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Abstract 

Dynamic latent scale GAN is a learning-based GAN 

inversion method. In this paper, we propose a method 

to improve the performance of dynamic latent scale 

GAN by integrating perceptual VAE loss into dynamic 

latent scale GAN efficiently. When training dynamic 

latent scale with normal i.i.d. latent random variable, 

and latent encoder is integrated into discriminator, a 

sum of predicted latent random variable of real data 

and scaled normal random variable follows normal 

i.i.d. random variable. We can consider this random 

variable as VAE latent random variable and use it for 

VAE training since there are real data corresponding 

to latent codes. Considering the intermediate layer 

output of the discriminator as a feature encoder, we 

can train the generator with VAE latent random 

variable to minimize the perceptual distance between 

generated data and corresponding real data. 

Furthermore, we can use VAE latent random variable 

for adversarial training since it has the same 

distribution as GAN latent random variable. Both 

generated data and corresponding real data are used 

during adversarial training with VAE latent random 

variable, inference & backpropagation for VAE 

training can be integrated into those of adversarial 

training. Therefore, training the generator to minimize 

the perceptual VAE loss does not require additional 

computation. Perceptual VAE loss is only added to the 

generator because the encoder is naturally trained with 

encoder loss of dynamic latent scale GAN. 

 

1. Introduction 

Training encoder that inverts the generator is called 

GAN inversion [1]. Dynamic latent scale GAN [2] 

(DLSGAN) proposed a method of training an encoder 

that inverts the generator of GAN [3] through 

maximum likelihood estimation. When the entropy of 

the latent random variable is too high, it is difficult for 

the encoder to recover latent code from generated data 

point because the generator maps different latent 

codes to the same or similar generated data point. 

DLSGAN makes it easy for the encoder to invert the 

generator by appropriately adjusting the entropy of the 

latent random variable.  

 There were several works to improve the 

performance of GAN by utilizing GAN inversion and 

data reconstruction loss [5, 6, 7].  

 

2. Perceptual VAE DLSGAN 

The following equations show the loss function for 

training DLSGAN’s encoder. 

𝑠 =
√𝑑𝑧𝑣𝑓

∘1/2

‖𝑣
𝑓
∘1/2

‖
2

   (1) 

𝐿𝑒𝑛𝑐 = 𝔼𝑧~𝑍 ‖(𝑧 − 𝐸𝑙(𝐺(𝑧 ∘ 𝑠))) ∘ 𝑠‖
2

2

     (2) 

 In Eq. 1 and 2, 𝑑𝑧 represents a dimension of latent 

random variable 𝑍 . 𝐸𝑙   and 𝐺  represent the latent 

encoder and generator, respectively. 𝑣𝑓  and 𝑠 

represent fake latent variance vector and latent scale 

vector, respectively. DLSGAN uses the moving 

average of the predicted fake latent vector 𝐸𝑙(𝐺(𝑧 ∘

𝑠)) to approximate the fake latent variance vector 𝑣𝑓. 

Operation “ ∘   is the element-wise multiplication. 

𝑣𝑒𝑐∘1/2  represents the element-wise square root of 

vector 𝑣𝑒𝑐. Latent encoder 𝐸𝑙  and generator 𝐺 are 

trained to minimize encoder loss 𝐿𝑒𝑛𝑐  in DLSGAN.  

 In this paper, we propose Perceptual VAE DLS GAN 

(PVDGAN), a method to efficiently integrate 

perceptual VAE [4] loss into dynamic latent scale 

GAN to improve the performance of dynamic latent 

scale GAN. 

 When training DLSGAN, latent encoder 𝐸𝑙   of 

DLSGAN is trained to predict latent random variable 

𝑍  from generated data 𝐺(𝑍 ∘ 𝑠) . It is clear that 

𝐸𝑙(𝑋) = 𝑍  if generator 𝐺  perfectly generates real 

data random variable 𝑋 , and the latent encoder 𝐸𝑙  

perfectly inverts generator 𝐺. 

 During DLSGAN training (i.e., models are not 

perfect), if latent encoder 𝐸𝑙  and discriminator 𝐷 is 
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integrated, it will be difficult to distinguish between 

real data random variable 𝑋  and generated data 

random variable  𝐺(𝑍 ∘ 𝑠)  for latent encoder 𝐸𝑙  , 

since generator 𝐺 is trained to deceive discriminator 

𝐷 that shares the hidden layers with latent encoder 𝐸𝑙 .  

