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Abstract:
Interaction theories are usually based on a relativistically invariant Lagrange func-
tion. This function is generally known and accepted for the electromagnetic in-
teraction. The variation of that Lagrangian leads to the system of the coupled
Maxwell-Dirac equations. It contains a non-linear term. If you neglect this term,
you obtain the well-known linear Dirac equation and rules for determining the
correct values of the spectral lines of atoms. However, one cannot describe the ra-
diation process and has to introduce the quantum hypothesis. But, if the non-linear
term is also taken into account, there are solutions of the system what describe the
emission of "quantum jumps” in space and time with correct frequencies. This is
demonstrated in the presented work for hydrogen and helium atoms. It explains
the entangled eigenfunctions in the context of a classical near-field theory. Further
problems like diffraction effects, photo effects and relativistic transformation of the
field tensor are discussed. Aim of the work is a proposal of an alternative to the
statistical interpretation of the quantum theory in context of a classical near-field

theory.
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Chapter 1

Introduction

Many authors discuss the interpretation of the quantum theory. The here men-
tioned papers are only a small selection of these articles [1-12]. In particular the
problem of the causality requires an examination. This question can be better
explained by introducing a definition of the causality. In general, a system be-
haves causal if its behaviour in time is determined by fixed rules. These rules
must be formulated mathematically for a physical system. For example, if you
apply Newton mechanics, elasticity theory, thermodynamics, fluid mechanics and
the Maxwell’s equations, you can certainly predict the behaviour of a system in
the macro world, unless it is too complex. Prerequisites are the knowledge of its
state at the beginning and proper mathematical methods. Then you can speak
from a causal process in a mathematical framework. However, it does not mean
that an equivalent system in the real physical world shows the same behaviour.
This has to be checked by experimental methods. If the measured start system,
the interim systems and the end system agree with the mathematical results, one
speaks from a causal physical process. Such successful tests took centuries and led
to the formulation of the known physical laws of the macro world, what is named
as classical physics. However, these laws are not able to explain the experimental

results of the micro world. In particular the radiation effects of atoms are typical



examples for the dynamics in the micro world.

The assumptions of the tested atomic model are the following: The electron is
a point charge that revolves around an oppositely charged nucleus. The origin
of the electromagnetic field is the motion of these charges. The applied laws are
the Newtons laws of point mechanics and Maxwell’s equations. It is well-known
that the results of calculations using these equations do not agree with the related
experimental results. That allows two different interpretations. Either the model
is wrong or the dynamics is not causal in the atomic world. But, here the classical
mechanics is reduced to point mechanics. Then a causal description is not possible.

However, an alternative model is obtained if the electron is described by an
expanded field. A general definition of the causal behaviour of such fields was for-
mulated by A. Einstein [13, 14]. He describes the system with a four-dimensional
energy-momentum tensor of classical field functions. Such a system behaves causally
in all volume elements if the four-dimensional divergences of its lines are zero. Three
lines describe the momentum laws and the fourth line the energy law in all spatial
elements. The laws of angular momentum follow from combinations. The starting
point for such consideration must be a relativistically invariant Lagrange function.
This Lagrange function is generally known and accepted for the electromagnetic
interaction [15-18]. It also serves as model for other interaction theories [17]. One
obtains by variation of the Lagrange function the system of the coupled Maxwell-
Dirac equations. This system contains a non-linear term. The non-linearity is a
consequence of the self-field, which must be taken into account due to the variation
procedure. If one forms the energy-momentum tensor using the solutions of these
differential equations, one gets a system what behaves causally in a mathematical
framework. In addition, the system is relativistically invariant. But, it must be
shown that the mathematical results agree with linked experimental results. Then

you can say that the dynamics of the real atomic world also behaves causally.
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First we discuss the motivation for this investigation. It is usually practice to
neglect the self-field, which leads to linear equations [15, 18]. The consequence is
the statistical interpretation of the quantum theory. Here we give not a report on
the problems of this hypothesis. We only mention several central points. A linear
system has many advantages from a mathematical point of view. With this theory,
the correct frequencies of the spectral-lines are obtained according to special rules.
In addition, the eigenfunctions of the basic equations can be applied to characterise
the elements. In the quantum-field-theory (QFT) eigenfunctions of the Dirac-
equation stand for the electrons and eigenfunctions of the Maxwell’s equations in
free space stand for the photons [15-18]. These particles are exchangeable and
have no individual properties. It is a central point of the interpretation. This
assumption explains the entangled eigenfunctions and the multi-electron spectrum.
The problem is widely discussed in the literature with the result that no alternative
interpretation is possible [5-7, 10]. Examples are the discussions about hidden
parameters, the Bell’s unequation and the EPR paradox [1, 2]. However, all of
these considerations assume that the linear system is valid. Essential elements of
this picture are states, which can only be left by timeless jumps. The theory only
defines the probability of the transition from one state to another. It does not
include pictures of this transition. The problem of the causality in the context of
such model will not be discussed here.

The non-linear classical field theory allows the introduction of individual proper-
ties for the electron due to the non-zero rest-mass. Prerequisites are individual laws
of conservation for the linked energy-momentum tensor like the charge conserva-
tion. The shape of such field is usually not static. In this paper we try to solve such
non-linear systems and hope that finally all experimental results can be explained
with the aid of these solutions. Of course, in a first step one must restrict this task

to a few important problems. It is a purely mathematical approach. In particular,
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it is necessary to define a classical field with properties of a single particle.

The law of charge conservation requires a normalising procedure of the solutions
of the Dirac equation what leads to an individual charge distribution in space.
Therefore, we can a normalised field define as particle. In this context the eigen-
functions lose its independent meaning for the characterisation of particles. In

addition, the current J, = J; + J; of two electrons must now fulfils two separate
r

law of charge conservation 5~
I

J/}L =0 and %Jg = 0. That means, a particle
is not given by a particular shape, but by a separating mechanism. The central
demand for fields of particles is the local validity of separable laws of conservation
for each particle field, independent on the extension. This claim are replaced by
the hypothesis of the point charge in the linear theory, that means an assumption
about the form of the charge distribution. In the non-linear interaction theory the
eigenfunctions are only describing elements of the whole field. We consider the
interaction between an electron and the electromagnetic field as in the complete
time-space continuum describable process.

The introduction of individual characteristics for a share of an electromagnetic
field is impossible in this picture, due to the vanishing rest-mass. If an atom
absorbs such a "photon” from an electromagnetic field, the source of this share of
the electromagnetic field is normally not clear (one or more radiation sources). In
the present context, its particle properties can be detected only by interaction with
an electron. In addition, the classical field theory must also show that the energy
exchange between the electron and the electromagnetic field amounts to hv.

A general aspect is the question, where and when the Maxwell’s equations are
fulfilled as well in a quasi-static state and also during a radiation. In the non-linear
theory the electromagnetic field must fulfil Maxwell’s equations at all times, even
during a transition state ( ”quantum leaps”). Nevertheless, the time-space inte-

grals over the electromagnetic field must interact with the electron like a particle.
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Then the introduction of particle properties to characterise the electromagnetic
field is not really necessary. However, one must describe the "quantum leap” by
a causal process with the known result. That means, the dynamics of the charge
distributions should explain the radiation properties. Radiation and absorption
processes of the electromagnetic fields must be describable in all local details. An-
other advantage of the hypothesis is the following: Since the basic equations reacts
invariantly to a Lorentz transformation, the exact solutions of these equations also
fulfil all demands of the special theory of relativity. This point alone justifies such
investigations.

It should be mentioned that this is not a new attempt. The problem of the
explanation of the electron properties by classical fields was first formulated by
G-Mie [16-19]. Further developments of the topic, however, lead to a renunciation
of this opinion as a result of the functional-analytical foundation of the quantum
theory. In the established formulation of the quantum theory, the problems of the
shape of particles and of the transition states are not considered explicitly [1, 2,
5-10]. Consequently, this point of view forces to apply a statistical interpretation.

The solution of coupled non-linear partial differential equations is the common
mathematical root. You can also ask what is the proper method for the solution of
such equations, regardless of the physical interpretation. The functional-analytical
methods neglect the self-field and the local field properties. Consequently, the
eigenfunction of linear operators and of which Green functions are the central top-
ics. Applying the non-linear theory, one has to solve the system exactly with the
aid of numerical methods. Another aspects are the followings: The statistical
interpretation was developed for the explanation of the effects of radiation and im-
pact. These effects are usually measured in far-field and a mathematical description
should be possible by asymptotic terms. Such terms are small in comparison with

other near-field terms. An example is the Hertz-dipole radiation. In addition, all
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dynamic processes in a condensed phase must be covered by quantum-leaps if you
apply the functional-analytical methods. That is difficult to understand.

Therefore, the introduction of an alternative concept for the definition of particles
is reasonable. The non-linear classical field theory allows a more detailed descrip-
tion of the interaction between particles due to the separate divergence equations
for the exchange of energy and momentum at all points of the field. Therefore a
remote reaction is excluded in all cases. In addition, this interaction is not strongly
linked with the motion of the mass centre of the electron field. The mathematical
difficulties of this theory are great because the hypothesis should cover the influ-
ence of all external fields. The success of such non-linear theories depends strongly
on the state of the theory of partial differential equations. Not only the non-linear
terms are the problem but, one must deal with the numerics of oscillating functions
too. That requires special methods. However, the power of modern computers has
improved the situation and leads to the hope that a better proof of the hypothesis
should be possible.

It is well-known that the Dirac (Schrodinger) equation and the Maxwell’s equa-
tions are originally linear equations. Proposed supplementations of the Dirac
(Scrodinger) equation by non-linear, additional terms appear artificially [20]. Whereas
the consequence of the Lagrange procedure seems plausible. Especially because it
ensures the compatibility with the relativity theory. Although the Dirac equation
has lost its linear nature as a result of the coupling with the electromagnetic self-
field, we expect that the frequency of an emitting share of the charge is independent
of the self-field. Then one obtains correct spectral lines. These points lead to the

following hypothesis:

7 All effects of the interaction between the electron and the electromagnetic field

can be described by solutions of the system of the coupled Maxwell-Dirac equations
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without any contradiction to the principles of the classical, causal field theory.”

This hypothesis corresponds to the discussed Lagrange procedure. It can be
considered as a purely mathematical construct where its solution has no linking
to the physical discussion. These are only complementary considerations. The
complete description of the physical reality is not a claim of the hypothesis until
a generally convincing proof is available. Here, we investigate only the possibility
of a mathematical approximation to the physical reality by special solutions of
the basic equations within the framework of a classical near-field theory [20-23].
The generally accepted prohibition of the description of non-measurable quantities
should not be an obstacle for such an investigation since the mathematical questions
are very interesting. Our central topic is the study of the energy-momentum tensor
of the electromagnetic interaction in the context of classical fields. The focus is
on the radiation of bound transition states. We regard the radiation as a dynamic
process and not as an indescribable jump between two static states. The statistic
behaviour of the start time of transition states is in such context a consequence of
the variety of dynamic solutions and not an ”a priori” property. An atom should
not be considered as a rigid particle. That means, non-radiating dynamical states
must be possible too.

The different interpretation of the atomic world can be described in the following
points:

The first possibility (linear model):

1. One rejects the validity of the laws of the classical physics in the atomic world.
This is justified by the uncertainty principle, which does not allow the introduction
of exact values for coordinates and momenta of a particle at the same time, due
to experimental reasons. However, here the classical mechanics is reduced to the

point mechanics or the mechanics of rigid bodies.
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2. One avoids a definition of the electron. The question , ”What is a particle 77,
is replaced by the question, ”Which properties does a particle have?”. Therefore,
it is not necessary to derive all properties of the electron from a theoretical model.
3. The basic equations are linear.

4. The demand of the validity of the laws of causality in the micro world, in partic-
ular in an atom, is replaced by the quantum hypothesis. That requires a statistical

interpretation of the solutions.

The second possibility (non-linear model):
1. The basic equations of the electromagnetic interaction result from the variation
of the well-known Lagrange function. That means, one has to solve the coupled
Maxwell-Dirac equations. It is a non-linear problem.
2. With the normalised solutions of the Dirac equation and the associated electro-
magnetic field, one can define an extended energy-momentum tensor what fulfils
locally all laws of conservation. These laws guarantee the individuality of the elec-
tron field.
3. If one regards this tensor field as an electron, one has to show that all experi-
mentally proven qualities of the electron can be explained by this model [23].
This requires solving of many mathematical problems. However, it is a worth-
while goal to show that the definition of the particle requires only basic equations
and normalising conditions and not additional assumptions. In the presented pa-
per, some of the related problems are investigated and open questions are discussed.

The following topics are described in the single chapters:

Chapter 2:
Here the basic equations of the fields and of which relationships are presented in

the applied form. All equations are well-known.
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Chapter 3:

The influence of the self-field on the solution of the Schrodinger equation of a
hydrogen atom is investigated. It is shown that the self-field leads to vibration
of the electron field, where the intensity of which depends on the total energy of
the system. An energy minimum is associated with a static solution. Only special
current dynamics causes radiation effects. In these cases the dynamic solution must
form a radiation moment what oscillates with the known spectral frequency. Such
moments are built up by solutions that contain transition states between different
excitation levels. The interact of these atoms with the electromagnetic field can
cause spectral lines. However, the influence of this field on the charge distribution
is small. If one neglects the radiation effect, one can show there are separate
laws of charge conservation for each level. That means, the exchange of charge
between the levels is very slow compared to the reciprocal frequency. If several
atoms form radiation moments, one has conditions like in a field of macroscopic
antennas. This is a basic for a causal description of the emission or the absorption
of "photons”. The frequency must meet the known quantum condition and the
final energy exchange has to amount hv.

Besides, a strong vibration of the normalised electron field can lead to its escape
from the atom. It is only a hypothesis, but it shows a way, how the photo effect
can be explained in the framework presented, because an external radiation field
changes the energy and the momentum of the system. However, an exact proof has

not yet been attempted.

Chapter 4
The purpose of this chapter is the test of the radiation conditions of ”quantum-

leaps”. Therefore the properties of simple transition states are investigated. These
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have stable dynamic forms and contain shares which fulfil the radiation conditions.
Furthermore, the divergences of the energy-momentum tensor do not injure the

causality conditions.

Chapter 5 and chapter 6

These chapters correspond to the chapters 3 and 4. Here the same problems
are discussed for two electron systems (helium problem). One can show that the
known frequency conditions of the entangled eigenfunctions are also fulfilled in the
new picture. That means, no remote interaction is necessary for the explanation

of the spectral lines. Several studies on the fine structure are added.

Chapter 7

A few properties of a free solution, influenced by its self-field and by an external
field, are presented. The results can be applied for a plausible consideration of the
diffraction effects and the path of the electron in a tube. But, an exact description

is still lacking.
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Chapter 2

The basic equations

The formulas given in this section are general known. There are some alternative

descriptions, but no different meanings. We use the sum convention in the form

4
L%, = lea:#:vﬂ (2.1)

or

3
Tpky = lexuxu (2.2)

and the following notations of the coordinates:

rK =, Ty =1y, T3 = 2z and x4y = ict.
These notations have an advantage over the normal covariance convention when
other types of indices and of which positions are more important. Generally an
over lined index of a vector indicates its space components. We start from the well-
known Lagrange density for the electromagnetic interaction, which in the Gaussian

system is given by [16, 21]

. _i@AM@AH _c r 7 i . é [
L= 87 dx, Ox, 2 (Vﬂhgx‘u ZC’VMA/JJ + MC)U

- , (2:3)
+5U(7#h87,=u + 57, Ay — Mé)U.
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B <= _
The relation U (R4, t)a% = 6Ug§1’t) explains the meaning of the arrows. By varying

the fields U, U or A, independently, one obtains the Dirac equation, the conjugated

Dirac equation or the wave equation in the forms [16-18]

0 € ‘"
ATy ,
_ 0 é .
and
82
A A, = —4nJ 2.6
( + (8374)2) I Ty ( )
with _
J, = iéU~,U,
by
b4

The variation of a slightly modified Lagrangian leads directly to the second pair of

Maxwell’s equations [20, 21]. From the eqgs.(2.4/2.5) result the continuity equation
0

—J,=0. 2.8

axu H ( )

The wave egs.(2.6) follow from the condition

0
A = 2.
axu 2 0 ( 9)
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for the vector potentials. This approach are useful to solve the Maxwell’s equations

of the vacuum, what reads

1.
VxE=—-—-H, (2.10)
¢
1.
VxH=-E+4nJ (2.11)
¢
with the additional conditions
VE = —4miJ, (2.12)
and
VH = 0. (2.13)

Using the solutions of the eqs.(2.6), the field strengths can be described by

H=VxA (2.14)

and

1.
E = V(id) - ZA. (2.15)

These vectors satisfy the Maxwell’s egs.(2.10/2.11) if the potentials fulfil the wave
eq.(2.6). With the notations
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0AL 0A,;
FZ”f:an_ava _O

04y 0A, b __ 0As _ 0A, 1 __ 0A, _ 0A
F12 6501 6582 F13 T 0:1:1 (91‘3’ F14 T 6x1 8564

DAy 9Ay B _ A, DA

Ly = —Fy, Fyy= o 875 Foy = 50t — 55 (2.16)
— — 0Ay _ 04
Fy = —Fs, , Fyy=—F3, Fiu= or ~ Bz

Fy = —Fy, Fy=—Fy, Fig=—Fy

we can introduce the known field tensors F = [F};] and

0 Hy —Hy —iF]
~Hy 0 H, —ib
o, —-H, 0 —iF;
B, iEy iF; 0

F = [Fy) = (2.17)

This allows the following fourth dimensional description of the second pair of the

Maxwell’s equations

DIV F = —4xJ. (2.18)

A fourth dimensional description of the first pair of Maxwell’s equations is also
possible by introducing of additional notations [20]. The Lagrange density eq.(2.3)

leads to an energy-momentum tensor of the form

Ta _ L(@A 0A, 1 0A, 0A, )
47 (’91:,, 835# 2 Vb 9z Oxy 9 19)
¢h oU U ( ’
+5Uuge, — axﬂu )-
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It is an asymmetric tensor and we add the terms

with
9 0A,
ATh, = = L (2 (A F) + (A, %) (2.21)
—%@ua%a(A/\gﬁ;))
and
ATm — ¢h 9 ([T oYU
17, Une7U) (2.22)

X(l - )(1 Ju)(l - 5au)'

You can show that the divergences of the tensors eqs.(2.21/2.22) and eq.(2.22) are

zero [16]. In addition, the relations

[ ATydv =0 (2.23)

are valid and therefore the symmetry correction has no influence on the energy
balance. After adding eq.(2.20) to eq.(2.19) one obtains the following symmetrical
energy-momentum tensor
Ty = 4 (FvoFue — 151//1,F0')\F0)\)
+E(U(hgl — i€ AU — U%(h 17 1 iCA,)U (2.24)
+0 (h2 — i¢A) U — U (B fﬂ + LA,
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T, , can be split into

or
Here are

Tjﬂ =
and
respectively
and

T, =T, + T+ T,

_md w m e
T, = Tvu + Tvu - ATUM + Tvu'

¢h . oU  oU _oU oU

Ny 2 U U, S~ T,
4( %83:,, 8%% T 7833,1 wU)

Oz,

—w 1
TVM - —i(AV JN + AN Jy)

(& 1 1
Tyu = E(FUUFNU - ZéquoAFoA)a
¢h,. oU  oU
Ty, = ?(U%T% - aixﬂ“U)
T, = Ay Ju

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

The investigation of these tensors, using the methods of the classical field theory,

is the main topic of the presented paper. Therefore, we need following divergences

(see eqs.(2.8/2.9)

0

9 _ _ :
dx, " J“(ﬁa:l, 8:@) + 2

04y _0A, 1, 0Jy O,

Ju);

“8:1:# oz, a

0 1, . 0J, 0A,

O oqgw oy 9l O
oz, " 2( “&cﬂ + (‘3:1:MJ“)
20
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and

0 0A 0A
7T€ - BHe v
oz, " J“(ax,, &cﬂ)
or
0 0A
7Td _ I
oz, " J (8%)’
0 0A
e /),
oz, "~ J“(ﬁxﬂ)

(2.34)

(2.35)

(2.36)

For the validity of these relations the basic differential equations (2.4)-(2.6) must

be fulfilled by U, U and A,. Then, one obtains

) )

—(T, Td T“’ T¢,) =

a%( w) = 6)%( + 15, +1;,)=0
and

) )

— (T, Td To +T5,) =0.

a%( n) = ax#( + 15, +1;,)=0

After the space integration, it reads

d 0
—— | T,4dV = — | —(1,;)dV

and therefore is

J T4 (t)dV — [ T4 (to)dV

= —1é fttol f RZ(%TV:[ + %Tyg + %Tyg)S’Lnﬁ d dg@dt
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(2.38)

(2.39)

(2.40)



These equations represent the integral forms of the conservation laws of momenta
(v = ) and energy (v = 4). Singularities have to be excluded. The right hand
side of eq.(2.40) describes for R — oo the radiation losses. The equations are valid
for a combination of a field of one electron with the electromagnetic field caused
by this electron. If an external electromagnetic field, described by Aff , influences
this system, A, must be replaced by A, + Aff in the eqs.(2.4/2.5/2.24), but not in
eq.(2.6). Then eq.(2.3) obtains the form

0A, 0A, AT o .6 ‘e s
L=—g5 5" 3 (Vg = 1 (Au + Ap)+MaU

R , (2.41)
+5U Ol + i Au + A) = MEU.

