) begins

with an equal sign.

At the same time, it is convenient to store the description of classes and objects in XML,

and use the code for active processing.

Class Description:

<?xml version="1.0" encoding="windows-1251"?>

<pl2script>

 <type id="type.class.Scene" save="true">

 <help id="class.Scene.help">pl2script/game/scene.htm</help>

 <system>

 <class id="class.Scene" domain="type" save="true">

 <name>

 <ascii>Scene</ascii>

 <local>Stage</local>

 </name>

 <tip id="class.Scene.tip">

 <ascii>Game class as a main class for a game</ascii>

 <local>Class for describing the context of the game</local>

 </type>

 </class>

 <property id="class.Scene..." domain="string" save="true">

 <name>

 <ascii>prop ...</ascii>

 <local>prop ...</local>

 </name>

 <tip id="class.Scene..tip">

 <ascii>tip ...</ascii>

 <local>Message when ...</local>

 </type>

 </property>

 </system>

 </type>

</pl2script>

Description of the object:

<?xml version="1.0" encoding="windows-1251"?>

<pl2script>

 <scene id="game.">

 <name>Noosphere</name>

 <description>Big world</description>

 <message>You have entered the big world</message>

 <way id="game.universe" path="Universe/index" enabled="true">Universe</way>

 <way id="game.solar" path="Solar/index" enabled="true">Solar System</way>

 <way id="game.earth" path="Earth/index" enabled="true">Earth</way>

 <way id="game.country" path="country/index" enabled="true">By Country</way>

 <way id="game.body" path="body/index" enabled="true">To yourself</way>

 <way id="game.nature" path="nature/index" enabled="true">Nature</way>

 <way id="game.school" path="school/index" enabled="true">To School</way>

 <way id="game.plant" path="plant/index" enabled="true">To Plant</way>

 <way id="game.university" path="university/index" enabled="true">To

university</way>

 </scene>

</pl2script>

I ask you to speak about the problems possible when using this syntax

Original text: https://habr.com/ru/post/219419/

Discussions: https://pl2-en.livejournal.com

Sources:

https://github.com/palexisru/pl2_rus,

https://github.com/palexisru/pl2_international,

https://github.com/palexisru/HTML.NET.Table

https://habr.com/ru/post/219419/
https://pl2-en.livejournal.com/
https://github.com/palexisru/pl2_rus
https://github.com/palexisru/pl2_international
https://github.com/palexisru/HTML.NET.Table