 Based on this intuition, when latent encoder 𝐸𝑙  and 

discriminator 𝐷 is integrated, we assumed that latent 

encoder 𝐸𝑙  tries to map real data random variable 𝑋 

to latent random variable 𝑍  during DLSGAN 

training, even without explicit loss. Under this 

assumption, we can generate VAE latent random 

variable 𝑍𝑋 that follows GAN latent random variable 

𝑍 by adding noise to predicted real latent code 𝐸𝑙(𝑋). 

 When latent random variable 𝑍~𝑁(0, 𝐼𝑑𝑧
) , each 

element of predicted real data latent random variable 

𝐸𝑙(𝑋)  will follow 𝑁(0, 𝜎2) , where 0 ≤ 𝜎 ≤ 1 . 

Given real latent variance vector 𝑣𝑟  , which is the 

element-wise variance of 𝐸𝑙(𝑋), one can simply add 

scaled normal distribution to 𝐸𝑙(𝑋) to get the same 

distribution as GAN latent random variable 𝑍.  

𝑍𝑋 = 𝐸𝑙(𝑋) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 − 𝑣𝑟)∘1/2    (3) 

 Eq. 3 shows VAE latent random variable 𝑍𝑋 . One 

can easily see that 𝑍𝑋~𝑍~𝑁(0, 𝐼𝑑𝑧
). Unlike VAE, our 

method does not require variance output for the 

encoder since there is real latent variance vector 𝑣𝑟 . 

Real latent variance vector 𝑣𝑟   is approximated 

through the element-wise variance of predicted real 

latent codes 𝐸𝑙(𝑥) from previous training steps like 

DLSGAN.  

 We can use VAE latent random variable 𝑍𝑋 for VAE 

training since there is a corresponding real data 

random variable 𝑋. The following equations show the 

loss for VAE training. 

𝑧𝑥 = 𝐸𝑙(𝑥) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 − 𝑣𝑟)∘1/2   (4) 

𝐿𝑟𝑒𝑐 = 𝔼𝑥~𝑋[𝐷𝑖𝑠𝑡(𝑥, 𝐺(𝑧𝑥 ∘ 𝑠))]     (5) 

 Eq. 4 is a sample version of Eq. 3. 𝑥  and 𝑧𝑥 

represent the real data point and VAE data point of 𝑥, 

respectively. 

 Eq. 5 shows reconstruction loss to train VAE. In Eq. 

5, 𝐿𝑟𝑒𝑐   represents reconstruction loss. 𝐷𝑖𝑠𝑡 

represents a function that measures the distance 

between two inputs. 𝐺(𝑧𝑥 ∘ 𝑠)  represents 

reconstructed data of real data point 𝑥. We can train 

generator 𝐺  to minimize reconstruction loss 𝐿𝑟𝑒𝑐  

since there are reconstructed data 𝐺(𝑧𝑥 ∘ 𝑠)  and 

corresponding real data 𝑥. Our method assumes that 

latent encoder 𝐸𝑙   is trained with only encoder loss 

𝐿𝑒𝑛𝑐  , so latent encoder 𝐸𝑙   is not trained with 

reconstruction loss 𝐿𝑟𝑒𝑐 . 

𝐷𝑖𝑠𝑡(𝑎, 𝑏) =
1

𝑑𝑓
‖𝐸𝑓(𝑎) − 𝐸𝑓(𝑏)‖

2

2
 (6) 

 Eq. 6 shows the 𝐷𝑖𝑠𝑡  function for reconstruction 

loss 𝐿𝑟𝑒𝑐  . In Eq. 6, 𝑑𝑓  and 𝐸𝑓  represents feature 

vector dimension and feature encoder, respectively. 

One can see that function 𝐷𝑖𝑠𝑡  measures the 

perceptual distance between two data points with 

feature encoder 𝐸𝑓.  

 Finding a good 𝐷𝑖𝑠𝑡  function is not an easy 

problem. For example, if we simply use the mean 

squared error of pixel values for image VAE (i.e., 

𝐸𝑓(𝑥) = 𝑥), the generated images will be very blurry. 