That means, the external field is strongly separated and has no influence on the
variation procedure. Therefore one obtains modified eqs.(2.4/2.5/2.24). This is in
case of a nucleus field Af possible if the related charge is not singular and fixed. In
addition, as long as the sources of the external field are outside of the considered

area, the equations can be also applied.
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Chapter 3

The one-electron systems with self-field

3.1 General properties

In the first part we are dealt with the properties of the one-electron field be

bound by a nucleus. The known system of eigenfunctions is given by [15, 24|

(T \/ 23+2 j+1/2m 1/2( ) )

¥

fa(r) FY}H/? me1/2(0, 0) (3.1)
¥
)

=

x(n, j,m)

=

9111 7“)\/ Yg 1/2 m— 1/2( ) )

29711(7“) ‘7 Y, 1/2m+1/2

ﬁ

and

2SRz me12(0, )
—ifr(r) MY' 1/2m+1/2(0, )
ga(r) @".S Yir1/o m-172(9, @)
(7, ¢)

6(n, j,m) (3.2)

gn(r) @}E Yit1/2 m-1/2
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n stands for the principal quantum number, 7 = [+my for the momentum quantum
number, m for the magnet quantum number, 1 for the path quantum number and

ms = £+1/2 for the spin quantum number. The radial functions are solutions of the

equations

e Byt = ME L+ (5 — (= 1/2)% = 0, 59
1 .

L(EL+ €+ ME)gh— (% + (j+3/2) 0 =0,

or
é2 dg; 721_
e Bny M02>f3+(5+(y+3/2)2—0, (3.4
ne(Bay + 5+ ME)gh — (G + (- 1/2) 22 =0,

E1 and E2 represent the eigenvalues of the time independent Dirac equation and
Xea:p(—zE}lj ) respectively qﬁexp(—zEflj ) the complete eigenfunctions.
The first eq.(3.3) leads to following equation (generally : E = E — M )

(B + 252((1/r%)0/0r (12 0r) s
52 Ym—l 2 :
U0/ + D) () =0

YEm—i—l/Q

if one uses the approximation
df, fa
1~
n = (

M ¢ dr U3

=) (3.6)

24



and sets 1=j+1/2. Analogously one gets for the first eq.(3.4) also the eq.(3.5),
because 1=j-1/2 and

o0 oo dff .
Gn = m((ﬁ —(J - 1/2)7)~ (3.7)

Then the relativistic effects are neglected in the eigenvalue E,;. You can see that
the eq.(3.5) has the form of the linked Schrodinger equation, where
fl( ) (Vi 1/2 over Y2m+1/2) is replaced by f () Yim-

Here we consider only the special cases with m = £1/2. That leads for j = [+1/2
in eq.(3.1) tomgs =j — 1= —1/2:=] and to following spinor

i

Y(R,nl=j+1/2,m=1/2,])= ") F (3.8)

G r

Y-

) Yi-11
and in eq.(3.2) to my =7 — 1 =1/2 :=1 and
Fo(r)\ aih
—iF,(r)y/5
JRomi=j12m=1am=| 0 V+ A
7“)\/ 2l+3 Yit10
r)\/ 2l_|_ H—ll

25



With the values j =1 —1/2,m = —1/2isms = j —1 = —1/2 :=| . It leads in
eq.(3.1) to

XY(Ryn,l=7+1/2m=-1/2,]) =

and in eq.(3.2) because of my =j — 1 =1/2:=1 to

PP () Vi
_ZFn 1+1 Y
' (R,n,l=35—1/2,m=-1/2,1) = (r ) 2141
G(r)\/ 555 Y i1 -1
G

n (1) 975 Vit 0

Using these spinors, we form the following sum functions of a single electron system:

U(R,t,1) = (b/nl( ) Eat(R, 1),
V(R,t,1) = Zb”nl Ti(R, 1),
UR,t,]) = (d'nz( ) &a(R, 1),
V(R t,]) = %d nt Ti(R ).

(3.9)

Here we have introduced the expressions

énl(Ru 1/2)

D= (m

J iR =

26
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and

&ni(R, ~1/2) = (gnl( _1/2>) (R, —1/2) = ("7”(737—1/2))

Enil(R, —1/2) (R, —1/2)
with
En(R,1/2) = \JokaX (Ryn, L= j +1/2,1/2,])
WSV (3.10)
—iy /L ¢ (Rl —1/2,1/2,1),
gnl(Ra _1/2) = 21_1_ X (R n,l=j+ 1/2 1/27¢) (3 11)
itk ¢ (Ron, =5 — 1/2,-1/2,1), |
Ti(R,1/2) = s X' (Ron, 1= 5 4+1/2,1/2,])
T _ (3.12)
+iy 5 O (Ryn, =37 —1/2,1/2,1)
or
(R, —1/2) = /L (R,n,l =3j+1/2,—-1/2,
Tt ( /2) = X (Ryn, =37 +1/2,-1/2,]) (3.13)

—ZvﬁQb/ R7n7l:]_1/271\)

The arrows indicate the orientation of the spin (m, = 1/2 :=1, my = —1/2 :=]) and
the spinors of the eqs.(3.10-3.13) are given by

Fn}/lO
R 0
En(R,1/2) = | it 2 0l , 3.14
l( /) ZGn 412 510 G (2l+1)(2l+3)n+10 ( )
\/ (i-1) 9/ (+1)(+2)
NZTES Y* — Gy (21+1)(21+3)Y2+11

27



0

- Fo.Y0
&nt(R,=1/2) = | _ w (-1) 2 /(+1)(+2)
G, 412 Y— -1 +iG \/(2z+1)(2z+3)Yl+1‘1
1 2+
16 T 412 tYi-10 +1G, (21+1)(2l+3)YZ+10
0
FnYzl \/_
Tni(R,1/2) = | i1 VUHD VLGN
i /2) iGL T Y_ 0 +iG; o )(2z+3)Yl+10
1/ V1(+2)
ZGanZ 11 +1iG? @y L
and
FnYZ—l
0 Yo
(R, —1/2) = 1 V1 a2 U2
Ui l( / ) Gn Vi1 Y 1-1 ZG 211 )(21+3)Y2+1_1
\/ (+1) e B VA GV
VAZ—1 Y 10— iGy, (2z+1)(2l+3)Yl+10

This description corresponds to the representation in [15]. &,;(R,m = 1/2) (analo-
gously: &,1(R, —1/2), f.1(R,1/2), f.1(R, —1/2)) satisfies the eigenvalue equation

& - L
(il — =+ MOEu(R, 1/2) = 1Bniéur(R.1/2). (3.15)
.I'/j cr
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One finds in [15] the the normalising factors. It becomes 1 if one neglects the small
influence of G*. This enables the use of a relation to the related Schrodinger equa-

tion. We can write
. 1 . 0
&ni(R,1/2) = (0> $ntr §ni(R,—1/2) = (1) §nl (3.16)

and

ni®.1/2) = () s iR =1/2) = () o 3.17)

where the expressions

Ent = Fu(r)Yi0(0, @),

\

i = Fn(T)YZ 1(197 9\0)
and

M = Fu(r)Yi 1(0, @)

are eigenfunctions of the following Schrodinger equation

(Eni + 12/ (2M)((1/12)0/8r(r20/0r)

U1+ 1) /() + /P Fa(r)Yio = 0, or () Fa(r)Yis =0 . (3.18)
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Here the spin orientation has no influence on E,,;. This influence can be added

what is described in [18]. Using these solutions, the functions of eq.(3.9) are
A 1
U(R7 tu 1/2) - Zl(b/nl(t) (0) fnla

. 0
V(R,t,—l/Q) :Z‘Zb”nl <1>£nl7
! (3.19)

. 0
U(R,1/2) = S dui(t) (1) Mt

. 1
VRt =172 = 50 () ok
For the linked solution of the Schrédinger equation one obtains such as the sum

U= Z; b, (). (3.20)

In the following we replace n and 1 by one number k, with a fixed relation k=k(n,1),

and the functions of the eqs.(3.9) by the sum

U= zk:ck(t)Hk (321)
with P
k

me- () o
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Using the linked eigenfunctions Ay, of the eq.(3.18), it becomes

u = %ak(t)hk (3.23)

with ¢ (t) = ag(t) exp(—i M ¢3t/1L). As an example we insert in the eqs.(3.20/3.21)

the expressions

hi, = <1> I (3.24)

and a,; = ai. This requires a relativistic correction of the eigenvalue which is
described in [15, 18]. The formulas of A, and the spin correction are presented in
section 6.3.

In a transition state the functions are divided into two or more excitation levels.

For these cases we introduce a number z which indicates the excitation level. It is

UF = SO H;. (3.25)

Using the new notation of the new quantum numbers, the eigenvalue eqs.(2.4/2.5)
read now
-2 MO R) = LB HAR) (3.26)
e — — ¢ = - .
and
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OH? (R 772 é T ] [2
= Hi(R)uG — Mé) = L Hy(RwE; — (3.27)

z
p

—h

where H} and Hg represent the eigenfunctions and Ef and Eg the eigenvalues.
With eq.(3.21) the current

J(R,t) = iéU~,U (3.28)
becomes
and with the approximation
0= —(ih/(2M¢))oy(80/0xy) (3.30)

one obtains

T = éhJ N — i((a"(D i) dey) — (9 /0, )d)

+(rot(*1)). (3:31)

Here the relation

W0 7 (00)0x;) — (00" /0x,) T T h)

= 4*(Va) — (Vi*)u + irot(i* o'd) (3-32)

is applied [18] . The last term in eq.(3.32) has a vanishing divergence.
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A relation between the solution of the Dirac equation and the Schrodinger

equation can be derived in a similar way [18]. It starts with

(i18 4 iAy — MU — (op(—iligh = £A))U = 0, (3.33)
and
(20 + A + MEU — (o op(—ilge- — AU =0. (3.34)

Using the relation iz5; na U = (Mé+i22 50 0 oxp(iMt/h))U, one obtains the approxima-

tion

U = i (op(—iligh — cANT. (3.35)

Hence it becomes

(19 4+ i€ Ay — M sz (g + SAR)° U+ 595 (T rotaAn)U =0 (3.36)

or (see eq.2.14))

(il + 16 Ay — 5 (ihgh+ SAR)” + A (oH))U' =0 (3.37)

with U’ = exp(iM&t/h))U. Eq.(3.37) is the non-relativistic approximation of

the Dirac equation in a magnetic field. It is named Pauli equation. U’ has two
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components. It can be replaced by a normal function u if the term QiZéO'leﬂ is

zero. That explains the relation between the Dirac and the Schrodinger equation

with the mentioned difference.
All presented expressions serve the preparation of the following topics. We start
with the influence of the self-fields on simple solutions of the Schrodinger equation.

The self-fields are given by (see eq.2.6)

1
ARt = [ (Rt IR, — R|/c)dV;. (3.38)
Then, the Dirac equation reads
O a4 A 1¢
[%(haxu — ZE( o T AL+ MAU =0 (3.39)

where the potentials of the nucleus are given by
AR = —i¢/r, Ag =0

and the potentials A, are caused by the currents of the electron. The Schrodinger

equation takes the form

(ihd + (h*/(2M))A + & /r + iéA)u(R,t) = 0 (3.40)

if the potentials A; are neglected and only the quasi-static approximation

AR, ) = i€ [ —u(Ra, 1) u(Ry, D)aV; (3.41)

o1
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of the self-field is used. That means, a few contributions of the order &? have no
influence.
First we consider the static solution of the basic level z=0 of a s-state. Then the

coefficients in eq.(3.23) have the form

ap(t) = |ay| exp(igy) exp(—iEqot/h) (3.42)

and the eq.(3.40) leads to the system

(Bo— BR)ay — X ap(ap) dp (X M) = 0 (3.43)

m,k’,m/’

with

1

o1

(ML) =€ [ (h(R))" B, (R)(h(R1))" hS, (R1)dVrdV. (3.44)

E} represent the eigenvalues of the Schrodinger equation. The system eq.(3.43)
can be solved numerically by varying Fy and a;. Fig.1 and Fig.2 show a few of
such examples. Static solutions are only possible for £y < 0. An eigenfunction
can be used as first approximation and as main term of a solution u. Therefore we

characterise these solution by the quantum number of the main term. The energy
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Ejy is less negative than the eigenvalue of the main term.

ns: original eigenfunction fns(r)
ns': related static solution with self-field

(r)

15 20 25

Radius in r/a

Fig. 1: Comparison of static solutions

0,6
Charge distribution of originale ns-states
0.5+ and related ns'-states with self-field
-— 1s
0,4 -
N/-\
— A
= 034!}
= 1
]
I f—1s'
0,2 ]; \
i \ 2s 3s'
I \ , 3s
014 N
1OV N
RN N4 N
4 ~ T~o S
2NN~ N T =
0'0 "l'II'IIlIII'I'l'III'
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Radius in r/a

Fig. 2: Comparison of charge distributions of static solutions
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3.2 Dynamic solutions of pure s-states

In dynamic cases the coefficients af)(¢) are functions of time and eq.(3.43) takes

the form

O at) = B+ X al a0y ab (M), (3.45)

a m m km m
m,k’'.m/’

as long as only one excitation level z=0 is involved. We apply for numerical cal-
culations the following time definition ¢’ = &(¢/a)t with the unit At = a/(éa) =
0.24167 * 107 0s. ¢ = h?/(M¢é?) = 5.292 * 10 %¢m describes the Bohr-radius and
the used energy unit is €2/d = &2 M ¢ = 27.21eV. That leads to h/At = é2/4.
The total energy of the system is determined by an assumed initial distribution
of u’(R,ty), as long as the loss by radiation can be neglected. Such fields are not
static, unless the energy is a minimum. In eq.(3.18) the expression Y;y can be

separated which results in

Clid 4 10 0420 4Ly 1) gAY (r, 1) f(rt) =0 . (3.46)

Here the mentioned dimensions are introduced. That means, it is (h/ At)% =

(€/a) 2, B*/(@2M) = (&/a), hw = 27 = (&/0)% = (&/d)w’ and —iéAy =
(é2/a)aAl.
We consider first a purely rotationally symmetrical solution (I=0, s-state). The

solution of the Schrodinger equation has the form:
u’ = f(r, 1) Yg0 (3.47)
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with

foo(r,t) = %ag(?ﬁ’) i (r). (3.48)

Due to eq.(3.18) and 1=0, the functions h)(r) are the eigenfunctions of the equation

C((EY) +1% 2920 4 Gpd(r) =0 . (3.49)

2

, . ) ’ ,
il + 35 D20 4 & — gAY (r ) f(r ') =0 . (3.50)

In preparation for the description of transition fields, the high index 0 is in-
troduced to characterise the excitation level. Hence the charge density is given
by

JP0 =iéppo(r,t) Yoo Yoo (3.51)
with

poo = (foo(r, ) foo(r.t). (3.52)
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The quasi-static component of the vector potential has the form

AYS(r, )

(188(00,#) = [ 1/y? | &R, #))da dy) (3.53)

which results from the integration of

10 ,0 ,
29,7 87’ AQo(r,t') = pgo(r,t'). (3.54)
Eq.(3.50) therefore leads to
imal(t') = (E)al(t) + QoM °(¢') (3.55)
with
LMY = [T ()" S (r #)d AG(r,t) (3.56)

Here is & 0OMOO() = S () al (8')*a, (') (20, M20,).
The Fourier transformation of this expression reads

(00maf®) = & [0 explile’ (¢ — th) OMOO(t') dt. (3.57)
With this equation and the relation
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aj(t) Zl: Od exp(—ilw' (' —1t))), (3.58)

the transformation of eq.(3.50) results in

S W Ldhexp(—i 1o (' —th)) = (BY) s Odl, exp(—ilw! (t —t)))

3.59
+ 3 (goma:?o) exp(—ilw (t' —t;)). ( )

The eq.(3.59) for the coefficients of the eigenfunction h{ must be valid for all 1
(here not a quantum number) in the interval t; < t' < T’ + ¢;. If the time
functions fJ,(R,t'), respectively al(t'), are obtained by numerical integration of
eq.(3.50/3.55)), the coefficients °d} and (°ma?") can be calculated using the
Fourier transformation.

For the solution of eq.(3.50) or eq.(3.55) one needs a complete system of eigen-
functions A9 (r) which also contains energy values (E}) > 0. The known meth-
ods for determining such functions cannot be used, since they are only in range
0 < r < oo orthogonal. Numerical calculations are not possible for such ranges.
Therefore a program was developed that allows to calculate eigenfunctions Aj in
the range 0 < r < RR for values (Ef)" < 4 and large RR. For low energy (E7)" <0
the functions hj take on forms similar to the known radial eigenfunctions of the
s-states. A same program exists for p-states. The algorithms are described in
the appendices C1 and C2. Results of several calculations are documented in the
Fig.1-Fig.3 and in the Table 1 - Table 5. Fig.1 shows the radial functions fi(r)
of a few static s-states with and without self-field and Fig. 2 the linked charge
distributions r2f.(r)* fr(r). You can see that the form of the functions with and
without self-field are similar. The number of zero-points is the same, however the

radial charge distributions are expanded. In static cases the Fourier coefficients are
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reduced to

ad(t') = Odi exp(—ilw'(t' —t})), E =l

- 3.60
Odl =0 for 1 #£1, W' =2n/T" (360)

The eigenfunction of the dominant coefficient @) is the eigenfunction of the linked
solution without self-field. For example:

9%t | < 1 dominates the sum of 1s', (°di=1 in 1s), |°d}| in 2s (°d, = 1 in 2s), etc.
The solution and the charge oscillate around a mean distribution if the total energy
eg exceeds the static minimum. This behaviour can be characterised as a fixation
of the electron field in an energy trough. The Fig. 3 shows the average charge
distribution for various total energies eg. Characteristic parameters of the vibra-
tions around the average distributions are documented in Tabl.2 and Tabl.3. These

follow from

ed(t') = G il (t) ap(t) (),
ea(t') = 5 St b (ad(t') al, (¢') (a (8) aby () (25, M5,
eh(t') = ed(t') + 2ea(t),
eg(t') = ed(t') + ea(t').

(3.61)

eh = E’ corresponds to the Hamilton energy in static cases. In addition, the
mean radii R/d of charge distributions and the dimensionless potentials A(0) for
r=0 are presented. Magnitudes of vibrations are characterised by mean deviation
A of the documented parameters. Tabl. 3 shows such dynamic parameters of
solution functions for several total energies eg. One can see that a rising value of
the total energy eg leads to stronger vibration, whereas in static limit the dynamics

is negligible. An external radiation field has influence on this vibration due to the
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interaction terms. Maybe that explains the photo effect.

0,6
05 -0 0:normal 1s-state
' 1:eg=-0.2440e"/a (static)
2:eg=-0.2347¢&%/a
0.4 3:eg=-0.1995¢/a
N - 4:eg=-0.1685¢e"/a
F 034 5:eg=-0.1002¢/a
= 3,4
024 5 12
0,14
00 T T T T T T T T T !
0 2 4 6 8 10

r/a
Fig.3 Average charge distributions of 1s-like dynamic fields

Fig. 3: Average charge distributions of dynamic 1s-like states

0,50
0,45
@ ] eg=-0.2078 e?/a
= 0401 =-0.2347 €%
B 35 €9=-0.1002e%a eg=-L.asalera
£ o351
a.) -
& 0,30
q') -
S 0,25-
S |
% 0,20
‘.2 -
£ 0154
E .
<C 0,10
0,05
0,00
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Number of spectral lines |
Spectral energy el=0.001396 | e%/a

42



Fig. 4: Spectral distributions of dynamic 1s-like states
Table 1 (RR=1004d, energy parameter of static s-states in é/d)

1s:

eg eh ed ea A(0) R/a
-0.2440 -0.0476 -0.4403 0.1963 0.7247  2.525

2s:

eg eh ed ea A(0) R/éa
-0.06262  -0.0072 -0.1161 0.05347 0.1564  8.74

3s:

eg eh ed ea A(0) R/a
-0.02416  0.0062 -0.05442 0.03026 0.09534 14.83

Table 2 (RR=100a, parameter of dynamic 1s-states)

1.: eg=-0.2440¢%/a

eg eh ed ea A(0) R/a
Aeg Aeh Aed Aea  AA(0) AR/a
-0.2440  -0.0476 -0.4403 0.1963 0.7247 2.525
0.0 0.0 0.0 0.0 0.0 0.0
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2..eg=

cg

Aeg
-0.2347
0.0

3..eg=

cg

Aeg
-0.1995
0.0

4..eg=

eg
Aeh
-0.1685
0.0

D..eg=

cg

Aeg
-0.1363
0.0

-0.234762 /4

eh ed

Aeh Aed
-0.0478 -0.4216
0.0058 0.0058

-0.2078¢% /4

eh ed

Aeh Aed
-0.0867 -0.3689
0.0099 0.0102

10.1685¢2/4
eh ed
Aea Aed

-0.0107 -0.3263
0.0088  0.0090

-0.1363¢2/d

eh ed
Aeh Aed
0.0057 -0.2783
0.0095 0.010

ea A(0)
Aea  AA(0)
0.1869 0.7067
0.0059 0.0170

ea A(0)
Aea  AA(0)
0.1611 0.6645

0.0100 0.035

ea A(0)
AE, AA(0)

0.1578  0.6589
0.0090 0.0377

ea A(0)
Aea  AA(0)
0.1420 0.6293
0.0098 0.0449
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AR/d
4.45
0.66

R/
AR/
8.10
1.48

R/
AR/d
10.05
0.79

R/d
AR/d
13.12
0.72



6.:eg=-0.1003¢2/4

eg eh ed ea A(0) R/éa

Aeg Aeh Aed Aea  AA(0) AR/a

-0.1003  0.0313 -0.2319 0.1316  0.6080 14.78

0.0 0.0089 0.094 0.0091 0.0462 1.72
Table 3:

Fluctuations AFF(r) of dynamic 1s-states ( F'F(r) = r2f*(r) f(r))

1.: eg=-0.244062/d
FF(1)  FF(@2) FF3) FF4) FF(5)
AFF(1) AFF(2) AFF(3) AFF(4) AFF(5)
0.5413  0.2931  0.0892  0.0093  0.0045
0.0 0.0 0.0 0.0 0.0

2.:eg=-0.234762 /4

FF(1) FF(2) FF3) FFA) FF(5)
AFF(1)  AFF(2) AFF(3) AFF(4) AFF(5)
0.3050  0.2706 0.1560  0.0924  0.050
0.0113  0.0083 0.0032  0.0032 0.072

3.:6g=-0.2078¢/a
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FF(1) FF(2)
AFF(1)  AFF(2)
0.2918 0.2502
0.0241 0.0132

4.:eg=-0.1685¢%/a

FF(1) FF(2)
AFF(1)  AFF(2)
0.2804  0.2470
0.0280  0.0119

5.:eg=-0.1363¢2/4

FF(1) FF(2)
AFF(1)  AFF(2)
0.2789  0.2320
0.0339  0.0094

6.:eg=-0.1003¢2/d

FF(1) FF(2)
AFF(1)  AFF(2)
0.2708 0.2216

FF(3)
AFF(3)
0.1453

0.0110

FF(3)
AFF(3)
0.1435

0.0108

FF(3)
AFF(3)
0.1312
0.0248

FF(3)
AFF(3)
0.1224

FF(4)
AFF(4)
0.0765

0.0148

FF(4)
AFF(4)
0.0750

0.0169

FF(4)

AFF(4)
0.0665
0.0201

FF(4)
AFF(4)
0.0605
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FF(5)
AFF(5)
0.0390
0.0126

FF(5)
AFF(5)
0.0370
0.0101

FF(5)
AFF(5)
0.0307
0.0095

FF(5)
AFF(5)
0.0263



0.0353 0.0115 0.0115 0.0198 0.0072

3.3 Dynamic solutions of pure p-states

Due to the influence of the potentials, a solution of p-cases can be described by

ul = flo(r ) Y10+ fio(r,t)Yao + .. . (3.62)

We put z=1 to prepare for the transition states. The function f3, should be small,

because it is only excited by A4. Therefore we consider the following charge distri-

bution
Jy = ié(pgo(r, ") YooYoo + pao(r, 1) YaoYoo) (3.63)
with
oo = fro(r, t)* flo(r,t) (3.64)
and
ol = 2 Lo Y Ty () (3.65)
20 \/g 10\"» 10\"» . .