Pixel-level mean squared error is a good choice if we 

want the minimize pixel-level distance between input 

data and reconstructed data, but in most cases, we 

want to minimize perceptual distance. One can simply 

think of using a pre-trained model as feature encoder 

𝐸𝑓. However, if we use a pre-trained model, we need 

additional computations for inference & 

backpropagation of the pre-trained model to minimize 

𝐿𝑟𝑒𝑐 . Also, there might be no good pre-trained models 

for some data domains. Furthermore, it is hard to 

customize a pre-trained model (e.g., input resolution 

is fixed).  

 Instead of using a pre-trained model, we proposed to 

use discriminator intermediate layer output as feature 

encoder 𝐿𝑓 . We know that VAE latent random 

variable 𝑍𝑋  is the same distribution as GAN latent 

random variable 𝑍. Therefore, we can use VAE latent 

random variable 𝑍𝑋 for adversarial training. During 

adversarial training with VAE latent code 𝑧𝑥 , there 

are inference & backpropagation on generator 𝐺 and 

discriminator 𝐷 with real data 𝑥 and reconstructed 

data 𝐺(𝑧𝑥 ∘ 𝑠) . Therefore, since inference & 

backpropagation for minimizing reconstruction loss 

𝐿𝑟𝑒𝑐   can be integrated into the inference & 

backpropagation of the adversarial training step, 

additional computation for minimizing reconstruction 

loss 𝐿𝑟𝑒𝑐  is not required. 

 If VAE latent random variable 𝑍𝑋 is different from 

GAN latent random variable 𝑍 , adversarial training 

with VAE latent random variable 𝑍𝑋  is not only 

meaningless but rather makes GAN training more 

difficult because generator 𝐺  and discriminator 𝐷 

should generate and discriminate with not only for 

latent distribution 𝑍  but also for unknown 

distribution 𝑍𝑋. 

 In short, when training DLSGAN with GAN latent 



random variable 𝑍~𝑁(0, 𝐼𝑑𝑧
), and latent encoder 𝐸𝑙  

is integrated into discriminator 𝐷 , since VAE latent 

random variable 𝑍𝑋 = 𝐸𝑙(𝑋) + 𝑁(0, 𝐼𝑑𝑧
) ∘ (1 −

𝑣𝑟)∘1/2 follows GAN latent random variable 𝑍, VAE 

latent random variable 𝑍𝑋 can be used for adversarial 

training. During the adversarial training with VAE 

latent random variable 𝑍𝑋, since there are inference & 

backpropagation with real data 𝑥 and reconstructed 

data 𝐺(𝑧𝑥), no additional computation is required for 

the generator 𝐺 to minimize reconstruction loss 𝐿𝑟𝑒𝑐 . 

 The following algorithm shows the algorithm to 

obtain loss for PVDGAN. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔𝑒𝑡_𝑙𝑜𝑠𝑠(𝐷∗, 𝐺, 𝑍, 𝑋, 𝑏, 𝑣𝑟, 𝑣𝑓): 

1:     𝑥 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝑏) 

2:     𝑠 ←
√𝑑𝑧𝑣𝑓

∘1/2

‖𝑣𝑓
∘1/2

‖
2

 

 

3:     𝑎𝑟, 𝑧𝑟 , 𝑦𝑟 ← 𝐷∗(𝑥)  

4:     𝑧 ←

𝑐𝑜𝑛𝑐𝑎𝑡 (
𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2),

𝑛𝑜𝑔𝑟𝑎𝑑(𝑧𝑟[𝑏/2: ]) + 𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2) ∘ (1 − 𝑣𝑟)∘1/2)  

5:     𝑎𝑓 , 𝑧′, 𝑦𝑟
′  ← 𝐷∗(𝐺(𝑧 ∘ 𝑠))  

 

6:     𝐿𝑒𝑛𝑐 ←
1

𝑏×𝑑𝑧
‖(𝑧 − 𝑧′) ∘ 𝑠‖2

2  

7:     𝐿𝑟𝑒𝑐 ←
1

𝑏/2×𝑑𝑦
‖𝑦𝑟[𝑏/2: ] − 𝑦𝑟

′[𝑏/2: ]‖2
2  

 

8:      𝐿𝑑 ← 𝑎𝑑𝑣(𝑎𝑟 , 𝑎𝑓) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐  

9:      𝐿𝑓 ← 𝑎𝑑𝑣(𝑎𝑓) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 + 𝜆𝑟𝑒𝑐𝐿𝑟𝑒𝑐  

 

10:     𝑣𝑟 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣𝑟, 𝑧𝑟
∘2)  

11:     𝑣𝑓 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣𝑓 , 𝑧′∘2
)  

 

12:     𝑟𝑒𝑡𝑢𝑟𝑛 𝐿𝑑, 𝐿𝑓 , 𝑣𝑟, 𝑣𝑓   

Algorithm 1. Algorithm to obtain loss for PVDGAN 

 In Algo. 1, 𝐷∗ , 𝐺 , 𝑍 , and 𝑋  represent the 

integrated discriminator, generator, latent random 

variable, and data random variable, respectively. 𝑍 

follows 𝑑𝑧-dimensional i.i.d. normal distribution. In 

Algo. 1, it was assumed that the latent random variable 

𝑍  follows 𝑁(0, 𝐼𝑑𝑧
)  for convenience. 𝐷∗  is the 

integrated discriminator in which discriminator 𝐷 , 

latent encoder 𝐸𝑙  , and feature encoder 𝐸𝑓  are 

integrated. Therefore, integrated discriminator 𝐷∗ 

has 3 outputs. 𝑏  represents batch size. 𝑣𝑟   and 𝑣𝑓 

represent traced real latent variance vector and traced 

fake latent variance vector, respectively. 𝑣𝑓 

corresponds to the traced latent variance vector of 

DLSGAN.  

 In line 1, 𝑠𝑎𝑚𝑝𝑙𝑒(𝐴, 𝑛) is a function that returns 𝑛 

samples from random variable 𝐴 . 𝑥  represents 

sampled real data points. 

 In line 2, 𝑠  is the 𝑑𝑧 -dimensional latent scale 

vector of DLSGAN.  

 In line 3, one can see that integrated discriminator 

𝐷∗  outputs 3 values. First, 𝑎𝑟   is 𝑏 × 1  shape real 

data adversarial value. Second, 𝑧𝑟  is 𝑏 × 𝑑𝑧  shape 

real latent code. Third, 𝑦𝑟  is 𝑏 × 𝑑𝑓  shape real 

feature vector. Unlike the other two outputs, the 

feature vector 𝑦𝑟 is the intermediate layer output of 

the integrated discriminator 𝐷∗.  

 In line 4, 𝑛𝑜𝑔𝑟𝑎𝑑(𝑘) is a function that prevents the 

gradient flow to input 𝑘 . The output of 𝑛𝑜𝑔𝑟𝑎𝑑  is 

the same as the input. 𝑧𝑟[𝑏/2: ] represents last 𝑏/2 

samples of 𝑧𝑟 . Therefore, 𝑧𝑟[𝑏/2: ]  is 
𝑏

2
× 𝑑𝑧 

matrix. One can see that 𝑛𝑜𝑔𝑟𝑎𝑑(𝑧𝑟[𝑏/2: ]) +

𝑠𝑎𝑚𝑝𝑙𝑒(𝑍, 𝑏/2) ∘ (1 − 𝑣𝑟)∘1/2  follows latent 

random variable 𝑍. In an ideal case, all elements of 

𝑣𝑟   are less than or equal to 1, but for stability, we 

recommend to use max(1 − 𝑣𝑟 , 0)∘1/2  instead of 

(1 − 𝑣𝑟)∘1/2  for stability. 𝑐𝑜𝑛𝑐𝑎𝑡  represents 

concatenate function. Therefore, 𝑧  is 𝑏 × 𝑑𝑧  shape 

matrix, the first 𝑏/2  elements of which are latent 

codes sampled from latent random variable 𝑍, and the 

last 𝑏/2  elements of which are generated from 

𝑧𝑟[𝑏/2: ].  

 In line 5, 𝑎𝑓  is 𝑏 × 1  shape fake data adversarial 

value. 𝑧′  and 𝑦𝑟
′  represent predicted latent codes 

and predicted feature vectors.   

 In lines 6 and 7, 𝐿𝑒𝑛𝑐  and 𝐿𝑟𝑒𝑐  represent encoder 

loss of DLSGAN and perceptual reconstruction loss, 

respectively. One can see that 𝑦𝑟[𝑏/2: ]  and 𝑦𝑟
′[𝑏/

2: ], which were generated from 𝑥[𝑏/2: ] were used 

for reconstruction loss 𝐿𝑟𝑒𝑐 . 