These relations are a consequence of

2

(Y10)* = (Yoo)® + 7

Y20Yoo0. (3.66)
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Therefore the quasi-static component of the vector potential A4 is given by:

—i¢Ay (R, ¥') = (€*/a)(a Ago(r, V') + \2/%(1’20/%0)14%5(735))- (3.67)

Here the functions are

Abj(r.#) = (Ihd(00.t) = [1/y* [ phi (e ) dy) (3.68)

and

Ab(r,#) = 2 (13§ (00,#) = [ /0 [ o' phi (e, #))da dy). (3.69)

Eq.(3.69) follows from the integration of

(g sh = DY AR, 1) = paolr, ). (3.70)

If the other components of the vector potential can be neglected, the Schrodinger

equation decompose into

i2 flo(r )10 = — (5.550 — & 4+ &) £l (r, )Yy
+aAgg(r,t) flo(r, t')Yio + TA (7" ) fio(r, t)Yio + ..
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and

igp fao(r.¥)Ya0 = = (5385757 — 55 + ) fio(r,¢)Ys0 (372)
+aA§§(r t) fio(r,t) Yz + 3&\/%14%(1)(7“, ) flo(r ) Y30 + .. .

We describe fi,(r,t") by the sum

flo(r,t)) = Y ai (') i (r) (3.73)
k
where hj(r) are eigenfunctions of
é 0? i _ @

CSUEN + 35 2r 8 + 4 — 4 pl(r)=0. (3.74)

If one neglects the influence of f?}OY},O, the transformation of eq.(3.71) leads to
ifpat(t) = (B} al(t) + M) (3.75)

Therefore the dynamic behaviour of the coefficient aj.(tj) results from the following

relation

ay(th + At) = a(t))

—1 At/((Eli),allg(tf)) i llflMll(té)), (3.76)

what can be solved by integration. The Fourier transformation of eq.(3.76) yields
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Y Wl Y exp(—i 11w (' — 1))
= (B} > MY exp(—illd (¢ —t))) (3.77)
+ >n (Mrma) exp(—illw’ (¢ —t)).

Here the notations

ap(t') = %: Lt exp(—illw (' —tp)), (3.78)

P MU() = /0R r? (hi(r))" flo(r ) (Ago(r, 1) + (2/V5) Ayp(r,t))dr - (3.79)

and

(Mmall) = & (0 expille! (¢ — ) FMEY(E) dt! (3.80)

/
0

are introduced. It is also possible to describe LIM1(#) as function of a} ().
However, the eq.(3.79) was applied for numerical calculations. One has to calculate
the functions f{,(r,?') in interval between ¢, and T” + ¢, by numerical integration of
the eqs.(3.75). Then, the coefficients 'd}/! and (:!'maz}!) can be determined using
Fourier transformations. The results must satisfy the eq.(3.77) for all 11. The
energy of the Dirac field ed is given by

cd(t) = - S(ED ah(¢) ah(r) (3.81)
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and the quasi-static part of the electromagnetic energy ea(t) = —ig | AyfioYiodV
by

calt) 2 . ["r @A ) + (4/5) GAR (L)) Sl )dr. (382

a

In eq.(3.82) the value 4/5 results from the integral [ (Y1o(¢)*Y20)(9")/Yo0)

x sin(¥)d'dy’ = 4/5. The laws of conservations built with these expressions
remain valid within the context of the applied exactness. That has to be proved
by numerical calculations. The results of such calculations for p-examples are
documented in Fig.7- Fig.10 and Table 4 - Table 6. All expressions have the same

meaning as in the s-cases.

0,20
0,15 -
. 1 p1:eg=-0.0339
E 010 p2:eg=-0.00722 03:69=0.0979

p4.eg=0.1336

p5:eg=0.1654
0,05

0,00 =L : . :

Radiusinr/a

Fig. 5: Average charge distributions of dynamic 2p-like states
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0,020
0,018
pS p4 p3
0,016 -
0,014 4
0,012 4
0,010 4
0,008

0,006

Magnitude of fluctuation

0,004 — p1 p2
0,002 -

01000 T T T T T T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24
Radiusinr/a

Fig. 6: Relative fluctuation of charge distributions of dynamic 2p-like states
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0,7
0,6
0,5 1 p4:eg=0.1336
047 p5:eg=0.1654

0,3

0,2 1

Amplitude of spectral lines

0,1

p3:eg=0.0979

p2:eg=-0.00722

p1:eg=-0.0339

Number of spectral lines |
Spectral energy el=hv=0.003125 e?/a

Fig. 7: Spectral distributions of dynamic 2p-like states

Table 4 (RR=200d, parameter of dynamic 2p-like-states)

pl.: eg=-0.0339¢%/d

eg ed ea A(0)

Aeg Aed AE, AA(0)

-0.0339 -0.0739 0.0400  0.1400

0.0 0.0026 0.0036  0.0072
p2.: eg=-0.007226/a

eg ed ea A(0)

R/a
AR/d
34.52
0.98

R/d
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Aeg Aed AFE,
-0.0072 -0.0491 0.0419
0.0 0.0020 0.0029

p3.: eg=0.0979¢2/a

eg ed ea
Aeg Aed AE,
0.0979  0.0661 0.0318
0.0 0.0025 0.0025

pd.: eg=0.1336¢2/a

eg ed ea
Aeg Aed AE,
0.1336  0.1091 0.0245
0.0 0.0022 0.0022

p5.: eg=0.1654¢2/a

eg ed ea
Aeg Aed AFE,
0.1654 0.1473 0.0182
0.0 0.0021 0.0021

AA(0)
0.1430
0.0067

A(0)
AA(0)

0.126

0.0089

A(0)
AA(0)

0.1109

0.0101

A(0)
AA(0)

0.0950

0.0111

AR/d
32.0
1.61

R/d
AR/d
44.61
2.80

R/d
AR/d
52.07
1.17

R/d
AR/d
60.86
3.37
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3.4 Solutions of transition states

3.4.1 General characteristics of a transition solution

Now we consider solutions formed from two excitation levels. Several of the above

results can be applied to solve the Schrodinger equation using the approaches

(R, 1) = (YoofSy(r, 1)) + YaofSo(r,t) + . (3.83)

and
(R, ) = Yioflo(r, ') + Yo fyo(r,t) + ... . (3.84)

Then one obtains the following expression of the charge distribution

J90 4+ TH 4 TR0 I = (040, t) + ph(r,t)) Yoooo

(3.85)
+p10(r, ') YioYoo + pU5(r,t) YioYoo + (2/V5) pao(r, ') YaoYoo).

This is justified by numerical results. The related quasi-static component of the

vector potential A4 has the form

6 AR, ) = (AW (r b)) + ALY (r,t)

3.86
AL ) Yio/ Yoo + AU ) Yio/ Yoo + 2/VB) ALY ) Yoo/ Yog). 000
AR (r, t') = (A} (r,'))* results from the following integral
T Y
AL(rt) = r(I}0(00, t) = [1/y* [ pl0(x, t')da dy), (3.87)
0 0
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due to the special potential equation

(& =1 — ) A{o(r, ') = pro(r, ). (3.88)

The solutions can be described by eigenfunctions of eq.(3.49) or eq.(3.74). We use

the notations

foo(r:t) = Eq:ag(t’) hg(7) (3.89)
and
fllo(r, t') = Zp:a;(t’) hzlj(r). (3.90)

These functions must satisfy the following equations

Uar foo(r Voo = G (= 30557 1 (3.91)
+ d(A88(7“, ")+ Aoo( T ))fgo(r, ) Yoo + dA%g(r, t/)ffo(r, Yoo)

and 2 4
a@t’flO(T t/)YiO_%( (T)Qﬁéi"raf—i_(r)Q_%

+a(AQg(r, ) + Agg(r. 1) flo(r, ') Y1o) (3.92)
+ G AN () flo(r, ) Yio + aAV (. t') fio(r, ) Yi0)

if the influence of f3,Y3¢ is neglected. Here the charge sharing can be depicted by
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Co = Yo(ag(t") ay(t), (3.93)

Cr = Y(a,(t")) ay(t"), (3.94)

where Cy + C7 = 1. This is an approximation of the law of charge conservation,
which generally reads 3, C;, = 1. The conditions Cjy = const. and C = const. are
fulfilled when the radiation is negligible, which will be shown in the next section.

In these cases the coefficients are solutions of

i%ag(ﬂ) — ag)(t/)(E((]))/ + 20M00(t’) + 21M10(t’) (3.95)

and

i%all)(t’) — all)(t’)(E;)/-l- ]1)1M11(t/) + ;OMm(t’). (3.96)

Here J°M"°(t') and ['M'!(t') are given by the eqs.(3.56/3.79), while J'M'O(t)

and " M°!(t') result from

D) = g /OR P2 (WO(r)* fo(r ) (AL)(r, ) dr (3.97)
SOMONEY = 6 [ () S ) (AL 1)) dr (3.98)
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Due to the eqs.(3.95/3.96), the dynamic behaviour of the coefficients follows from

ay(thy + A) = ad(ty) — i At (a)(to)(E9) + 2°MOO(th) + o1 MO(tp))

or

ab(ty + At) = al(th) — i At (ad(th)(Ep) + 2EMU () + LOMOL(t)).

(3.99)

(3.100)

Final results of such calculations show that these fields also vibrate in an energy

valley.

3.4.2 Spectral properties of a transition solution

We describe the Fourier coefficients of ay(t') and a,(t') by

a)(t') =¥ Od, exp(—il ' (' — t;)),

q
ap(t') =S M exp(illw/ (' — ).

Hence the transformations of eqs.(3.83/3.84) are given by
u’ = ¥y, dl eap(—ilw (¢ — t)))hd,

ut = Y, 1d§)1 exp(i( exp(—i (11w (¥ — t))h,,
with

1 pth+T ,
0d! = - /t exp(ilw’ (t' — ty))al(t))dt’

0
and
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1 pto+T )
1d§)1 = 7 /tf)o exp(illw (' —tg)) a;(t)/dt/.

Besides, we apply the following notations

(O%ma?) = & ftt66+T/ exp(ilw’ (' —t4)) )" MO0 (t")dt,

(Orma}®) = & G2 exp(il (¢ — th)) 91 MO,

th+T" ,
GOmadt) = & ft(?Jr exp(—ilw' (' —t4)) "M O(t")dt!
and

t/g+T’
0

11

(Mlmadl) = L ;0 exp(—ilw’ (8 — ) LMV

If we put the eqs.(3.101-3.109) into the eqs.(3.95/3.96), we obtain

Lo Odexp(—ilw! (F = t5) = exp(—ilw (¥ — ) (ED) (d)

+(§mat®) + (§'ma)

and

w'%d),) exp(—ilw' (t' — 1)) = exp(—ilw’)(t' — 1)) (E})'(d)

p p

+ ('may') + (;Omx?ll))-
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Several results of these calculations are shown in Fig. 7, Fig 8 and Table 9.

0,30
T5s
0,25

0,20 ~

0,15 +

f(r)f(r)rr

0,10

0,05

0,00

Radiusinr/a

Fig. 7: 2p-1s transition states: charge shares (mean distributions) of s-states

and p-states
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0.8 T5s

~— T1p
0,6 T4s
T3s
-~ T2p

Amplitude of spectral lines

Number of spectral lines |
Spectral energy el=0.003125 | e?/a

Fig. 8: Spectral distributions of 2p-1s transition states
Tlp: 0, = 0.9, Tls: g5 = 0.1;
T2p: 0, = 0.7, T2s: o, = 0.3;
T3p: 0, = 0.5, T3s: g5 = 0.5;
T4p: 0, = 0.3, T4s: o5 = 0.7;
THp: 0, = 0.1, THs: ps = 0.9;

Table 9 (RR=200d, energy parameter of 2p-s transition states in é2/4)
T1. 0, = 0.9, o, = 0.1, T' = 2000

eg edg eag A(0) AA(0)
0.2036 0.1665  0.0371 0.1715 0.0093
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egp
Aegp
0.1678
0.0001

€gs
Aegs

0.0358
0.0001

edp
Aedp
0.1351
0.00218

eds
Aeds
0.0314
0.00023

eap
Aeap

0.0327
0.0020

eas

Aeas
0.0044

0.00023

wlp

-0.0125

wls

-0.0125

T2. 0, = 0.7, 0, = 0.3, T' = 2000

€g
0.1356

egp
Aegp

0.1003
0.0001

€gs
Aegs

0.0353
0.0001

edg
0.0963

edp
Aedp
0.0765
0.0046

eds
Aeds
0.0197
0.0011

eag
0.0394

eap
Aeap

0.0238
0.0019

eas

Aeas
0.0156

0.00011

A(0)
0.2384

wlp

-0.0125

wls

-0.0125

R/

AR/d
41.91
1.33

R/
AR/d

26.63

1.46

AA(0)
0.0182

R/d
AR/d

40.56
1.89

R/d
AR/d

24.11

2.34
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T3. 0, = 0.5, 0, = 0.5, T/ = 2000

€g
0.0418

egp
Aegp
0.0911
0.0002

egs
Aegs
-0.0493
0.0001

edg
-0.0158

edp
Aedp
0.0789
0.0087

eds
Aeds
-0.0947
0.0032

eayg A(0)
0.0576  0.3818
eap wlp

Aeap

0.0122 -0.0125
0.0013

eas wls
Aeas

0.0454 -0.0125
0.0032

T4. 0, = 0.3, 0, = 0.7, T' = 2000

€g
-0.0494

egp
Aegp
0.0699
0.0005

edg
-0.1427

edp

Aedp
0.0649
0.0040

eayg A(0)
0.0933  0.5154
eap wlp

Aeap
0.0050 -0.0125
0.0005

AA(0)
0.0245

R/d

AR/d
57.07
3.89

R/d

AR/d
12.80
1.34

AA(0)
0.0245

R/d

AR/d
74.96
1.04
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egs eds eas wls R/a
Aegs Aeds Aeas AR/a
-0.1193  -0.2076 0.0883 -0.0133 9.43
0.0001 0.0051 0.0051 0.56
T5. 0, = 0.1, 0, = 0.9, T' = 2000

eqg edg eag A(0) AA(0)
-0.1556 -0.3017  0.1461 0.6379 0.0201
eqp edp eap wlp R/a
Aegp Aedp Aeap AR/a
0.0303 0.0294 0.0010 -0.0125 101.92
0.0005 0.0026 0.0001 5.04
egs eds eas wls R/a
Aegs Aeds Aeas AR/a
-0.1859  -0.3311 0.1451 -0.0133 6.85
0.0001 0.0055 0.0055 0.38

3.4.3 The law of charge conservation of a transition state

If you want to fully characterise the dynamics of fields, it is necessary to inves-
tigate the tensor defined in eq.(2.30). For this purpose we avoid specifying the

dimensions and apply solutions of the Dirac equation divided into different excita-

64



tion levels. The linked tensor can be used to verify the law of charge conservation

in separate excitation levels. With the functions

U5 (R, t) = exp(—iME(t — to)/h) S a; () Hy(R) (3.112)

and

U*(R,t) = exp(—iM&(t —to)/h) % ay(t) H:(R), (3.113)

the divergence of the tensor

ch  — oUs  9U?
Zrmspd - Z (7 — LU 3.114
vV 2) ( PYM axy (9:61, r)/l ) ( )
reads
0** T4 ¢h 0 - oU—s  QU*
— -~ ([~ — U1 3.115
0z, 2 E)xu{ T o0x, 0x, T } ( )

The functions H; and H; ® are eigenfunctions of eq.(3.5), which correspond to

the solutions A7 and h;~* of the Schrédinger equation (see eq.(3.18) and eq.(3.46)).

Due to | da? /dt |<< Méy/h and ¢ (t) = a?(t) exp(—i M E(t — ty)/h), it becomes
oU*?

hi ~ _ VMU 3.116
9on ¢ ( )

Therefore eq.(3.115) describes for v = 4 the continuity equation
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a ’
zZzZ—S8 ~Y 72
— 24” = —M¢

9

oz,

{U%, U*~*}. (3.117)

The integral over the divergence should be zero for all values of z and s=0 in the
considered approximation. To prove this remark we apply eq.(2.4) or eq.(2.5) in

the following reduced form

0 € - . €
[’Yuha? —ZEAM’YM—I- M du° —ZZALO)%Ul =0, (3.118)
1
% / /
O ALY M + iS50, A% =0 3.119
[y T%—HZ WV — c]+zg YA, = 0. (3.119)

A, (R, t) describes the common potential formed from the charges J)° + J)' and
the charge of the nucleus. All potentials have quasi-static character. Therefore the

integral over the separated continuity equation reads

I 50 AU, U°YaV = ig (U0, 0" A0 = Uy, U0 AGt)dV (3.120)

and, because of

ié (00, U ALOQV = [ L JON(R)JLO(R,)dVidV,
- o1 (3.121)

i
i€ [(U, U ALV = [ -0 0(R) TS (R1)dVAdY,

I

it becomes in this approximation
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e o
—%Za((ag(t)) ay(t)) = 0. (3.122)

The prerequisite of eq.(3.122) is the application of the quasi-static potentials. That
means, the radiation is neglected. Then the eq.(3.120) leads to eq.(3.122). A similar
consideration yields —i% > %((a}l)*a}l)) = 0.

This result remains valid for more than two excitation levels. That is, all values
z = 0,£1,42,.. are possible. In the eqs.(3.118/3.119) the test is restricted to
z =0and s = 0,—1. Separate laws of charge conservation can be proved for all

excitation levels.
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Chapter 4

Radiation properties

4.1 The solution functions

It is convenient to use the Dirac equation to determine the currents. The solu-

tions must satisfy the following equations:
Yl U° = [—yahgy +i5(Au + AR )y) — MU +i5A} 0,0,

e e = [RGen — 6(Au + ATy + METR] — AL T

ox Ozp é

’747_15%4U1 = [_Vﬂha%ﬂ * ig(Au + A;IL()%) - Mé]Ul T i%:Ager“Uo

and

rrl rrl 4 — ’ = Lz —
h%i Y= [—h%%fyﬂ —i5(A, + Aff)Ulfyu + MUt — ZEA}LOUO’YM.
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The functions can be described by

U'R,t) = exp(—iM&E(t —to)/h) ; al(t) HY(R), (4.5)

UNR, 1) = exp(—iME(t — to)/h) > al(t) H(R) (4.6)

and of which sum by

0

~ ~1
U+ U' = exp(—iME(t—ty)/h) (?0> + exp(—iMEA(t — ty) /) (7;‘1) (4.7)
u u
with
~0 1 0
o (R,t) = o) (4.8)
and
A1 1 1
u (R,t) = o) (4.9)
Here is
u’ = Yyofdo(rt) 4 ... (4.10)
and
u' = Yioflo(r,t) 4 ... . (4.11)

The functions u" and u! can be approximated by the solution of the Schrédinger
equation (see egs.(3.91/3.92)). Then, the potential —ié A4(R,t) is given by eq.(3.86).
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4.1.1 Coefficient dynamics of a transition solution

We apply again the dimension 1ntroduced in section 3.2. That means, h ; and
the energy values E are replaced by —@ and E' = E/(é%*/4). After such transfor—
mation, we multiply eq.(4.1) with H, g and integrate over the volume V. This leads

to

52

. 52 22
S Lad(t) = C(EYa,(t') + €5, (M) + 0OMIY(¢)

o 4.12
+ glMﬁo(t/))JF%d(nglo) (4.12)
and an analogous procedure with H g results in
) = ~F EY @) — CSGN)
01M10( )) - 3(10501) ’
q w a
Here are
S g MRO() = =5 eapl(i(t' — t)/6%) | Hi U (') A0 (t)aV, (4.14)
S QM) = =% exp(i(t' — t)/d?) [ H)v, U ()AL (E)dV, (4.15)
> OlMlo(t’) = %exp(z’(t’ —1})/&%) fHS’yMUl(t’)ALO(t’)dV, (4.16)
S WOMYO(H) = 9 exp(—i(t' —ty)/&?) J U, HY AP (t")dV, (4.17)
S gOMN(E) = 4 exp(—i(t' — t}) /&> ) S Uy, HY) AL (t)dV (4.18)
and
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S OMYN () = — % eap(—i(t' — ) /&%) J Uy, HY AH(t")dV. (4.19)

All potentials have quasi-static character, while (H'S') and (}°S°!) describe
the influence of radiation. That follows from the difference between the retarded
potential, given in eq.(3.38), and the linked quasi-static potential. Details are
presented in section 4.1.2. In addition, the potentials A%O(t’), etc. are not be
taken into account there, because the magnitude of the integral 2OM go(t’ ) has an
order of &*. Its influence on the quasi-static field is small. That means, the sum
in the eqs.(4.12/4.13) can be reduced to the terms with p=4. This is applied,
for example, in the eqs.(3.95/3.96) where radiation is also neglected. The Fourier
transformations of the functions of the eqs.(4.5/4.6) are given by

U° = 5,4 %d exp(—i(1/62) + l')(t' — t}))HY (4.20)

or

00 = 5., Cdl ) eaxp(+i(1/62) + 1) (¢ — th))H. (4.21)

Here we use the relations

L pto+T” :
Odlq = = /tz ' exp(ilw’ (t' — 1)) a, (t")dt’ (4.22)
and
0 gl \* 1 to+1" S PN / 0 1/\"\* g4/
Cdy) = = /% exp(—ilw' (' — ty))(Pal(t))"dt" (4.23)
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Similar expressions can be introduced for U' and U'. Besides, we apply following

notations
(00maf®), = 2 [ expilw (' — t5)) SO MOO(t)dt', (4.24)
(Q0miaf0), = & ST exp(—ilw (¢ — th)) O MOO(¢ )t (4.25)
and
(O1sm)0) = & [ exp(ile (¢ — th)) (U1 SO(t'))dt! (4.26)

for the Fourier transformations of J'M7°(t'), 9°MJ°(') and ()'S'°(¢')). Analo-
gous expressions follow from the Fourier transformations of }IIM ﬁl(t’ ), etc. The
terms (J'sm;°) and ()'sin;”) cause small changes in the magnitude °d}(t') and
1d§}(t) when special conditions are fulfilled. Then the separated laws of charge

conservation of the excitation levels are violated. Because of

N q (4.27)

and

(¢2/d)7a axq = (&/a)(§ + (B))vaHy, (4.28)
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the eqs.(4.12/4.13) yield

(@/a)(1w)d + i)y = (&2/a)((EYY °d!

+ ZM((OOWW?O)M + (Oomx D+ (Olmleo)u) +a (Olsmglo)) (4.29)
respectively
(&/a)(—lw (°d) + 'd(d )= (¢/a)(— (EY)°d!
= (O ), + (O} )+ (0maf),) — d(Q sl ). (4.50)

(E)) = (E;)’— 1/&2 in the eqs.(4.29/4.30) contains the small difference between the
integrals [ HHdV and [ Hy,HdV. The eq.(4.29)) can be reduced for quasi-static
potentials to

lw’ (Odé) — (E())/Odl

, (4.31)
+a Zu((gomx?o)u + (00m93l11)u + (Olmxllo)u)-

An analogous relation is valid for eq.(4.30).

This result is a consequence of the separate laws of conservation for the linked
excitation levels in these cases, what is shown in section 3.4.3. However, a charge
transfer from one level to another can be caused by radiation. We assume that the

relations

.d (%! ,
(Cdy) = 4 (OLsmlY),

dt’ g ST
d Odl * (432)
(dt?) = _a(éosmgl)

and analogously
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1l
;4Cdy) = 4 (10smf1),

dt’ p
170 \* 4.33
'd(dcﬁ”) = —a (glsmllo) ( )

describe this effect. The small values of ()'sm/"), ect. have an influence on the

solution of the eq.(4.29/4.30) only during a long time ((¢' — ¢, >> 1/@’) .

4.1.2 The single radiation effect

In this section we study radiation effects of a transition state. Such an effect is
only possible if the field includes a ”freely” oscillating radiation moment. ”Freely”
oscillating means, an external radiation field of a specific frequency can influence
the phase position of this oscillation. We assume that such a moment is formed

from the eigenfunctions H g and H; and consider the sum

~/
o S

1
Ut + U = al(t') exp(—i(t' — t})/d?) f)
> (4.34)

7,0
) cant-ile — 6/ (1)
with 1

hi(R) = ((1)) Yiohl(r) (4.35)

and

h(R) = (é) Yoohl(r). (4.36)

The linked solution of the Schrodinger equation is
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u(r, 1) + u(r, ') = ab(t")¥iohl(r)

) Youhr). A

Using the Fourier transformation a)(t') = ¥ d} exp(—ilw/(f'—t)) and (ay(t))* =
S (Pl )* exp(illw'(t — t;)) you get the current

SR ) = ¢ Xy () Cd) (R0 (R) expli (1L — D! (' — 1) (4.38)

The sum includes terms like

Do => (") (°dL). (4.39)
l

This share of eq.(4.38) describes an oscillating dipole moment with the frequency
@' [(2rAt) = Lw/(27) = w/(2m). It fulfils separately the continuity equation for
frequencies hw = ((E,)" — (Ey)')é*/d. Then the related energy-momentum tensor
oscillate quasi "freely”. Such "freely” oscillating current is the prerequisite for a
radiation effect, as the theory of antennas shows [26/27]. The other terms have no

influence on the far field. Here we consider the following current components (see
eq.(3.31), h/(M¢é) = éad)

o du(R, 1) = ié D)0 (j2D)u(R) expliw (¢ — ty)), (4.40)
and
TR, ) = iéDYL (5O 1), (R) exp(—iw (¢ —t})), (4.41)
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with

-10 _ 17l 0
Upali = Hﬂgf{g% 9 (Yio hi(r))"
(j10)3 = —0.5¢6d Yoo (Yio(hl(r))* 5L — Stommi pl(r)),

0zx3 Oxs
] 44,4 « 0Y1 hzl,T' 3h2r %
(90)s = = —0.5¢dd Yoo ((hY(r))” 2™ — (D" Dyey o)), (442)

(Up)a = YioYo0 0,0(r) = Y10Yoo (hy(r))*RI(r),
Uop)a = Y10Y00 00, (1) = YiYo0 (hy(r))*hy(r).

For a simple description we can assume that Dlljg is given by the maximum of all
products [(*d/"*)* ("d})| and put this into the eqs.(4.40/4.41). That means, the

coefficients are

al (t') = dime* exp(—i (Imax) W' (t' — 1)),

a) (t') = d)m T exp(—i (Imax + L)w' (' — tf)).

(4.43)

It is a working hypothesis for the numerical calculations and includes a few ques-
tions. Some additional products (*d/"*£)* (°d})) near Imax can contribute to a syn-

chronously oscillating current, given in the eqs.(4.40/4.41). The continuity equation

reads
0ot _ ., 0 _ |
giuu =, (D pa (HpHy) exp(i (8 —10))) = 0 (4.44)
or
¢ DY) (i (H}HY) + 52 (HinHY) ) explia (t — tg)) = 0. (.45
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Here is

k=w/é= L' [(¢AL)

and due to the eqs.(3.26/3.27), one obtains

a rrl 0 1 1 0
87513@ (Hpq/ﬂHq) - %(Ep _ Eq)

Therefore, the eq.(4.47) is fulfilled for constant values of D)) and for

o' At = (E} — B°)/h.

This can be converted to

é2

(4.46)

(4.47)

(4.48)

(4.49)

because of (hAt) = é*/d and E,—E) = <((E}) —(EY)'). E}, E} are eigenvalues
of the Dirac equation and (E})', (E))" of the linked Schrédinger equation. The

value of

7

(4.50)



can be obtained in the numerical procedure by selecting of 7. Then, the eqs.(4.44/4.45)
describe a "freely” oscillation of a current with a magnitude |D11)2] in a wide range
around the centre of the time interval. The Gibbs phenomenon does not allow such
an interpretation near the time borders.

An absolutely precise frequency of a ”freely” oscillation cannot be determined
with a numerical procedure. However, it is possible to show that the force balance
of the complete energy-momentum tensor requires the exact fulfilment of eq.(4.48).
In preparation for this proof, we consider more details of the radiation process.

The retarded potentials are given by

—ié 194, (R, t) = éZ/iéml;gjﬂ(Rl, t — ro1/é)dVy, (4.51)
what can be converted in near-field into
—i¢l0A, > e A" — i(é)a)in B (4.52)
and
—ie LA, = —ie A"+ (/a) (— ax>GL0 +ian® Z1). (4.53)
Besides is
—ie0 A, = —ieA) (& a)an BY! (4.54)
and
—ie 0 Ay = —ie A} + (/) (— ar’ Gy —idr® Z91). (4.55)
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~ 10 : : . 1 :
The first term A’ describes the quasi-static share of the oscillating potentials that
contributes to glMﬁO. For p = 4 it has the form

=i X' (R.1) = (/) Dif explim (1 — to) Y2 r(1}3(o0)

— [1/y" [ 2 g)l)(w))dudy). (4.56)

The dipole approximation of a long time stable oscillation with the normalised

frequency k leads to the dimensionless parameter

Bty = Ly 10J:(Ry, t)dVs (4.57)
or
BOY(t) = L1 OLJ.(Ry, t)dVA. (4.58)

That means

Blo( t) = exp(iw(t — ty)) B}’

~ 4.59
BlO DlO f(H;’YﬂHg)d‘/l ( )

and

Bgl(t) = exp(—iw(t — to))Bgl,

- (4.60)
BY' = DV} [(H0y,HY)dV:.

In addition, we find
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Gi°(R) = 1/2) D, exp(iw (t — 1)) [ ror(HyyaHY)dV;

q

and

Zi°(R) = (1/6) Dy explim (t — to)) [ (ro1)* (HyyaH)dVA.

q

Because of ( (r91)* = r? — 2z2) + (r1)?) becomes

~ T )
ZI0(R) = _33 exp(im (t —ty)) [} Yio(01)Yooopy(r1)dVi

and due to eq.(4.45) is

_ 1, _
| wnbyaHYdV = — [ HynHJdV.

Hence we get

_ 1
10 1 0 _ 10
Dy) [ wsHyHdV = ~B;

and

The analogous relations, as consequence of 9/dz,, (" },jﬂ(Rl, t)) =0, are

q

. 1
01 0 1 _ 01
D), | wsHjuHydV = — B
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(4.62)
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(4.64)

(4.65)

(4.66)

(4.67)



and

~ r3 =~
ZJNR) = 3 gt (4.68)

Such terms cause radiation. That means, the terms (§'sm;°) and (,"smj') in the
eqs.(4.29/4.30) cannot be neglected when the current oscillates synchronously over
a long period of time. According to the eqs.(4.1-4.4) and the eqs.(4.32/4.33), the

components

—ié(J (U, U (}lgflﬂ))fdv —ié(/f ((7074U1(égfl4))fdv

215 0.4k 4 (4.69)
=¢é*/a (“d)* a() sm]0)

must be taken into account because of which relevance to the far-field. Therefore

we replace these terms in the eqs.(4.69) by the following the expressions:

U, U = exp(—i Lw (t — to))("d)* TP HY)~, H),
—ié(gpAn) = —i(é*/a)(ar) B, (4.70)

—ié 0Ay = i(é/a)ar® Z}° = —i(é/a) 5 m BLO.
Here (°dL)* 'd)"" stands for D)} and (*dj™*)* °dl for D}9 . Then the eq.(4.69) is

given by

(€2/a)((dL)* 1T (i | HOy3HEAV (= BL0) — i85 | oy O~y H'dV BYY)

! 4.71
= —2i(¢*/a)((°dL)* 'd\Fark | HOvgHLEdV B)Y. (4.7)
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That means, we have replaced the eqs.(4.69) by

(€/a)a (°dy)* (3'sm!?)

i 4.72
= —i2(¢*/a)((°dL)* 'dFak [ HOyyHEV BYY. (4.72)

Due to the eqs.(4.64/4.65) is (°d.)* *ditr [ H)vsH)dV = B§'; Therefore becomes

(€/a)a (°dL)* (Osmi®) = —i2(é2/d)arBY' BLY. (4.73)

With the eqs.(4.32) one obtains

i(¢?/a)(dL) 5 (0dL) = —i(é*/a)2arB3 By, (4.74)

In addition, we need for the determination of (}]Osm?l) the shares of

—ié(J(U U0 (g;flﬂ))fdv —ié(/f (UlmUo(g;ALL))fdv

= /6 (°d%) a(10sm)?)

(4.75)

which are relevant in far-field. That means, we substitute in the eqs.(4.75) the

following expressions:

UlfyuU0~:: yrexp(i Lw (t - to))(ld}f’:)* Odéﬁ;%HB,
—ié(),Ap) = 1(é°/a)(ar) B,
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—ié WAy i= —i(é/a)(ar®) Z9' = i(é?/a) U m BY.

With eqs.(4.64/4.65) we get

(€2/a) si(*diE)* Odlar [ Hiys HYAV (BSY) + i fx3H1”y4H0dVB

= 2(&%/a)ar( dy ) OdL f H)vys HngBg1
and one can eq.(4.75) substitute by
(€/a)a (;°sm;®)("dy)

= 2(&/a)ar((*dithy* Od, | H)ysH)AV BY*.

According to eq.(4.32) becomes

(&) 510d))] (%) = % (&) By BY.

The sum of the eq.(4.74) and eq.(4.78) yields (dx = wdAt)

%((Odé)* (Odé)) _ 4CLI€B%0B01

An analogous consideration leads to

(O (dh)) = BBy,
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(4.77)

(4.78)

(4.79)
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due to the different sign of k. These relations describe the charge exchange between
the first and the zero excitation level during the time interval ¢ < ¢’ <t/ + T".
It shows, how the well-known dipole equations, embedded in a transition field,
describe radiation. Numerical calculations exhibit that in our cases the values of
|B1%| are small and therefore, the related radiation loss too. An emission of one
"photon” it takes about 107 %s for the presented p-s transition. However, this pro-
cess can run much faster if more atoms contribute to the radiation field. This will
be shown in the next sections. Finally we mention that the far-field approximation
of eq.(4.51) has the form A, = (c(w)/r)exp(—i(wt —r/¢))  where only for the
radiation frequencies the coefficients c¢(w) are not zero. This is, due to the differ-
ent numbers of wavelengths up to the sources in the atom. Therefore the other

frequencies of the charge dynamics can be excluded [27].

4.1.3 A general approach to radiation effects

Now we try to describe the influence of radiation in a more general way. The

combination of eq.(4.1) with eq.(4.2) leads to

g Ul = —hgl-UPyU° + i (A0, Ut = ARTU ', U°). (4.81)

It results in
[ hge {0, U}dV = i J(ALT %y, Ut — AQ T, U)aV. (4.82)
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This is not zero for a retarded potential A and therefore the relationship

1%

0\3"

4 ((ad)al) = —if [(ALOU %, Ut — AS U, U%)dV # 0 (4.83)

q

must be taken into account. We insert the functions, presented in section 4.1.2,
into the eqs.(4.82/4.83). Only the currents legju = jﬁo and %ju = jgl form
radiation moments. With these additional terms, given in the eqs.(4.69/4.72), and
the eqs.(4.74/4.78), the right side of eq.(4.83) reads in our case

—ief( OUOWU1 Alelfyqu)dV

= G DR O R O Ry, ) (R, ViV
2 TR, )3, U0) (R, ) U(Ry, )7, U (Ra) dVidV |
i (2 /4) BB
Then, we can assume that the value of
i ((ah)"al) = —i%e(& /) B} (1) BY (1) (4.85)

is approximately constant in the interval ¢}, < ¢’ < ¢/ +T". A similar consideration

is necessary to estimate the change of U'y,U!. The eqs.(4.3/4.4) lead to

hig UlU' = —hgt-UlypUt —iS(AC00, U = ARN0,U°) (4.86)

(9£L‘4
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and to

i () ay) = %55 (€2/a) B3°(t;,) BY (). (4.87)

The Eqgs.(4.85/4.87)) describe the correction of the conservation laws of excitation
levels by radiation. Using this result we calculate the influence of the radiation on
the energy component of the associated tensor. One obtains for the time average

of the volume integral over the components of such tensors the expressions

L I OUTE () Vit = —£0d0(e) (O (t)) (/62 + 1 o) Hoy HY - (4.88)

and

Ll AT ) dvdt = — S () (M) (162 + 1), (4.89)

Using these equations the linked change in the mean energy of the Dirac field

becomes

T
T, i fo Third () 4 00Td (¢)) dVdt =
-G 1d§fL(t’ ) (M) (1/62 + 1o + L) (4.90)

=G ar dy(t)* Oy (t,))(1/d2 + 1),
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That means,

T *
— T o (UTE () + 00T (¢)) dVdt = — £ Lo Gt (M ()
(4.91)

or with the eqs.(4.85/4.87)

T & 4aéw?
— by (AT () + OOT () AVt = — § S BIOw)BYY(H,).  (4.92)

This can be replaced by

— i by CIT(E) + OOTL (1) AVl = e (BL)*(1)BE(r,)  (4.93)

because of (B.?)* = —BY! and ¢ - Lw/At = hw. Eq.(4.92) describes the radiation
losses per At in é2/4 and eq.(4.93) in hw. Here is assumed that a share of the field
oscillates synchronously in interval ¢, < ¢ <t/ + 7" with the frequency w/(27)
and the fixed magnitude D} 2(¢)) := 'ditE(t))* (*dl " (t;,). The magnitude is slightly
different in adjacent time intervals. In addition, one can also use the eqs.(4.79/4.80)

to determine change in the integral LS; over the torque. For example, because of

LSy = =% [ (v1(T5'y + AT3Y) — ao(Ty + ATTY))dV, (4.94)
one obtains
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— f;f T [LGadt! = HAm -2 () (db(t)) (4.95)

where Am describes the difference of magnet quantum numbers. In the discussed
case is Am = 0. It is also possible to show that the surface integrals over the

far-field yield the same results as the near-field expressions [27].

4.1.4 The field of multiple radiation moments

If the wavelength A = 2né/w is significantly larger than the distance between
the atoms, we can assume that further atoms, located on R; around a central atom
with the coordinates Ry = R, also have a transition state. This is a consequence
of an overlap frequency w/(27) of the electromagnetic field. Hence the complete

radiation current is given by

;gjg = Zk: }QSJZf(R’ Yexp(iw' (' —tp)), (4.96)

with

pa i (Ry) = i€ "Dyo(k) () u (R,
(]pq)M(Rgf) - HP(R;;)VMHQ(R;c)a
D;g(k) — Zl(lkd]lDJrL)* (Okdé)

' =R - Ry.

(4.97)

R, describes the zero coordinates of the atom k. The radiation relevant vector

potentials of the central atom are presented in the eqs.(4.52/4.55).
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As long as the condition w ry;/¢é << 1 is fulfilled, the near-field approxi-
mation can be applied to determine all expressions ;SAZ(R t') of a transition

field. We characterise these atoms with k=1,2,...,N. In our special case is @w/¢ =

0.00273747%, because of A = 27é¢/w = 22964 = 121.5nm. This should cover a

number of additional radiation sources. Of which vector potentials have around
= (0,0,0) the form

10Ak

¢LOAE Ry, 1) = —i6 A" (k)(R), 1) — €k BLO(k), (4.98)

and

—ie DARRY, 1) = —ie Ay (k)(Ry, ¥) + 6 (= K2G30(k) +in® Z10(k)).  (4.99)

The sums over radiation relevant components of the vector potentials on R =

(0,0,0) are given by

—ié (oAl = — é2§kj kB (k), (4.100)
and
—ié (L0 A,)] = é2§kj(m3 ZI9(R}). (4.101)
According to eq.(4.59) or eq.(4.66), we get
BA(K) = eaplis( — 1) BA(R), 0
B;(k) = Dlo(’ﬁ) [(HyyHy)dVy
or

. 1 -
Z,°(R},) = —gxﬁBgo(k:) (4.103)
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because of xé / f[gmH ng = 0. The values of B/%O(k) are approximately constant
in the time interval, as long as the near field conditions are met. If the transition
states of these atoms are synchronised, one must add all linked radiation terms.
Then, because of the eqs.(4.100/4.102), one obtains at the location of the central
atom ( Ry = (0,0,0)) instead of the eqs.(4.72) the following values

(00 )3(°0") = expl—i (1 — 1) ()" " iy, )
—ié (39A(R))] = —(*/a) exp(i(w! (' — 1)) S (ér BLO(K))
<CE (R — Ry) exp(igh, (R — Ry)), (4.104)
—ié (JOANR)) = —(é2/a) exp(i(w!(t' — ty) i (U557 BLO(K))
<CE (R — Ry) exp(igh, (R — Ry)).