 In lines 8 and 9, 𝐿𝑑 and 𝐿𝑓 represent discriminator 

loss and generator loss, respectively. 𝜆𝑒𝑛𝑐 and 𝜆𝑟𝑒𝑐 

represent encoder loss weight and perceptual 

reconstruction loss weight, respectively. 𝑎𝑑𝑣 

represents adversarial loss function [8, 10]. One can 



see that there is no reconstruction loss 𝐿𝑟𝑒𝑐   for 

integrated discriminator 𝐷∗.  

 In lines 10 and 11, traced real latent variance 𝑣𝑟  and 

traced fake latent variance 𝑣𝑓  are updated as 

DLSGAN, respectively.  

 One can see that the above algorithm requires 𝑏 

generator inference & backpropagation and 2𝑏 

discriminator inference & backpropagation. It is the 

same as the training step of a general GAN. Therefore, 

PVDGAN does not require additional computation 

compared to basic GAN or DLSGAN. 

 

3. Experiments 

We compared the performance of PVDGAN and 

DLSGAN.  

 We used the FFHQ dataset [9] resized to 256 × 256 

resolution. Among 70k images, the first 60k images 

were used as a training set, and the left 10k images 

were used as test images. Pixel values were 

normalized from -1 to 1, and a 50% random left-right 

flip was used for data augmentation.  

 NSGAN with R1 regularization [10] was used as an 

adversarial loss. We used a simple model architecture 

consisting of only convolution layers and skip 

connections. We used upsample/downsample of 

SWAGAN [11] with equalized learning rate [12]. We 

did not use a direct skip connection to the input in the 

discriminator. It may make GAN inversion hard but 

increases generative performance. Both methods used 

the same architecture. The second last convolutional 

block output of the discriminator was used as the 

feature encoder.  

 We used FID [13], Precision & Recall [14] metrics 

with a pre-trained inception model for generative 

performance evaluation. 10k test images and 10k 

generated images were used for generative 

performance evaluation. Pre-trained inception model 

and size of the neighborhood 𝑘 = 3  were used for 

Precision & Recall evaluation. Average PSNR and 

average SSIM were used for inversion and 

comprehensive performance evaluation as DLSGAN. 

 The following figures show the performance of 

DLSGAN and PVDGAN for each epoch. 

𝜆𝑟1 = 5.0 

𝜆𝑒𝑛𝑐 = 1.0 

𝑑𝑧 = 1024 

𝑍~𝑁(0, 𝐼𝑑𝑧
) 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = 𝐴𝑑𝑎𝑚 (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.003
𝛽1 = 0.0

𝛽2 = 0.99
) 

𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑒𝑚𝑎 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999 

𝑙𝑎𝑡𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑚𝑎 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 16 

𝑒𝑝𝑜𝑐ℎ𝑠 = 50 

 PVDGAN used reconstruction loss weight 𝜆𝑟𝑒𝑐 =

1.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Generative performance for each epoch. 

 

 

Figure 2. Inversion performance for each epoch. 



 

Figure 3. Comprehensive performance for each epoch. 

 

 Figs. 1-3 show the generative, inversion, and 

comprehensive performance of models, respectively.  

 In Fig. 1, DLSGAN shows better generative 

performance with FID evaluation. However, one can 

see that there is no significant difference between 

DLSGAN and PVDGAN with precision & recall 

evaluation.  

 In Figs. 2 and 3, PVDGAN clearly shows better 

inversion and comprehensive performance than 

DLSGAN. The following figure shows unseen test 

image reconstruction examples. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. Test image reconstruction examples. 

 

 



 In Fig. 4, one can see that PVDGAN shows better 

perceptual real image reconstruction (e.g., rows 3, 4, 

7 in left the part of Fig. 4) 

 

4. Conclusion 

In this paper, we propose a method to integrate the 

perceptual VAE loss into the DLSGAN generator very 

efficiently to improve the performance of DLSGAN. 

When the discriminator and latent encoder are 

integrated, and GAN latent random variable is normal 

i.i.d. random variable, a sum of the predicted real 

latent random variable and scaled normal random 

variable also follows GAN latent random variable. 

Therefore, we can use it for both adversarial training 

and VAE training. Considering discriminator 

intermediate layer output as a feature encoder, 

perceptual VAE training of the generator does not 

require additional computation. The proposed method 

improved the performance of DLSGAN.  
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