The parameters B}Lo(k)a C}fq,

of the currents .J /’f (R}, %) and of which distance from the origin. These expressions

and (bllﬁ .+ depend on the phase and the orientation
can be put in eq.(4.71). Then one obtains instead of eq.(4.74) the equation

sk (Pd)* L (0dh) = —2EBO0) ,(FOL0) BLO (k) (4.105)

and for eq.(4.80)

Sik [t )] (ML) = 2= BLO0) s (FOY ) BI k), (4.106)

The determination of the amount and the phase of (*O)0) and (*O)}) requires

studying a more detailed model. However, one can assume that a dominating
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transition current of a central atom determines the phase angles of the transition
currents of all atoms involved, as in the antennas of technical dipole fields. The
reason is that a multiplication of exp(iy;) on the transition functions *U°(RJ,,t)
and *U(R},,#) has no influence on the solutions of the linked system as long as
the radiation field is neglected. However, the phase angle can be influenced by the
c . . d 1\ l 24 * :
radiation field. Therefore a state with |, 2 ((°d})*) (°d,))| >> 2¢5(B}°)*B;" is
possible, which causes stronger charge exchange. Consequently, the model allows
an emission of one "photon” faster than the mentioned 10~%. However, a precise

description of radiation processes requires an intensive investigation of the system.

4.2 The Dirac field of a transition state

Now we look at the force and energy balance for a general solution of the Dirac
equation which is only influenced by the quasi-static potentials. This is necessary

to prove the causal behaviour of the system. The solution functions are

U=%Ys04+1,.U""

, 4.107
U= 5, e ean(-i (1Em) (¢ - pe 07
and U=y.0*
N Z * —. 2 b ) . (4.108)
0% = %, (Cay(t))" cap(i( (M &/h) (¢ — t0))H;,
which lead to
T =Ses pa " Tu(Rt) =S 57 7 Ju(R, 1), (4.109)

;;S’ Y I(R, 1) = iéU ', U
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and the quasi-static potentials

AZ/ =2 ;ZSIZAM(Ra t) =2 ;/qZI_S/AM(R7 t)

(4.110)
o P AR ) = i€y g (ap ™ (8)7 ag(t) [ o HT (Ra)y, Hy (R1)d V.
We also need the following forms of the eigenvalue eqgs.(3.26/3.27):
OH:™* 1., & s s
Vil agjﬁ )= (B )t = MEH™, (4.111)
0 H (72 2 é T Tz
(W3 n = & Hin(—E; — ) + MéEH; . (4.112)

The divergences of the lines of the energy-momentum tensor, formed with the

functions of the eqs.(4.107/4.108) read

0** T4 éh 0 - oU* 0QU?
v . zZ—S
dx, 2 Oz, T ox, ox, MU (4.113)

Using the eqs.(4.107/4.108) and the eqs.(4.111/4.112), we get for these divergences

azzfslei % T — 2 z—s
b = (5 () Y (B — )
oU* Ll 22 zZ—s
~ o, 24 U (Eq_ T er)Q 4, (4.114)
s




After adding the missing term for u = 4, it becomes for v = v

ozz—sTd
vp
oz,

~ l(zpm'h <;>" — (@) (B 4 £))qy 2
— G S (én e e (B + %)) H

+UZ 6‘ [zq«ch ;;” + @B+ L))y H

[zp<HZ<'n &?" — (@) (Bz + £)) ] uU).

Using the Fourier transformations of the functions

U° =3 ()" eap(i( (M &/ + Nw)(t — 1)) H;

p,l1

and

U™ =Y **dyexp(—i( (M &/h + lw) (t — to))H; ™,

q,!

one obtains

b B sTd

Tt = 3 e (CdD)* (7dl) exp(i (11 — Dw (t — t))
by H ) (11 —l)wh — E + EZ*)

OH;™* (9H
((HZ V4 833

P a—g 1 0(E%)r
+2Hp7 Hq ((87:65)»

This can be described for s=1 and z=1 by
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(4.118)



810T§“ = * .
Tt = 3T () (Od)) expli (11 =D (t — 1))

— 0 7l _ _
<y gz = o wH) (1L = Dwh — B} + BY) (4.119)
+2 i 1) (C4ELL)),
For v = 4 the components are
“_STfﬂ = _%Ep,q,l,ll ((ng)* (Z_Sdé) e>fp(z' (1 = Dw (t — ty)) (4.120)
x(2M &+ h(ll + Dw) Hiy H® '
and
2Tl = =35 gt (CAR)* (F75d)) exp(i (11 —Dw (t — o)) (4.121)
X(2M &+ h(ll + l)w) H: 5y, HY. '
The divergence of the fourth line is
7 O = =2 Zpan (C) (o) exp(i (=Dt — ) o),
x (A1l —lw — EZ + EZ*)(2M &+ h(I1 + l)w) Hiyg HZ '
because of
o i ™ = (= By + By By (4.123)
and
8%4 (F*5Ty) = —o Spqan (CdN* (F73db) exp(i (11 — Dw (t — o)) (4.124)

x (11 —Dw(2M &+ h(Il + l)w) Hiyy HZ.
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One gets for the space integral over the eq.(4.122), due to the orthogonality of H; ™

and H, the expression

F (ST AV = = 6(s) g Squn (G ()

, 4.125
x exp(i (11 —Dw(t — 1)) (11 = Dw(2M &+ Rl + 1) w). ( )

Its mean value in time is given for s=0 by
L I o (T, (1) aVdt = 0. (4.126)

This is a consequence of the continuity eq.(3.122), which yields for IMEZ >>
A(ll + l)w and z=1, s=0 the constant value

F R T () dVdt = — ¥, ((Mdi)* (YY) M & (4.127)
and for z=0, s=0

LI OOTg () AVt = — 54 (Cd)* (L) M &, (4.128)

if the radiation can be neglected.
To describe the influence of purely quasi-static potentials on the force and energy

balance, we use the following Dirac equations
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US. v haU = (&E/r) Uy U

: s o (4.129)
+Zg Zz,s,s’zo,il,_ (A ZVM UZ—S) MU

and

Zz(h U )%U = — %(éQ/r)UmU

: - g (4.130)
i Y, (AT, U ) 4+ M EOU.

We don’t use of the relation

ié Ys'=041,. J (A,]S/ (_]Z% Us=3dV
Yo s=or, ([ U U5 [ 207 9,07 dVidV (4.131)
iC S (U, U UZ “sy, U7 dVidV

2
C

because the terms with s # s’ are necessary for the local description of the force
balance. The eqs.(4.129/4.130) enables the formulation of the divergence eq.(4.119)
in an alternate way. The eqs.(4.129/4.130) lead to

zz—sd
Zz,saawTyu _ZZSUZ Uzs@ (2/7’)
" 04" (4.132)
+Z€Zzss( T )UZ%UZ—S)_

It agrees with eq.(2.35) if we neglect the radiation. With the help of the Fourier
transformation, the eq.(4.129) can be replaced by
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Zz,s UZ,YM(TL oU— ) —

ax“
¢ Spaetss i Cdy) o dy exp(—i (M E[h + (1= ) w)(t — to))
<= 2 mer ) (o) + £ ) By — M@ B H)

q

and eq.(4.130) by

Zzs(h oU*? VMUZ 8) —
%ZP%Z’Z’,S,S"ULM (Zdél)* Zﬁsdlq eXp( (M 62/h + (l - l]‘)w )(t - tO))
E (2 2—5, ~ 2'—s' 2 z * N\ i1z 25 9 Ty TTr—s
x(— S mgh "),/ Cd))) + S)H;uH; ™ + M & H*H; ™)

p

Here is
(; zfsmglz’—s'z) _ fto-i-T exp(zlw (t . tO)) z z—s' Mz —s' 2 ( )dt
with
S SME(t) = i enpli(t — 10) /6
< [ HeyU3(t) 207 =3, U dVidV
or

(;z Smglz S/Z/)M = ft0+T exp(—illw (t — to)) Zz= SMZ —s'2 (t)dt
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with

5, 2 M (1) = —ideap(—i(t — to)/6?)

1 -/ !/ ! (4.138)
x Uy, H:~ (t) [ U7 75U dvidV .
According to eq.(4.111) becomes
WP = 25 (—ihgag™ +ag S( By + (&)r)) ). (4.139)
In addition, one can write in purely quasi-static cases (see eqs.(4.12/4.13))
ihar ™ = B a; " + G5, 00 77 M7 (1), (4.140)
After changing the dimension is
Cabaz =G (B ) az*(t) + Sy 57 M7 (1)), (4.141)
Besides, one obtains (see eq.4.30)
) =~ () a0 i

+ Zu7z”sl ]Z;Z*lej/is/ Z/(t/))
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The Fourier transformation leads to

i Laz(t) = (&/a) sy (Iw' *~*d,
z—s gl
+ i) exp(—i( 1w ) — 1)),

z—s gl
Therefore in quasi-static case (d( y t,dq) = 0), the eq.(4.142) results in

(E/a)(1w") = ody = (E/a)((E7*) 7 *dy + Lprs ;7 mgi ™ ),).

and the eq.(4.142) in

(=&/a)11w) Cdy)) = (&/d)(~ () (dy)”

- Zuﬂ’,s’(; Zﬁsm‘gfl/_s Z/)u) :

These expressions yield

(&/a)3 S (i) (ody) expli (11 = Do (1 = ) (11 = 1)
= %Zm ((Zdél)* (Z*Sdé exp(i (I1 — D' (t' — tf)))((E;)' _ (E(,szs)/)

+ oo (G g " )/ ()T = (7 mgp 7)) (F70dy)

and thus
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(4.144)

(4.145)

(4.146)



(€2/a)3 S ((d)y* (72dL) exp(i (11 — D' (' — 1)) (11 = 1)/
(Hz%l@g; s 8HZ 74 HZ s)
b () () expli (11— 0 (¢ — (B — (E;))
+ Sl (G Mg “ﬂ(idll) ) = 7 mai /()

V4 le, o 8x§ V4 H;_S)

x (H

If one puts this expression in eq.(4.118), one obtains

zz—sd
T = S S A L exp(i (11— D! (¢ = 1))

/

A (o= g G+ (57 mgy ), (=
—(B) + () ) (i i = 50 v H)

Bz )

and for z=1, s=1 it is

810Td &2 N
oz, = 53 Lnatn(’ d”) Odl exp(i (1 _l) (" = 1))

(S p(—(Omgi ™ )/ (¢ d“) 4 (0mgi =),/ (0dy)
—(BYY + (B0 ) (v — 9 o, o)
By 200

Using eq.(4.147), the eq.(4.122) reads

o T = 4 quzn((zdél)* (*7°dy) exp(i (11 — Dw' (' — 1))
< (Lo (=G omigh ™)/ () + (7 Smgz ) ()
—(B) + (E7))2/6% + (1L + ') Hiyy Hy™
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(4.148)

(4.149)

(4.150)



and for z=1, s=1 becomes

oo (071 = 5 Spgan ()" (°dy) exp(i (11 = 1)/ (' — 1))

X (o= mgiy ),/ Oy 4 (Omg ),/ () (4.151)
—(E)) + (ED))(2/&* + (11 + l)w') Hlyy HY.

The comparison of eq.(4.118) and eq.(4.149) leads to

Spata ((Cdy)" (7dy) exp(i (11 — D' (¢ - tp)) (11 = 1)’

—(E;) + (B;7°) — Zz',s’,u((zz_SMQfl_S/Zl)u/(zdél)*

22—S§ 2 —s" 2 2—s (4152)
+ (7 mg )/ (F0dy)
(72 OH;™* OH; Z—5 [72 z—Ss é/r _
or eq.(4.119) and (4.150) to
Spaaa (AR (7odh) exp(i (11 — Dw' (¢ — ¢5))((11 — 1) o’
—(E?) + (E75) — oy 22—8,5 2 —8 2/ z 1y
( p> ( q ) 2z, u(( mgn )u/( p) (4.153)

G omgr ) () (2
+ (11 + W) Hiyg H = 0.

Both results are obtained directly by multiplying of eq.(4.147) with different func-
tions and adding up of all terms. These equations become for z=1, z'=1 and s=1,

s'=1 the form
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2 p.a.lil ((1d§}) (Odl)eXp( (1 =D (" — tp))(({1 =1)f
—(By) + (By) — Zu((}yom%l )ul (M)

+ (30mgf "),/ (L)) ( HY o

aH 74HO—I—2H1’V Hoa( /7‘))_0

(4.154)

and

Spatn ((dy)* (Ody) exp(i (11 = D' (' — ) (11 = 1) o'
—(Ey) + (B)) — Zu((PPmgn'),/(dy)” (4.155)
+ (3 mgi )/ (dy) ))(2/6 + (1L + D) w') Hyys Hy = 0.

The Eqs.(4.148/4.150) must be valid for all frequencies Alw/m = (I — 1)w'/7
in the interval tj; < t' < T" +t{, for every combinations of p and q. The basis
equations must thus be fulfilled exactly. This is only possible when all excitation
levels and all eigenfunction are used. That means, the solutions are formed by the

following sums

5. U*(R, 1)
= Sopan () eap(i( (1/6% + 1w)(¢ — 1) H; (R) (4.156)
and
ZUZ/(RJ) Zl dl exp(—i( (1/&* + ') (¢ — to)/)H;I(R). (4.157)

If these functions fulfils the basic equations exactly in the mentioned time interval,
then the eqs.(4.152/4.153) are also met. Such accuracy is not to be expected in the

presented approximation.
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4.3 The complete energy-momentum tensors of a transi-

tion state
In this section we compare the energy-momentum tensor of the electromagnetic
field and the Dirac field of a transition state. Since the radiation field does not

contribute to the stability of such system, we take into account only the quasi-static

potentials. These fields are caused by the following currents

Jo=J+ o(p—4)JE (4.158)
with J,—ieUyU, U =x.U
= 1€ ) = 2.z Z;
P T (4.159)
Jit = —iep”.

One needs for description of the dynamic behaviour of such fields the tensor com-

T4 T and T,f ,» which are given by

ponents v Ly
Tfu = A%h (U’Vu aagy - g;{j %cU),
,j”u = Tlf”ﬂ + TV“’W (4.160)
15, =17, + 17,
with
T,f”ﬂ —A,Jy,
— K (4.161)



We use for T,fﬂ the tensor

e 1 K pre e K 1 e K K e
Tyu — E(FI/O'FMO' + FVO'F[LO' o 15(1/ - :u) (FUAFU)\ + Fa)\Fa)\))' (4162)

Generally the divergence of T W, =T7,, given in eqs.(4.149/4.150), must be com-
pensated by the divergence of T;Uu + T .- These have the following forms

O (Tw + Tg,) = —J, 5

833# O0x,
\ N ~ 8AK 8/1
o (Ton 4+ T5,) = (= Ju55e — TR G2, (4.163)
0 7 7 0 AE
o T+ T5) = =J0 5.0

We regard o (r) to be a small expanded charge distribution of the nucleus with

spherical symmetry and not as a singularity. Then all transformations are allowed.

8% (T% + T »u) describes the divergence of an independent field and can be sepa-
“w

rated. The remaining divergence equations are

ai“ (T8 + T5,) = $us a% (55T 4+ =557 (4.164)
respectively
0 . 8A,;S' B
2o (T T5) = o S g 6
\ N B 3AK 8A75/ .
oo (T + Te) = — . (S50 + JESGE)
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and the sum is (see eq.(4.132))

o (T + To, + Ty + Tg) = — S Uy U2 (&)r)
y DA KA (4.166)
_ZGEZ,S,S’((T;V)(U YU — X5 J, axy)
or
\ \ zz—sd o A*
o (T + Te, + T+ Te) == 5., T =5, JEGTE (4.167)
These relations yield the general force balance equations
+ v, Z85“u dx,
which in our special case can be approximated by
\ \ 10
%(IOTVCZM_'_ IOT,&U—}_ 10T1/6u+ IOT%_'_ 10T5,u) _ 41[(66/;}: . (4169)
Here the ride side becomes for v = v (see eq.(4.110))
Zz s wa — (é2/d) Zzpqlll ((zdll)* (z—sdl)
o O PP ‘ (4.170)

x exp(t (I1 =)' (¢ — tf)))(é(qu:”_s)g
with
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(Fmke==)p(R) = T (R)52-(/ ;1 Hi(R1)y, Hi*(Ra)dVh).

We insert the generalised eq.(4.148) into (4.168) and obtain after

dimension

0 (zz—sTl;iL_{_ ZZ_STDe,u + zz—sj"l%)t_*_ ZZ_STDeu)

oz,

— ()} Sapqun CdY) (o) expli (11 — D! () — )

(Lo (G omgh ™ )/ Cd)) — (7 mgi ~%),)/(7*d))
7. OH:®  OH: _ 3 50
K —
— (K mkz %)),

That means the eq.(4.169) yields for v =¥

0 (ZZ_STpdu—i_ ZZ_ST,;“U’M—F zz—sTDeﬂ_i_ zz—sT%+ ZZ_STDe,u) —

0w,

(€/a)5 Sparan (Cdy))* Cdg) exp(i (11 — D' (t = t0)) (11 = 1) o'

Y 4 (B~ SenGorigi ) Gl
22—S§ 2 2 —s z—5 7., OHI™® OH} 2—8
— (G7omgp 270/ CT ) Hy va—gi— — g

3 &2 z2—8
2 oy Hz# 2600 — oK k™))

and for v =4

L(zzfsTf’u_F zzfsTiuu_F zzfsTfM_F zzfsTéﬁ)L_F zzfsTéfM) _

oz,

(€2/@)5 Spqann (Cdy)* (*dg) exp(i (11 — D' (' — ) ((11 — 1) o’

—(Ep) + (B;™) = S (5 mgh ™ %),/ Cdy)
— (G mgi )/ CT ) N((2/A% + (11 + Dw') Hiyy HE ™
—9(K mk*e%),)
Here is
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changing the

(4.172)

(4.173)

(4.174)



(Emke==)y = —(11 = D! JE(R)(/ - H2(Ra)y B (Ra)dV).

Due to eq.(4.168), it becomes for all v

L(zzfsTd + zzfsTw + zzfsTe + zzfsjﬂw + zzfsj've) —
m Vi v

oz,

—(€2/) Tpqrn (dy))* (7 Sdl)exp( (l1 — D' (" = 1) (pgmk** =)0,

Last equation contains the divergence of following oscillating field

T = (@ )a)y S (i) eap(i (1/&7 + (14 Lw')
X Hi (R), g0 [ dyy exp(—i( (1/6 + (1 +L) Dt =t

— g () eap(i( (1/67 + 1! )( t))) Hi(R)]
<y My, exp(—i( (1/d% + 1" )(¢ — £)) H,, (R)),

t' = t))

(
))H,(R)]

which can be replaced by

10T = (€2)a) 5 DES, exp(iw' (' — 1) (Hyyy G — Gy, H,)

and
W = —(62/a) 5 DLY, exp(i @' (t' — 1)) Hivy HY,-

Due to the eqgs.(4.119), the divergences of this tensor read
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(4.176)

(4.177)

(4.178)



@ o~ ( 2/a) D}V exp(iw (' — ty))

69@
x ((Hj, Ly HS) (w0 — (B + (ESY (4.179)
+ H;%% HY, (%21))

or

o2 (OTdh) = (¢2/d) 5D, exp(i &' (1 — ty))

(= — (B + (EV)) Hivi H (4.180)

if the radiation loss is neglected. The compensating terms of these fields are

~10T3“ = —D} exp(iw (t — to) ("MATE + A FmTl0),
W0Te = LD exp(iw (t — to) (FE (*""Fel%) + (*mF')FE (4.181)
—50(7 = W) FS (T ER)

with

kmA}lO(R) = ZéfLH/%”M HO (Rl )d‘/l,
kmFﬂe’/}O ~ 5( lu)akmAlo

kmFe,lo ~ —5(V . )8’“(;’;;_110’
I

kam ié exp(iw(t — to) Hiv HY,.

(4.182)

The tensor components have the form
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YT, = —0(4 = p)Dpy, expliw (t — to)) (P AT + AFFI0),

_ _\ OFkmALO § pAK
_5<V - ,LL) 89054 a:{; )

Due to A¥mMALY = — 47 km Jl0 > and ¥mAL0 2 0 | we get 107}% = 0 and for the

sum of the divergences of these tensors

oo (10T + 10T5,) = —(&/a)DLS, exp(iw (' — t) (Hiya Hy, (%527
km A1l
+JFOTAL,
(4.184)
Using the eqs.(4.119/4.180), it becomes
e (10T + 10T & 10T ) = (€/a)3 DS, explicd’ (' — ty))
— 0 agl
<((HE v — 5ok wHY) (' — (BY + (ES)) (4.185)
2 AR
— DS, JEOTAER),
In addition, it is M%Aiif?(m =~ (0 for a spherically, only small expanded charge

distribution of the nucleus, if ¥ A}? has an extreme value in this area. Then the
last term in eq.(4.185) can be approximated by
LOFALR)

ié 1. o (r) = 0. (4.186)
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With eqs.(4.49/4.186) the eq.(4.185) reads

aiu(lofgu+ e + 107¢ ) = 0. (4.187)

In addition, because of: M ¢ >> 1072”#, 10116#, it becomes 3%#( 10T4du + 10Ti"u +
o i) = %(NT i,). That means, the divergence of the fourth line, given in
eq.(4.174), describes the continuity equation in the applied approximation.

The consideration exhibits that the dynamics of a transition field fulfils the
causality condition because the divergences of the energy-momentum tensor of the
system are zero. Such tensors include normally radiation moments. These can
interact with a radiation field and cause radiation effects if a frequency condition is
fulfilled. Prerequisites are a noticeable size of such spectral line and the fulfilment
of an independent continuity equation such as eq.(4.44). Also the value of the
emitted energy must amount to £/ = hv when the transition process is completed.
Details on the radiation fields are described in section 4.1.2. The combination of the
results allows to say that this model explains the emission of a ”photon” through

a causal process.

110



Chapter 5

The two-electron system

5.1 The basic equations

In the next step we consider a classical field model in which two electrons are
bound to a double charged nucleus. According to our interpretation, the electron 1
and 2 should be described by the following separated field functions U(Rq,t) and
V (R, t) in Ri-space and Ro-space, respectively. Nevertheless, the current and ten-
sor components can be interpreted finally as field functions in the real space R. It
is also useful sometimes to set R = R’ to characterise the source of real electromag-
netic fields. The functions satisfy the conditions | U(Ry,t)viU(R1,t)dV; = 1 and
| V(Ry,t)y3V (Rg,t)dVs = 1. These are influenced by the potentials

AN(Ry ) = ié [ TR, 75U (RY, )V,
A3(Ru ) = i€ ] 2V (Ry, 672V (R, )V,
(5.1)
AN(Ra, ) = ié [ L U(RG, 071U (R), )V,
A3(Rayt) = i€ 1 -V (RY, 472V (R, )V,
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That leads to the Dirac equations

(v (h(,fcl—zc(AK+A1(R1, )+AZ(R1,1€))+M6)U(R1,1€) =0 (5.2)
and
(v (h;; — = (AK + A4(R2, t) + Ai(Rg,t)) + Mc’)V(Rg,t) =0, (5.3)

where the potential of the nucleus is given by
AE = —2i¢/ry (or = —2ié/ry).

The potentials A} and A% are defined in the egs.(5.1). The completions by A‘g in
the egs.(5.2/5.3) shall no be discussed here. These have only a small influence. We
try to solve the eqs.(5.2/5.3) applying the following series

U(Ri,t) = Snan(t)Hy(Ry) = Spu exp(—ilwt) 7(R1),
U(Ry,t) = En/ aw () Hy(R1) = Swp(chy)* exp(il'wt) H,y (Ry),
V(Ra,t) = 0 b (1) Kin(Ra) = St diY exp(—ilwt) K, (Ro),

R (5.4)
V(RQ, ) m b ( ) Km/(Rg) = Zm’7ll’(d£rlz/’)* exp(zll’wt)[_( (Rg)

where H,(R1) and K,,(R,) satisfy the eigenvalue equations
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and

(yihs— — 7274 + Mé)K(Ro) = YiES K, (Ro). (5.6)

H,(R) and K,,(R) fulfil the orthogonal conditions in R. One can put R; = Ry =
R in all final results, denoting properties in the real space, such as Ji(Rg,t) =
2
Ji(R,1).
First we describe the solutions of the eqs.(5.2/5.3) by the functions
U(Ri,t) = exp(—iEt/h)U(Ry),

[(Ry) = S i Ho(R1) (5:7)

and

V (R, t) = exp(—iEt/R)V(Rs),

V(R2) = S b K (R2). (58)
These lead to the Dirac equations
(y4i%9 — ¢PLU(Ry, t) + ié(AL(Ry) + A2(R1)ADU(Rat) = 0 (5.9)
and
(42150 — PV (Ra,t) + ié(AL(Ry) + AA(R2))V2)V (Rayt) = 0, (5.10)
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where the operators are given by

Py= (3 /0uh) — 284} (ér) + Mé,
Py = 2(T [0a2) — 2643/ (érs) + M.

(5.11)

The high indices hint at the related space. We also use the following notations

1 )+ 2¢3} (éry) — M¢,

1
i
)+ 26292 /(éry) — Mé.

(
(

~T T

hry %/5:6
Iy %/81’

TN R =

2

If one inserts the eqs.(5.7/5.8) in the eqs.(5.9/5.10), one obtains

(E - ENa,
+ié [(A}(R1) + A3(R1) Hy(R1)71U (R1)dVi = 0,
(E - Enfg)gm

Such static solutions should satisfy the minimum condition

— /T44dV = min.

Here is

_ mdl d2 wl w2 e
Ty =T+ T2 4 TW 4 T2 4T
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(5.14)
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These tensors have in dynamic cases the form

Tl = 2(U(Ry, )y iRt — RN (R, 1)),
T = GV (Re, ) 75 — TG ViRa 1)),
Ty = —(AL(Ru,t) + AL(Ry, 1)) (R, 1)),

T2 = —(AL(Ro,t) + AL (Ro, 1)) J2(Ra, ),

Ty, = 2= ((F), (R t) + F (R, ))(F) (R, t) + F, (R, 1))
_i(svu(FjA(Rv t) + F(EA(R, t))Q)-

(5.16)

We write again in the final results R = Ry = R. The missing term — [ Aff (Jﬁ +
Jﬁ)dV is compensated by the nucleus field and has no meaning in the minimum
condition eq.(5.14). For static solutions the integrals over TJ} + T2 are given,

according to the eqs.(5.13), by

— [(Tfi + TH)dV = 5 Bl (an)*ay

. 517
s EE () by — [(AL + AD(JE 1 J2)dV. (5.17)

Therefore is

— [(TH+THE+ T8 + Ti8)dV = 2 Ef(an) an + o B ()b (5.18)
and with
e ~J 1
— [T§,dV = —2/(AL + A2 (I} + J2)dV (5.19)

becomes
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- fT44dV =>n Eﬁ(dn)*dn

_ 5.20
+ S B (b)) b — 5 J(A] + AD) (] + J})aV. (5:20)
In addition, it is
+ Em(5m>*gm) + %f(AzlL + AZ)((L} + JZ)dV- '
Comparing of eq.(5.20) with eq.(5.21) leads to the relation
n (B — Ef)(a,)*a, + Sm(E — EX) (b)) b,
2 (B = EX)(@,) @, + Sn(E — B)60) 5o

+ [(AL + AD(J] 4+ JHadV = 0.

This also follows from the eqs.(5.13) by multiplication and addition.

5.2 The energy-momentum tensor

In the next point we consider the tensor of dynamic solutions. For this aim we

apply the eqs.(5.2-5.4). The divergences of the related tensors

[dj 177 j 3 177 ; <5
TR, t) = SU(R;, t)chyi -2 — SU (R, t)chyi-% U(R;, t) (5.23)

oxl, I 9,

are
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p\Qzy Oxy, ' Oxy, 8;5,11) U(Rlv t)
e 4 A
o >cm<@ 2+ 3D UR 0 + BT R
and

(5.24)

%

2 Td2 2(Ra.t) = 5( (RQ,t)ch'yi(a%{g + E%) V(Ro,t)

E) 9 D 2

V(R% )Ch%(T 2z T ax%%)V(Rg,t)) + 25150 (Ra, 1)

9y - 9
We can replace cfw/ﬁa T U(Ry,t), U(Ry, t)@chfy% through
chﬁf U(Ry,t) = cﬁ + 62%13 M) U(Ry, 1)
- or (5.25)

U(Rl,t)a%ch’yi = U(R4, )(cP1 — 2 +Mc)

B S
and chiy; ﬁ V(Ra,t), V(Rs, )%chvﬁ through analogous equations.
Then one obtams for the eqgs.(5.24) the expressions

SRR, 1) = MR (P, — )2 + 1) T,
+§ (Pr+ )2 — ME) - (6P, - )2 + A G, (5.26)
4
~ 0 (P + @912 — ME@)U(RE) + 2 TR, t)
or
@iz Td2 (R t) %‘_/(Rg,t) ((CP — 62’}/23 -+ MC )3
+a§ 2+ ENi — M) - (P —eQ’yifnLMéQ) (5.27)
~ 0 ((Py+ @32~ M) V(R t) + 2 TE(R,, t)
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We insert into these equations the functions described in egs.(5.4). Then the

eqs.(5.26/5.27) read

agl le (Rlv t) =n LU 9T (ZT;lnTVd,llj,(R t)) (5.28)
with
g (T (R, 1)) = 5(ci,)"(ch)
< explil — o) (L (RoH Y — B2 (5.29)
—o0e )+ b)) Hu(Ra) + %(5{ TR 1)
and (from now on: (fllnTlell(R t) =T (R, 1))
ST R 1) = J(e ) () expll ~ Dyot) a0
X ((I' = Dw)(Hy(Ra) 7} 2] — ORI L (Ry)).
Applying the abbreviations (see eq.5.4)
14,Ch0) = (¢)'(e) explil — Do), a1
nrmCa(t) = (diy)*(d})) exp(i(11 — I1)wt), '
the product of the complete charges can be described by
0(R1)0(Ra) = € S nipr o marat W Cr(t) N1 Co(t) (5.32)

X Hyy (R1) i Ha(R1) Ko (R2)7i Kin(Ro2).
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With the eigenvalue equations

it becomes

ot T HA(Rs) = A}(Ea +E2) Hy(Ry),
— F —
Hy(Ri) Zrchn) = Hy (R (—Ey — &2),

T
ox i

(R t) = 5 W CLO((EY — B + 1l = Dw)

Txh — 9on'n :
X (Hy (R1)7i 8H53§§I) - 8(%;(;21)74171@(731)

(R Ha(Ry) 2]

Analogously reads

0 T2 (R, 1) = LU Colt)(BX — B+ h{11 — 1)

8xi —a9am'm

X (R (Rp) 32 Ra) _ 0Epr(Ra) 2, (Ry))

2
ors

R e (R2)13 Kon(R2) 25[2)).

Due to h-2- exp(—iM&/h) = =M exp(—iME/h) and

we get

and

i 5 .3
AT R 1) = =ME (RO OOl (Z + 2

OxL Ox

Iz

FIBELCy () Hy(Ry),

4 !
ot N

a%be(Rl, t) = =1LCi)ME(BI + &(2)
~(BE +&(2)) + h(l' — Dw) Hy (Ry)v  Ha(R1)

s Lii(Ra 1) = = RCo() ME(E + E(2)
—(Epy + (%)) + 111 = 11)w) Ko (Ra)Vi Kin(Ra).
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These relations describe the energy and force balance if the interaction between the
electrons is neglected. One sees that the conditions E — E# + (I’ — [)w = 0 and
EE — BEE + h(l1 — 11")w = 0 are only fulfilled by different frequencies. However,
radiation should be caused if the divergences eq.(5.37) and eq.(5.38) contain syn-
chronously oscillating shares of a common special frequency. Hence we look for
combinations of H and K where parts of the divergences meet this condition. Be-
sides, the interaction between the electrons must be taken into account. Therefore

we introduce the following operators:

F
Q Chfyl/yél(a(g?l ?xl + ?ﬁgﬁ Chlylu/yél( 1 L + 8(21 E)
+7_W4’Y4Zat( 85) +é dal [* - @]’M’Ma
I R I
Qz = Ch'Yﬂ,u(ax% 7+ 5 Lag) - Ch'M’Vﬁ(Tx%aTg + 5$§37ﬁ>
HipG (o — ) + @2 - Ly,
4 _a 200 1@ _ 2 1
Q1 = =57 ((Chgr — 1€ (5 — )
chvﬁé? + 71 (2 — ) + %),
(5.40)

T (e R Iy

+(vgz +91€(E — o) + M-

The term % describes the interaction between the electrons. d/& follows from
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Mé/h = G/d. The sum (QF + Q%) reads

ey 4
Q%+Q3=—%(Q12+@12+2ﬁﬁ%)

with

4 /
312 74(07”’%3? — (2 =)

> 3

Yi(hia — G = 00)),

<4 ,
Q1= vi(cﬁ’v,iaal + 7 =)

12

+7i(0'7i73£z + 32 - L.

(5.41)

(5.42)

Applying these operators, one can introduce the following the eigenvalue equations

4
12\I!7jfm(7€1,7€2) = Eim7472‘1’i (R17R2)7

_ 4 _ _
U (R1,R2) Q1 = =By i1 Vo iy (R, Ro)

with
v (R1,R2):7(H (R1)Kin(R2) £ Kin(R1)Hi(R2)),
U (R1, Ra) = 5 (Huw (R1) Ky (Ra) £ Ky (R1) H (R2)),
H,(R1)Kin(R2) = J5(¥3r,,(R1, R2) + U, (R1, Ra))
and
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Ey, = El + EN + a0 MEN) s+ a(RFMAT ),
By = B+ B+ 40 MuR s+ 2 (05 Ml s,
W EMEI) = [(1/r19) Hy(Ra) 7 Hn(R1) Kin(Ra2)vu Ko (Ra)dVad Vi,
H(ané(Mﬂ[’L(f)M - f(l/r12)Hn(R1)'YuKm(Rl) Km(RQ)'Yan(RQ)dVQd%-

(5.45)

We investigate the cases where m’ = m and n’ # n. That means,
J Kn(Ro)VKp(Re)dVa = 1 but [ Hy(Ry)yiH,(R1)dVy = 0. Then the following

sum of the divergences of the fourth line of the tensors becomes

mmCo(8) 5o T (R ) + 1/, Cr(8) 5 T (R, 1)

.’ﬂ

2%'502()1’}1( DEn(R2) Q1 CL () Ho(Ry) K (R2) V2 (5.46)
+ 0w C1(t) J (Ho (R1) Kin(R2) @3 i Ca(8) Ha(R1) Ko (R2)dV4.

The sum of the interaction terms is zero due to the eqs.(5.42). Eq.(5.46) can be
decomposed (see the eqs.(5.42) ) into

mn C2(8) 5o T (R, ) + 4, Cr(8) 5 T (Ra, 1) = = 50 Ca(t) | (Hiy(R1) K (Ro)

4 3
(T 1o+ Qo+ 29212) U] Oy (1)) Hy(Ry) K (Ro)dVa

— UL Cyt) [ (B (R1)Kon(R2) (@15 + G

+2i e L Co(t)) H (721) m(Ra)dVi
(5.47)

or
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— & (I1Cy(t) J (qu_;—’m(RbRQ) Q12 + 64112 + 274%%%2) POt Ut (R, Rs))dVa
SR (B (Ras R)(D 4 Ty + 29422 1L Cy(1) Wi (R, Ra) Vs
+ 1L CV(t) (85,0 (Ra, Ra)( 512 + @1y + 222 WGy (1) W, (R, Ra))dV

+ 1L OVt 1 (B (R, Ra) (@15 + By + 2949322 o (8) W, (Ry, R))dV)

+4A0.
(5.48)
That leads to
HC0) T Rust) + 14, Chl0) 5 TR ) =
2(35;1710 ( )ll llC ( )f\II+ (RDR?)( m_ET—’L_m
COR(I — D) U, (R1, Ra)dVh
+or nCr(t) L Ca(t) [0 ’m(R17 Ra)(Ep
—2h(l' =1 v (R dVs
a l'l ll’(ll )W) _ﬁm( ) 2) i + (549)
2an’ C( ) mCQ(t)f\Iln’m(Rh 2)( ’m_E

—2h(11 — 11)w) U (Ry, 2)dv1

o b Ca(8) W Co (1) F U, (R, Ro) (B

—2h(11 — 11)w) ¥, (Ry, Ra)dVs
+A0

n’'m

with
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AO(R1, Ra,t) = AOF(Ry,t) + AOST(Ra, t) + AOI (R4, 1)
+AO; (Ro, t),

, _ 1 4
AOH(Ry,t) = —(WHCy(t) § (T i/mml,m)(czm + 30,
+2yi3 0N I CL (1) U, (R1, Ra))dVs
= %’lncl(t) i}zerr}C ( )j\pi (RhR?)(Eim - Erzfm
—2h(l' = D)w)yi7i Y, (Re, Re)dVa =
LG MOy () (B — By — 2R(1 — Dw) Hy (R4 Ho(R1)

2n'n

(5.50)

, _ ! 4
AOF(Ra, t) = —(WHC(t) 1 (T i/mml,m)(czm + Qs
+2947 58) 1, Ca(t) WE L (Ry, Re))dVi
= %’lncl(t) 5711'7%0 ( )f\pi (RhR?)(Eim - Erzfm
—2h(l1’ — ll) )7474 sy (Rl,Rg)d‘/l =
—1 L Ci) WOy (t) (B — BT — 201 — Dw) Hy (R2)v3Hy (Ro).

If we consider the coordinates R; = R and Ry = R in the eqs.(5.49/5.50) as coor-

dinates of the real space, we get for n’ £ n and I’ — [ = {1’ — [1 the relations

AO* (R, R,t) + AOF(R,R,t) = 0. (5.51)

Therefore we obtain

ll’llC ( ) i dl(R t) + l’l Cl(t)aszdQ( t) —
S 11Oy ()G, O(ES — Bf — 20— 1) Fe(R)
+(E E— —2h(l’—l)w) Hn,( WIHL(R)).
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Eq.(5.52) is describable also by the divergences of currents. To show this, we

introduce the following currents

T (Rust) = S0 CLOAC AU (Rut) + TR, o
JER(Ry) = 4644,Cr(t) B Co () (T (Ro) + TP (Ry))

with

JiH(R1) = Hy(Ri)ypHa(R1),
TiA(R)) = —gimegor [ 7 Vrm (R RY)VENT € () Uiy (RY, RY)dVidVY
Jil (Ra2) = Hy(Ra)v;Ha(R2),

JEB(Ra)) = = gt | 10 (RE R 77 ()W, (R, Ry VAV, (5.54)

7
or

JFM (R t) = i€l CL(t) N0 Co(t) Hy (RiviH(Ry), Jit =0

JrP(Rat) = ié L), Ci(t) N Co(t) Ho (RoyiH (Rs), JiP = 0.

If you use the solutions of the following potential equations

2 - oo,
—wartar (G V(R RY) 9 F € () U (R, RY)dV3dV] =

= Uyom(R1, RY) 7ivi € (L) Wi (Re, Rb)dV3)

Tl 2/

and (5.55)

2 — 1o,
_ﬁaxf?axg (f (iqj;‘;’m( /17 RIQ) fyi 74% 62(7«1}2,)\111:5771( /17 Ré)dwd‘/l/ =

Wy (RY, Ro) W 12E () Wi (RY, Re)dVY,

172

you obtain for the divergences of the currents:

125



Chghe I (R1) = (B + B — By — E )H (Rl)vH (R41),
éha%}iJ[:LtA(Rl) - n’m(RlaRé)qu/Al (Rl,Ré)d‘/z,

(5.56)
ihgpr I (Ra) = (B + Eyy — By — B Hy(R2)yiHa(Ry),
il T (Ry) = W (RS Rl P2 ( )W, (R RV,

Here the eq.(4.47) and the relation hé = (é2/4d) are applied. Therefore is
Chagr T " (R1) = 56%01(75) m ”C (O(E5 = By
2R — 10,0 RO |

—2h(I" = w) Hy (R2) 4Hn(732)-

We consider again the coordinates R; = R and Ry = R in these equations as

coordinates of the real space. That leads to the relations

N R) + JER(R) = S, OO SO (B = By
—2h(l' = Dw) Hyw (R)YV§ Ha(R). |
and the comparison with eq.(5.52) to (% ¢h = M)
mn C2 (D)5 TEL (R, 1) + 54,01 (1) 5 TH (R, 1) =
LU B C OB — B — 2000 = D) FARIHL(R)
(B — By — 201" = Dw) Hy(R)7§HA(R)) |

— M 21 0 (J+d(R)+Ju_d(R)).

e(“)x

126



The factor 1/2 in eq.(5.58) is the consequence of eq.(5.51), where the other half
of the associated current is compensated. However, the charge components ij
are involved completely. These currents form for n’ # n radiation moments. That

means, it radiates when one of the conditions

(BES, — Ef —2h(I' = w) =0 (5.60)

is fulfilled. Then an interaction with a radiation field is not disturbed by the nor-
mal force balance. All terms of the sum over differences I’ — [ = [1’ — I1 which
meet this condition, contribute to the effect. The expressions H,, = (H* H*) and
H, = (H, over H,) explain the linking with the solutions H*, = ()h*, and H, =
()h,, of the Schrédinger equation. The difference to the eqs.(5.36-5.38) results from
the influence of the second electron on the oscillation of the first electron and the

opposite reaction.

Finally we consider the divergences of the other tensor lines in a more general

form. We use the following expression
mmC2(t) 5o T (R ) + 34, Cr () 5 T (Ra, 1)
— WLCH(0) £ H(R) Ko (RQS U, CLO HA (RO (Re)AVe (561
+ i C1(t) § (Hu (R1) Ko (R2)Q5 115, Co(t) Hi(R1) Ko (Ra)dVA.

If we add up all terms with n,n’,m,m’, given eq.(5.61), we obtain the complete

force balance. Using the abbreviations
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WHLUEE (R1,Ra)s = (i Co(t) Hy (R1) Ko (R2)QF 1/, Ci (1) Ho(R1) Ko (Ro)
W D255 (R1,Ra)s = 3/, Cr(t) Hy (R1) Ko (R2) Q3 Ly Ca(t) Ho(R1) K (Ro)

this divergence reads

ll’llC ( )axl le (R t) + l’l Cl( )ax2 Td2 (R% ) (5 63)
= [ BALIEK (Rl,R2, t)pdVy + | HHLQKK £ (R1, Ra, t)pdVA. '

Due to the eqs.(5.34/5.35/5.39) and because of

WO Co(t)Hy (R)QY ! CL(t)Hy(Ry) Ky (R2)VIK  (R2)
— WL oL, (R1)<_E1{_6+E%+6231)’Y43@ ol
+(EY + @2 —Ell - g2 0 o

Oxlk
g ‘5 2 a
+h’7474z8t(8x ) + € axl[ - VH.

Cy(t)Hn(R1) Ky Kn(Ro),

7”12] Y4 n'n

it becomes

/

mCalt) [

(B
(H

[ HHLlKK (Rl,Rz, ) dVy = l’l Cl( )
X((—Ey — &) gr + 5 eVt

(Ho(Ri,t) Ky (Rg)dVQJrh(l’—l) ) J (o (R} 2R (5.65)

— R H, (Rl)) ' (Ra2)Vi Kin(Ra)dVa

+ & [ Hy (Rl)%H (R1) 50 t[ = ) K (R2) Vi Ko (Ro)dVa.
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Hence is

J BHELIEE (Ry, Ra, t)pdVa = L1 CL(1) N1 Coy(t)((EF — EE 4+ m(I' — Dw)

X (Hyy(Ry )y} 2l — R (Ry))S(m! — m) (5.66)
+é [ Hy(Ri)vid Hn(Rl) a%i[% - zrllz])Km’(RZ)%%Km(RQ)dV?)-

The analogous formula reads

| L2005, (R, Ra, 1)pdVa = 11, Cr(t) L Cot) (B — By + h(11 = 11)w)
X (Ko (Ra)73 2540 ) aKg;%Rz)ﬁKm(Rz)Wn’ —n)

+& [ Hy(Ri)vi Ho(R1) gz |2 — 70 ) Ko (Ro)Vi K (Ra)dVA).
(5.67)
So becomes
mmCe(t) 5T (R 1) + 1, Cr(8) - T (Ra, 1)
_ l’l C ( )ll’llc ( ) ( H—EH—i—h(l/—l)w)
(R0 5050 — S (R0 )+ (B - B
m(Ra) :

+A(I = 1)w) (K, f(Rz)VZaK
+E [ (Hy(Ri)va Ha(Ra
—|—6 an/(Rl) H (Rl)

.13

O (Ra) A2 FC (R))O(n — n)
ol —r;w < 2)7 K (Ra2)dVs

(2 = L) Ro(Ra)y? Kn(Ra) dVE).

This has to be compensated through the divergence of the linked quasi-static elec-

tromagnetic field.
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5.3 The Schrodinger approximation

All these equations can be replaced by analogous expression based on solutions

of the Schrodinger equation. We apply the units of dimensions, specified in section

3.2. The functions linked to the eqs.(5.4) are now

u(Ry,t') = Zn: an(t)hn(Ry),

and

o(Rast') = X byt ki (Ro2)

m

respectively in the static cases

u(Ry,t") = exp(—iE' t")u(Ry),
and
V(Ra,t) = exp(—iE' t)0(Rs),
B(R2) = S bk (R2).

These expressions must satisfy the following differential equations

52

202 — By + AYRy, ) + ARy, ¢))u(Ry, t') = 0,

Pot AU Ry, 1) + A2(Ro, t'))0(Ra, ') = 0,
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(5.69)

(5.70)

(5.71)

(5.72)

(5.73)



2 2
s 19 1—35__;3 2
1 2 8x}18xh ry’? 2 — 2 8x,§8x% ro’
2 2
P10 2 HP_1.0 2
L™ 20x,0x;, r’ 27 20x30x3 9

which lead to Pihn(R) = (EMha(R) and hn(R)* P = —(E"R(R)*.

The egs.(5.40) read now

and the eqs.(5.42) obtain the form

G =2(P+ Py+ L),

12
s R R
Qio=%(P+ Py— ).

T12

The eigenfunctions and the eigenvalues are
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(5.75)

(5.76)

(5.77)



( ) (R2) + k (Rl)hn(R2))7

N valh (5.78)
rm(R1, Ra)* = I (hw(R1)* Fin(R2) & ki (R1)*hu (R2))*
and
() = (EDY + (ER) + M £ aChMED
(B = (B + (B + 4 Mk Yo £ 4 (it Ml ). '

n'm mn/

With these operators the relations from eq.(5.46) to eq.(5.52) can be approximated

as follows:
WHCy(t) ;2 T (R, ) + U1Cr(t) 22 T (Ro, )
Z—%(f%é%()z(t’)fhn/( D km(Ro)* fo;,lncl(t’) n(Rl)l};m(R2)dv2 (5.80)
H UL CLE)  hay (Ra) B (R2)* Q3 I Oy () By (R4 Ko (R2)dVA)
or

WO () o T (R, ) + 1, Calt) 5 T (Ra.t) =
— & (OO () | (), (Rl, 2)* 512+6 2+223t/) WO Ut (R, Ra))dVa
+ () T (g (R1 R (@5 + B + 2:2) UL CL(t)) iy (Ra, R))dVa
+ L. CLE) T (W (R R (@12+612+2Zaﬂ>”’“0 (') ¥yt (R1, Ra))dV;
+ UL CVE) T (W (R, Ro) (@0 + @+ 255) WACH (1) 7,0 (R, Ra))dVA)
+%(AO§+(R1, )+ AO;T (Ra, t') + A0S~ (R, ') + AO; ™ (R, 1))

(5.81)
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with

, 1 4
MO (R, 1) = —(WICy(t) [ (45,0 (R1R2) (@14 + Ty
+200) ] Cy(t) ¥, (R, Ra))dVa
= lri’lncl(t) lrrlL/rZr}CQ(t) f,w?:’::’m(,R’h ,R’Q)*(E;zt’m - Er:l:m
—h(l" = Dw) ¥, (R, Ra2)dVa
(5.82)
st _ 1 + x5 65
AO;™(Ra,t) = =(m C1(t) | (V51 y(R1,R2)* (Q 19+ @19
+228) 11, Co(t) 7 (R1, Ra))dWy

— gzl’lncl(t) flrrlz/rlnlCQ(t) fwim(nb ,R’,Q)*<E;LAL’m - Erqz:m
—h(IV = D)w) ¢, (Ri, Ry)dVi.

Therefore is

mn C2(D g5 T (R, ) + 34, Cr (1) 555 T (Ra, 1) =
1 1w nCLE) S Co) (B, — Bty — 201 = D)w) e (Ra) i (R1)
(B, — E =20l = Dw) hy (R1)*ha(R1) (5.83)
+(EL, — Ef = 2011 — 11)w) by (R2)*ha(R2)
+(Ey = Epyy — 20011 — 11)w) by (R2)*ha(R2)) + 42 AO.

and
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AO = AOH (Ry,t) + A0 (Ra, t) + A0S (R1,t) + AO; (Ra, t)
= 51 C1(t) i Co(O) (B — By — 2001 — Dw) by (R1)*hin(R1)
+(Ey,, — Ef = 20" = Dw) hy (R1)*hn(R1) (5.84)
—(E;/m — E;m — 2h(l1/ — ll)w) hn/(Rg)*hn(Rg)
—(E,,, — E. . — 211" = 1)w) hy(R2)*h,(Rs)).

If you consider the coordinates Ry = R and Ry = R in the eqs.(5.83/5.84) as
coordinates of the real space, you obtain again for n’ % n and I’ — [ = [1’ — [1 the

relation
LG () 5T (R, t) 4+ 1), Ci() 3% T2 (R, t) =
£ UL O W Cy () (B, — By — 20— Dw) h(R)hu(R)  (5.85)
+2%(En_,m — E. . —2h(l' = Dw) hy(R)*h,(R)

due to AO**(R,t') + AO;*(R,t') = 0. The current components, be formed from

the solutions of the Schrodinger equation, are given in eq.(5.60).

5.4 Properties of the solutions

In this section we apply the Schrodinger approximation and the dimension units

introduced in section 3.2. The considered dynamic solutions are

Ou(Rl,t’) =3, Oan(t’)ohn(Rl)
Lu(Ri, ) = S0 Lan(t)) ha(R1) (5.86)
V(Ro,t) = L by () ke (Ro)

and
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OU(RI» ) =%, Oap(t/)* th(Rl)*a
"Ry, ) = 5 tap () Thy(Ra)* (5.87)

\

V(Ra, 1) = g by(t)" ky(Ra)".

These form the charges

P1 = é(ou(Rl, t/)* —|—1 U(Rl, t/)*>(OU(R1, t/) —|—1 U(Rl, t/)),

5.88
P2 = é(U(RQ,Yf/)*U(Rg,t/) ( )
and the associated electrostatic vector-potentials
AYR V) =ié [ L pi(Ry,t)dVi,
1(R, 1) =ié [ —p1(Ra,t')dVr (5.89)

AXRA) = 6 - pa(Ro, t')dVa.

In addition, it reads —iéA}(R1, ") 'u(Ry,t') = S, (MM () °h,(R1),
—ié¢ ARy, ) 'u(Ry, ') = S0 (Y M2(#)) °h,(R1), ete. Therefore the functions should
satisfy the following Schrodinger equations (see eqs.(5.73/5.74)):
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i2 0 0u(Ry, ) = S B Wu(Ra, t) + 5 (PMUE) + P MA(H)) 0 (Ry),
i€ 2Ry ) = C Py (R, t) + S (M) + PM2(E)) hy(Ry),

—iE 00y (R ) = —C Ou(Ry, ) P,
+ I (OhMl(t’) o ME(E)) Ohy(Ra)

~i5 gy (R, )" = = (R, ¥) P 590
+ 5, (M) + ) MEE)) Thy(Ra), '

P20 (R, ) = £ By v(Ro, ) + S(5MU(E) + £ M2(t)) o (Ro),

—iE 0 (R, ) = —E 0(Ry, ') P,
+ S (M) + §ME(A)*) ky(Ra)".

O, Thy, Yhy, Thy, /;:m and kq are orthogonal eigenfunctions. This system is useful
to describe a transition state.

The coefficients Ya,(t'), ta,, b, ('), etc. follow from the eqs.(5.90). It is

Zﬁ doan(t’)
a dt’

2 OB Yan(t') + YMME) + YMA(P),
i T = § CEN M) + M) + M), (5.91)

G P = S (EL) ba(t) + 5 M) + (5 MA(E)
and
ié2 dap(t')* _ _& (0phy0 Nk O NfL(\*  Oh A J2(4/\*
d ae 4 ('Ej) an(t) Tp A4—(t) T p A4'(t),
é2 dlap é2 * * *
2 $> —2 (LB Yay () — VM) — MM, (5.92)
@A) S (ERY b (¢) — EM(H) — FMA(H)".
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We insert into the egs.(5.90-5.92) the following Fourier transformed expressions

an(t') = 31 Oc exp(—il ' (' — tp)),
an

an(t') = 3y el exp(—il ' (' —tp)),
b (1) = z“ d” exp( il (' —t)) (593
Ya, (') = Zu (") exp(il' o (¢ — 1)), '
ta, (') = v (Ye,)" exp(il ' (' — 1)),
by(t')* = T (dél) exp(ill’w’ (' — 7))
respectively
M) = & % Ohm nexp(—ilw' (1 —ty)),
SME) = G 3 M, exp(—ilw (¢~ 1),
O NP () = & zl b”exp( il (t —t)), (5.94)
WAL () = € 5y Ymbl, exp(—ilw’ (¢ — t))), '
EM(t) = ea? mal, exp(—ilw' (t' —t})),
EM () = Zz Fmbll exp(—illw' (£ — t}))
and
O MM(H)* = & s (“mab) exp(il' o (' — ty)),
WAL ) = € su (Mrmal) exp (il W' (' — ),
00 (#)* = € S (bl ) exp(ill o (t — ¢)), (5.95)
JMAE) = G e (Mmby, ) exp(il o' (' — 1)), '
L exp(il' W' (' — th)),



Here is

Ohmal = —i% f( HRy,t

)i exp(i(l = I)w'(t" = 1))

% O, (R ) (OO (Ry) 4+ LM R (Ry))dVA,
"mal, = —i% [(A}(Ry, ) $jn exp(i(l — 11w/ (' — t5))
X 1hn(721)*(00“0h (R1) + 1c“ Yh;(Ry))d Vi,
Ohmbl, = —i% [(A3(R1, ) Sin exp( (I =)'t —tp))
X Ohn(Rl)*(Oc” Oh;(R1) + 1cl.1 Lh;(R1))d VA,
bl = —i% [(A3(R1, ') Zjn exp(i(l — 11w/ (¢ — 1))
X Lh (R1) (¢ Ohy(Ry) + Lt Thj(R1))dVA,
km = —15 f(A4(R1,t/) Zj,ll Odgl
x exp(i(l — ll) (t’ — 1)) k(R ey (R1)dVA,

Fmbl, (1) = —id
(' — 1)) ki (R1)* Ky (R1)dV7

x exp(i(l —1)w

and

J(AF(Ry, ) Sy 1dY
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("hmal)* = —i4 f(Azl;(Rlp t') 2y exp(—i(l" = 11)w'(t' — 1))
x Ohy(R1) (et Ohyr (Ry) + et Thy(Ry))*d VA,
(Y'maf)* = —ig | Ai(Rh ) Ly eXp( (="'t = 1))

0O (Ra) + e Thy (Ra))dVa,
(Mtmbl)* = —id [(AH(Ry,¢) Syrar exp(—i(l' — 1)/ (¢ — t)))
x Oy (R1) (O Ohj(Ry) + 1i Lhyj(Ry))*d VA, (5.97)
(Ymby)* = —i4 [(AJ(Ry,t') Sjan exp(—i(l! — 1) (¢ — 1)) '
x 1hy(R1) (et Ohy (Ry) + et Ty (Rl))*d\/l,
(Fmal)* = =i J(A}(Ra,t )Zj’ll’ eXp( il = 1wt — 1))
O

x Ot} ky(R)" ke (Ra)d VA,
(Fmbl)* = =i J(A3 (R, 1) Sy exp(—i(l! — 11)w' (' — 1))
x 1 ky(Ry)* kjr(Ry)dVa.

Now we consider the share € (‘u(R1)*v(Ra)* "u(R1)v(R2)) of the total charge
product. This and the conjugated complex expression can form radiation moments.

The dynamics of this product is determined by

52

i g ("u(R, ) 0(Ra, ) Cu(Ra, t)u(Ra, 1))

= ie—,(%[( w(R1, ') 0(Ra, t')] "u(Ry, t')v(Ra, ') (5.98)

a

+1u(Ry, ) 0(Ray )2 [Pu(Ry, #)0(Ra, ).

The expression

100* _

o ‘cé\

i€ 9 (Tu(Ry, t')* v(Ra, t')*) (5.99)
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leads to (see eq.(5.86/5.87/5.93)

00" = &5 1 (U + 1) o expl(i(l + 1) o (' — 1))

(L (@) (g (Ra) e (R (5:100)

This can be replaced by

100 = (=5, (£ ("ay(t)" 'hy(R1)* P}
QM) M) )y (Ra) Jo(Ro)
(= g (S (b, () kg (Ro)* P,

+ (EMAE) + EMP(E) kg (Ro) u(Ry)*

(5.101)

and, due to the eqs.(5.93-5.95), becomes

100" = —£ (S exp(il'! (¢ — 1))
+ (Mmay)+ (Mmby)) hy(Ra)

+ g exp(ill’ W’ (' — ) ((d!

+ (Fmall)* + (*mbl!)*) k(R

(5.102)

~—

and with eqs.(5.86/5.90)

00" = —G(Sprqu exp(i(l' + 1) W' (' = t5)) ()" () (CERY + (EfY
+ () (Fmb) 4 (mal)
+ (b)) (Ra)) kg (R2)"))

(5.103)
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After multiplication with “u(Rq,t)v(Ra,t) we get

HO*(“u(Ry, t')v(Ra, 1)) = —éQ(Zp g1 mlml1
xexp(i(l' + 11" = 1= 11) o' (' = ) (") (diF)*(°cl,) (df})
(BN + (Ef) + (Mmal)* + ('mbl)*
+ (Fmall) 4+ (*mbl ) ) by (Ra) ") kg (R2) ")l (R Ve (R2))

(5.104)

or using eq.(5.100)

52

DO*(Cu(Ry, t)v(Ra, ') = — a(szfqu'nzmu
xexp(i(l' + 11" = 1 = 11) o' (' — t4))(*ch)” (d”)( c,) (d)) (5.105)
< (I +11) @' ) hp(R1)* )y (Ra)*) b (R (R2))

The comparison of the eq.(5.104) and (5.105) results in

%(zpl/q”,nlmu exp(i(l + 11 — 1 — 1) o' (' — 1))
x(e,)" (d, )*( W) () (1 +10) &) hy(Ra)* Vg (R2)*) (R i (R2))

— (gt exp(i(ll + 1V — 1 — 1) (' — 1)) (5.106)
x(! l/) (d”/) (Ccn) (@) ((CER) + (By) + (M'may)” + (M'mby,)*
+ (Fmal )"+ ("mby ")) hy(R) kg (R2)") B Ra)kn (R2))

and, due to (*E}) 4+ (EF) = 0.5(E),) + (E,, ) — 4(MMIF) 4, becomes

pbq
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T Sprqa (1 + 1) = 5((B) + (B,,)) exp(i(l' + 1) (¢ 1))
X (M) (i) (M (R)* Vg (Ra)
= %(szf e exp(i(l + 1) o' (' = 1)) (Yep)* (d))” (5.107)
x((Mmay,)* + (Mmb)* 4 (fmag)* -+ (Fmbll))
_4(Z£M§qk>4(0hp(7zl) )kq(RQ)*-

The next we consider the expression

010 = i€ 2 (u(Ry, t')u(Ra, t')). (5.108)

It reads (see eqs.(5.86/5.96)

O = &5, 1t (L+11) W exp(—i(l + 1) o' (' — t}))

% (%) (d) (o (R1)) o (R2). (5.109)

This can be substituted by

W) P ha(Ry) + (VM () + JME(#)) By (R1))o(Ra)

+(Zm(g(bm(a ) Py kn(Ra) + &Mtk (Ra) + 5 M ()i (R2)) u(Ry)
(5.110)

and, due to the eqs.(5.90-5.96), becomes
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0" = &(xy exp(—il o (¢ — 19))(°ch) (LY
+ (Mmal) + (b)) ha(R1))o(Ro)

b Syt exp(—ilLuf (¢ — t))( () (ELY (511
+ (Fmall) + Fmb)) e (Ra) u(Ry, )
or with egs.(5.86)
O = &( S pmun exp(—i(l + 1) o' (' — 1)) (°c,) (L) (CELY + (EEY
+ ("mal) + ("mbl) + (*mall) (5.112)

+ (Fmbjy)) ha (Ra) Ve (R2)))

Therefore is

52

("u(R1)*0(R2)")O = Ty quvmamn exp(i(l’ + 11— 1 = 11) ' (' = 15))

x(Peh)  (di) (Oc) (A ) (CERY + (EE)
+ ("mal) + (mbl) + (*mall)

+ (Fmbii)) hy(R1)) kg (R2)* (Cha(Ri)) i (R2)))) -
(5.113)

and with eq.(5.109)

2

(R (RO = E(Syrgaviman Bl + 1V —1 1) (¢~ 1)

x (Yl ) (dl)' ) (Och) (i) (1 4 1)) By(R1)) kg (R2)* (*h (R1) Jhm(R2)))) -
(5.114)
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That leads to
C(Sprrgitntmn exp(i(l! + 11" =1 — 1) o' (' —t}))
x (Y ) (dl)*(Ock) (dh) (1 + 11)w) (R ) hig(Ra)* (*hn(R1) Ve (R2))))
= %(Zpl/qu/nlmll exp(i(l' + 11" =1 = 11) ' (t' — 1))
< (M) (dy ) (Oe) (d) (OB + (B,
+(Oh )+ (Ohmbfl) + (kma”)

+ (Fmbjy)) R (Ra)) K (R2)* (“ha(Ra) ki (R2))) -

l\.’)

(5.115)

Due to the eq,(5.98 ), one obtains

i% (g [ Cu(Ra ) 0(Ra, )] u(Ry, )0 (Ra, t)
+u(Ri, ) 0(Ra, ) g5 ("u(Ry, ¢)o(R2, 1))
= ——(Zpl/qunlmn exp(i(l' +11" =1 —11)w" (t' — 1)) (5.116)
x(te)" (dg ) (Oel) (dp) (U + 11 = 1= 1) w')
X y(Ra) kg (R2)™) hu (R i (R2))-

and for the sum of eq.(5.104) and eq.(5.115)

i (2 (u(Re, ) 0(Ra, )] "u(Ry, )0 (Ra, ')

F (R, ) 0(Ra, t')* 2 (Cu(Ri, t')0(Ra, t)))

= C (S g mtmn exp(i(l! + 11" — 1 — 1) o' (' —t}))
x (Y (d)) (P (di) (= (BN + (EN)) + (CEL + (B

— ("mal)* — (mbl)* = (Fmal) = (Fmbl)*) + (“mal) + (“'mbl,)
+ (Fmall) + (*mblh) hy(R)) Eig(Ra)* Cha(Ra))km(R2)))) -

(5.117)
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Using the relations ('E}) + (E}) = 0.5((E,,) + (E,))") = a(y My)s and ("E}) +

(B} = 05(Ef,) + (B, ,)) — alim My%,)s, it becomes

—(Spratimtmn exp(i(ll + 11 — 1 —11) ' (' — t}))
) (L) (dX)y (Oc) (d) (U + 11 =1 —11) ')
X hy(R1)*)kg(R2)*) i (R1) ki (R2)).
= C (S g atmn exp(i(l! + 11" — 1 — 1) (' —t}))
() (d) () (d) (= 0.5 ES) + (VE, L)) — a(pr M),
+0.5CES,) + (CEy)) — a(MhMEE ),
—(Mmag)* . (lhmbﬁ)/)* . (kmaéll)* . (kmbéll)*) + (Ohma%) + (Ohmbiz)

’ /

+ (mag,) + ("mbp) hy(R1)) Fg(Ra2)* (“ha(R1))km(R2))))-

(5.118)

The integration over V5 yields, due to the orthogonality of k,:q()*/%m(),

— (S mirnin exp(i(l + 11 — 1 — 1)/ (' — 1))
0.5('c},)* (dyy, )" (Ccl) () (' + 1 =1 =)' + ('E;,) = (“E,))
(U1 = 1=+ (E;) = CEn)) YR ha(Ry)).
— (S exp(i(l + 11— =11 (' — 1)) (5.119)
X (Yep)* ()7 (°ch) (dip) (= 4G M)
— (M )e = (Mma)t — (Ymb)* — (Fma) — (Fmbly)

+(Mmay) + ("'mb],) + ("mag) + (fmb};)) hy(R1)* (Cha(Ra))).

The left side is formed by current divergences analogously to eqs.(5.57). Details of
eq.(5.119) should not be considered here. However one must be taken into account,
that the solutions of the eqgs.((5.90/5.91/5.92) are only influenced by quasi-static

potentials. Radiation effects are neglected. But, this assumption must be corrected
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if a share of the currents satisfies one of the conditions given in the eqs.(5.60). That
share must the divergence eq.(5.58) also fulfils.

The related sub-field satisfies the energy balance as in one-electron case (see section
4.3). However, the eigenfunctions h,, and k. and of which eigenvalues (F,)" and
(E,,)" differ from the expressions of one-electron cases due to the double charge of
the nucleus. Such tables have so far only be calculated for s-states and therefore,
we restrict our numerical documentation on these cases and set h, = Yyoh!, ()
and k,, = Yyoh (). These combinations do not form radiation moments and the
introduction of excitation levels makes not sense. In addition, the border of the
calculation range RR and the number of eigenfunctions must be greater than in
the one-electron case. This leads to longer calculation times. The Figs. 10-12 and
Table 10 show some results. The parameter e represents the total energy of the
system, which depends on the starting distribution. However, here we have used
a reduced number of eigenfunctions and a short calculation time. That means,
we have accepted a lower level of accuracy. Therefore the shapes in Fig.10 and
Fig. 11 are wider and show dents. Nevertheless, it allows a reasonable interpretation
of the results. Fig. 11 exhibits a similar frequency behaviour of ¢} = ||| and
dl = |di(11 = 1)| (see eqs.(5.86/5.87/5.93). However, the accuracy of the examples

presented is too low for a more detailed interpretation.
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f(r)*f(r)rr

Fig. 10:

mean

eqs.(5.88) link Al

E2;

(
Mean f*(
f(
)

*

0,40

0,35

0,30—-
0,25—-
0,20—-
0,15—-

0,10

0,054/ \

D1:e=-0.1651

E1,E2:e=-0.3888

C1:e=-0.0363
C2:e=-0.0363

B1,BZe=00835 D2:e=-0.1651
A1,A2:6=0.1070

Radius inr/a

see the eqgs.(5.91/5.92)

T) ( ) - 47r1T’

) f(r)r? = 47r1T’

T
Jo

T
Jo

u(ry, t')*u
v(r,t') v
with A2, B1 with B2, C1 with C2, D1 with D2 and E1 with

(r1,t)dt" of electron 1 (cases Al-E1) and
(r,t')dt" of electron 2 (cases A2-E2); The
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0,6

Cie=-0.0363  £©=0.3888

o o} d i, 4
Q) - —
£ B:e=0.0835 \ D:e=-0.1651
S 041 cl di ‘ ¢y d
O ‘\“‘\
a A:e=0.1070 Al L
. ¢! d I —
(O] |
© | B
2 [N
= 02 |\l \
£ |\ z\
<
0,0 - — T T T T~ T T

T
45 40 -35 -30 25 20 15 10 -5 0 5 10 15
Number of spectral lines |
Spectral energy el(hv)=0.01257 e?/a

Fig. 11: Spectral distributions of the 1s-coefficient |ci=}| of electron 1 (see the
egs.(5.93)) and the 1s-coefficient |d'1=4| of the electron 2 (cases A-E);

m=1

Table 10 Energy parameters of two-electron states:
(A-E:states, e=egl-+eg2 in é2/d),

A: T'=1000, e=0.1070

egl edl eal R1 AR1
0.0307 -0.0404 0.0711  34.69 2.74
€g2 ed2 ea2 R2 AR2
0.0763 0.0109  0.0654 3891  2.97
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e edg eag
0.1070 -0.0295 0.1365

B: T'=1000, e=0.0835

egl edl eal
0.0383 -0.0532  0.0915
eg2 ed2 ea2
0.0451 -0.0456  0.0907
€ edg eag

0.0835 -0.0988 0.1823

C: T'=1000, e=-0.03627

egl edl eal
0.0488 -0.0662  0.1150
eqg2 ed?2 ea2
-0.0851 -0.2466  0.1616
e edg eag

-0.0363  -0.3128 0.2766

D: T'=1000, egg=-0.1651

egl edl eal
0.0865 -0.0275  0.1140
eg2 ed2 ea2

-0.2516 -0.6000  0.3485

A0)  AA0)

0.756  0.019
R1 AR1
33.41  3.49
R2 AR?2
34.17  3.49
A(0)  AA(®0)

0.9287  0.1842

R1 AR1
32.68  3.60
R2 AR2
25.65  4.35
A(0)  AA(0)

1.1867 0.1333

R1 AR1
33.00 2.73
R2 AR?2
10.53  2.02
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e edg eag
-0.1651  -0.6274 0.4623

E: T'=1000, egg=-0.3888

egl edl eal
-0.1944 -0.4922  0.2978
€g2 ed2 ea2
-0.1944 -0.4522  0.2978
e edg eag

-0.3888  -0.9843 0.5955

A0)  AA0)
1.5431 0.1001

R1 AR1
1332 1.70
R2 AR?2
13.32 170
A(0)  AA(®0)

1.6959 0.1333
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Chapter 6

Influence of the spin

6.1 Context of the problem

For the description of the influence of orientation on the spectral lines we con-
sider fields, which are divided into two excitation levels. In addition, special shares
describing the radiation effects are to be separated in a final presentation. In
particular, we restrict the investigation to cases in which two of the selected eigen-
functions are equal, i.e. °K,, = *K,, = K,,. A transition field can be formed using

the following solutions of the Dirac equation (see eqs.(5.2/5.3)

Ur(Ri,t) = %55 “a;(t) *Hj(Ra)
+yyexp(—ilwt)?d “H,(Ry)

6.1
+ Xy %ay(t) “Hy(Ra) o
+ S exp(—il'wt) °ch, *Hy(Ry),
Us(Ra,t) = S, *bi(t) *Kr(Ra)
+ 3 exp(—illwt) *d)), Ky (Rs) (6.2)

5 b (t) K (Ro)
+ Zl’ eXp(— 7 lll w t) Odf}; OKm(RQ)'
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We study appropriate separated products of these functions and define, related to
eq.(5.120),

Cl(t) = (%cly)* (Cen) exp(i(l! — Dwt) *,

n n

Co(t) = (°dX)*(?d ) exp(i (11" — 11)wt). (6.3)

Here the indexes o and z mean upper and lower level. °a;(t), *a;(t), °by(t) and
by (t) follow from the coefficients of the complete system, shown in the eqs.(5.4),
by subtracting the separated terms.

According to the eqgs.(5.46/5.52), the divergence of the tensor, formed with the

separated terms, reads

Co(t) g Ti,(Ra. 1) + Cr(t) g TH(Ra, t) = —5Co(t) | (Hy (R1) Ki(Ro2)

Q12+@>12+27472f£) <>>Hn< D) Eon(Ra)dVs (6.4)
—4C1(t) | (Hp(R1) Ko )( +612
+29}7322)Co(t) H. <R1>Km<7z2>dv1

Co(t) 52 Tf}L(R,t) +Ci(t) 5% Td2(R t) =

35 CLOC2() (B — By, — 20(1 = Dw) Hy (R)Y]Hn(R) (6.5)
By — By — 200 — Dw) Hy (R H,(R)).

One obtains for n’ # n and [1" — {1 = I’ — [ the eqs.(5.47-5.52). Here we apply
the practical dimensions (unit of the energy: é2/4, unit of the length d, unit of the

time At) and get for the divergence of the current
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h (M R) 4 R (R) = § COUNCo B — B
—2h(I' = )w) Hy (R)73 Ha(R) |
and the comparison with eq.(5.52) to (4 ¢h = M = %%)
Co(t )axlel(R7 t)+ Ci(t )aszdQ(R t) =

L) Co()(Esy — By — 20(1 — D) Hu(R
By~ B — 201 — 1) By (R){H,
= —igrg g (JI(R) + J,(R)).

This current causes a radiation if °H,(R1)vi *H,(R) forms a radiation moment
and the prerequisite, formulated in section 5.2, are fulfilled. That means, one of

the frequency meets the condition

“(Epm) = H(E,) =2( = o'
or (6.8)
(B ) — (B = 200 — ).

nm

However, it must taken into account that J}4(R,t)and.J,;%(R,t') oscillate with
the same frequency, but only one moment satisfies the radiation condition. That
means, only the oscillation with one of the frequency given in the eqs.(6.8) causes

radiation. We discus in section 6.2 witch frequency is selected.
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6.2 The influence of spin orientation

The orientation must be taken into account, to describe fine structure effects.

Therefore we introduce vertical arrows in the functions. The selected terms in the

eqs.(6.1/6.2) can be depicted by

U(Rh t T) — Z sz exp(—ilwt)Hn(Rl, T)?
l

and

V(Ry, 1,t) = Y d exp(—iwll)) K, (Ra, 1),
1

(6.9)

(6.10)

whereby the direction of the arrow stands for the spin orientation. We consider the

4
known solution of the eq.(5.42), however, replace the operators ﬁl, ?2 and 612

with

Py = h}h(0/0x)) — 2641/ (éry) + M,
Py = hy2(0/0a%) — 26%43 [ (éra) + M¢
and
Quz2 = (Vi(Pgr —ué(E = 1))
(g — i - 0)
Qi2= Q12+ ’Yi%%%-

The functions H,(R1, 1) and K,,(R2, 1) satisfy the eigenvalue equations

¢PLH, (R, 1) = EFY (M) Ho(R1, 1),

n

(P K (Ro, 1) = EE2 (1)K m(Ra, 1),

m

Ql 2\p$m(7€17 R27 TT) - Eﬁm(TT)fﬁ’Yﬁ%\I]%m(Rh RQa TT)
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Here is

Vo (R, Ro, 1) = G5 (Ha(Ri, N E(Ra, 1) £ Kin(Ri, 1 Hj(R2, 1)) (6.14)

We look at a few combinations of s- and p-states. For example:

TP R 5 [ Yeofi(r)
Kn(1) = ¢'(Re,mh, 1, =1/2,7) = ”flm (6.15)

]%ml(T) ’
&) { iYi0y/2/3 5 (r) }
N R RAVET AR

You find in the eqs.(3.8) the meaning of the arguments of ¢'(Rq,7,0,m)for j =
[ —m = 1/2,) and also the alternative expression K, (1) = ¢'(Rq,m,1,m =
—1/2,1) for j=3/2. In addition, we use again relations like n = n(n,0,m) and
m = m(m, 1,m) between the numbers. With the functions of the eqs.(6.15) you
cannot check the fine structure rules with the aid of the basic states because some

eigenvalues are equal. Therefore we consider different plpl-states.
Case A:

With the functions
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>

Hy(1) = ¢ (Ri,n, 1,1 =1/2,1) = 0(1)

' ., hio(1) )’
= | A
b —iY11y/1/3f5(r) |’ (6.16)
Kn(1) = ¢'(Ray1h, 1,00 =1/2,1) = { + ]
. Em1(T)
oty - | P00 )
i —iY11y/1/3f%(r)
and
CDy(t) = c,d} exp(—i(l + 11wt + ¢1(t)) 617
CDs(t) = . d'L exp(—i(l + 11wt + ¢o(t)) (6.17)
we form the expression
Wnim(Rla R27 t, TT + TT) - %(CDl(t)(lpﬁmC}zla RQ; TT) (618)

+CDy(t) 05, (R1, R2, 1))

and use eq.(5.42) or eq.(6.12). We consider the cases of which the frequencies
meet one of the conditions given in eq.(6.7) or eq.(6.8). Then the radiation must
be taken into account. If ¢o(t) and ¢o(t) record this influence, we assume that
|d(¢p1(t)/dt] and |po(t))/dt| are negligible because the radiation field is very small
in the cases examined. Therefore one obtains the eigenvalue using of the following

equation

W (Ri, Ra, t, 11 + ) Q12WiE (R1, Ra, t, 11 + 1) = (ddi)*cl dlL
X (KK, (R, Ra, 1 + 1) + GGy, (R1, Ro, 11 + 1) (6.19)
+ AT, (11 + 1) + HHE,(R1, R, 11 + 1))
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with
KK, (R1,R2,TT+TT)
= 5 (H(Ry, 1)¢PLH (R, 1) K (Ra, DK (Ra, 1)
+Kn(Ri, T)Cpl m(Ri, T) n(Ra, )i Ha(Ra2, 1)
+H,(Ry, 1) Ho(R1, 1) Kin(Ra, 1)éPa Ko (R, 1)
+ K (Ri, D) K (R1, 1) Ho(Ra, 1) P Hy (R, 1)),

(6.20)

GGy (R1, Ro, TT +11)
= 45 (H(R1, 1) EPLK (R, 1) Ko (Ra, Vi Hp(Ra, 1)
+Ku(Ri, T)Cpl n(R1,1) Hy(Ra, )i Km(Ra2, 1)
+H, (R, 1) (RLT)K (R, 1)¢PHy (Ro, 1)
+ Ko (R, N Hu(R1, 1) Ho(Ra, 1) EP K (R, 1)),

(6.21)

T+ 1) = AT, (AT,
FAEATIIIN (R A,
FAEIRIATII (A, 692
AR ATEIIN (S ATE),) |

4(gnHAJnI§nfz{)4 = ¢ H,(Ra)yi H, (Rl)r12 Kn(Ro)ViKm(Ra), ete.

and
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HH;Ltm(Rla R27 TT + TT)

_ 6.23
= — (I + 11)whVE, (Ri, Re, )13V, (Re, R, 7). (6:23)

The new designations H1 := H,,(R1), H2 : H,(R2) etc. indicate the electrons 1 or

2. After integration it reads

J KKZE, (R1, Ro, 11 + 11)dVidVa

m

— L(EHV() + EXL(D) + BE2(1) 4+ EE2(1)),

GG (R1, Ro, 11 + 11)dVid Vs, = 0,

(6.24)
J AT, (11 + M) dVidVy = M, (11 + 1),
[ HH;,, (Ry, Ra, t, 11 + 11)dVidVa = —(1 + 11)wh
with
M, (M 4+ 11) = S(a G £ (TR MR, 695
(I M ) (TR M T ), (6:25)
Therefore one obtains the equation
S Wik (Ri, Ray t, 1 + M) Q12Wis, (Ri, Ra, t, 11 + 11)dVidVa (6.26)

= () AL ELR (O + 1) — (1)),
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what yields the condition

EAE (1 4 19) = (1 + WL)wh (6.27)
for the eigenvalues
Eqif(t+11) = 3(B (T) + Ent (1) (6.28)
+EI() + B2(1) + M5, (11 + 1), |
The following relations
K_m(Rb RZa tyTT + TT) - KK;m(Rlv RQvTT + TT)?
= -GG, (R, R, 1T+ 1) (6.29)

GG;‘L_m(Rl,RQ, t?TT + TT) -
M3, (P + 1) = M5 (%)

are useful for comparing of the results. In our approximation the potential integrals

are independent on the orientation and we suppress these informations sometimes
The orientation can be combined with solutions of the Schrodinger equation if

one apply the following notations:

&:a/:{1}75:ﬁ’:{é}’ (6.30)

For example, it is

hn(R1, 1) == ahn(Ry), (6.31)



We use these notations to characterise the function W* (R, Ra,t, 11 + 1) and

get the following equivalent expression

me(Rle,t’,TT + 1) = %(C’Dl(t’) + CDy(t))ad ﬁm(Rl,Rg). (6.32)
Here

GE (R, Ra) = j§<hn<nl>km<ng> = Jop (R (R2)) (6.33)

are the eigenfunctions of the operator 6?2 = ()}, defined in eqs.(5.77/6.12). This

leads to

EZhF(x) = [ 5, (R, Ra)* Q5 ot (R1, Ra)dVad VA, (6.34)

where wfm is formed from the related eigenfunctions Y;of? and Yii1f) of the
Schrodinger equation (see eq.(3.18)). E%,(x) etc. are eigenvalues of P;. Hence
eq.(6.16) leads to

EA(1) = Bl (+) + AB(#,1 = 1,1) and

En (1) = gy (%) + AE(R, 1= 1,1),

the eq.(6.28) reads
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By (M 4+ 1) = Ef(+) +5(AB(R(R1), 1= 1,1)) (6.35)
FAEG(R2),1 = 1,1) + AEGA(KL), 1 = 1,1) + AEGA(K2),1 = 1,1)) '
with
B, 3 (x) = ERo(x) + B () + a(n My )a — aGin M) (6.36)

In section 6.3 you find the correction terms AFE(7(h1),l = 1,7), etc. Eq.(6.35)
fulfils the established symmetry condition. The reason is discussed later and the

influence of the potentials is considered in section 6.4.
Case B:

In the next examples the spin orientation is changed and the basic functions are:

H,(1) = X' (R1,7,1,]) = {Enom}
()
Kn(l) =X (Ra,1,1,]) =

Y, p
kii(d) = { Yi?\/\/:ﬁp

W (6.37)
(i)

} |

You find the meaning of the argument also in the egs.(3.8). The functions, presented

~

—~—
\/ \/ ?‘( w>

in the egs.(6.18), read now
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Wim(RlnR%t)\L\L + \L\lf) - %(CDl(t)(\me(Rl,Rg,\l,\l/)

L ODy ()W, (Ry, Ray L), (6.38)

or

Wn(Ri, R, ', L4 1) == 2(CD1(t') + CDo(t) B3¢y (R, Ra). (6.39)

That gives
B (1) = Ej () + AB(h, 1= 1,]),

EX(1) = Ef,(+) + AE(A,L = 1,1) and
eq.(6.28) reads

E IR+ 1) = B LF(x) + 5(AE(R(RL), 1 =1,]))

+AE((h2),1=1,1) + AE(A(k1),l = 1,1) + AE(R(k2),1 = 1,1)). (6.40)

Case C:

Using the functions depicted in the eqs.(6.16/6.37), you can build the following

expression
W (Ri, Ryt 1+ 11) = 5CD1(E) (P15, (Ri, Ra, 1) (6.41)
+CDy (1) V7, (R1, Ra, 1)) .
with
U, % (R1, Ra, 1) = %(Hn(RluT)Km(R%\L) + Kpn(R1,4) Hu(R2, 1)), (6.42)
Ui (Ri Ray ) = 5 (Ha(Ri, L) Kin(Ra, 1) £ Kin(R1, 1) Ha(Ra, 1) '
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For this approach the equations (6.9/6.10) must be replaced by

U(Ry 1) = ;5 3l exp(=ilut) (H,(Ra, 1) + H,(Rs. ). (6.43)
and
V(Ra, M4, t) = \}5 %dg exp(—ill)wt)(Km(Ra, 1) + Kin(Ra, 1)). (6.44)

The combination of U = H,(1) + K,(1) and V = K,,(}) + H,,({) does not make
sense because of (IETNEHL) — \(HELNEHT) - — () However, it is possible to
describe the function W, (R4, Ro,t, 1) + |1) by

Win(R1, Ra, t, 1L+ 11) 1= J(CDi(t)af + CDy(t)Ba )iy, (R1, Ra).  (6.45)

The eq(6.41) leads to

Wi (R1, Ra, t, 1) 4 11 Q1aWir (Ri, Ray t, 1 + 1)
= (dy AV KK, (Ri, Ra, T + 1) + GGy (R, Ra, T+ 1) (6.46)
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with

KK, (R17R4,N F 1)

= LH,(R1,1)éP H,(R1, 1) Ki(Ra, )V Kn(Ro, L)
+ K (Ry, ) EP K (R, i) n(Ra, 1)ViHn (R, 1)
+Hn(R1,T)V Hy(R1, 1) Kin(Ra, L)éR K (Ro, L)
K (R, DY Km(Ri, 4) Ha(Ro, T)CPQ n(R2,1) (6.47)
+H (Ry, )éP H,(R1, 1) Kin(Ra, )13 K (Ra, 1)
K (R1, 1)EPLK (R1, 1) Ho(Ra, 1)V Hu(Ra, 1)
+H (R, i)ViH (R1, ) Kin(Ra2, 1Py Kon(Ra, 1)
Ko (R1, DY Kom(R1, ) Ho(Ra, 1) éPHy(Ra, 1)),
G, (R1,R2,N3FN)
= FH(Ho(R1,1)éP Ky (R, T) (Rz,i)ﬁHn(Rz,U
+Kn(Ri, D)EP (R, L) Hi(Ra, 1) Kon(Ra, 1)
+Hoy (R, N K (R1, 1) Kin(Ra, L) éPyHy (R, 1)
+ K (Ra, DV Ha (R, 1) Ho (R, 1)EP KRy, 1) (6.48)
+Hy(Ry, ) EPLK (R, 1) Kon(Ra, DY H (R, 1)
+ K (Rh DEPLH (R, 1) Ho(Ra, 173 Km(Ra, L)
+H, (R, L)1 Km(Ra, ) m(Ra, 1)éPyH,, (R, 1)
+ K (R, DV HR(R1, 1) Ho(Ra, L) EP K (Ra, 1)),
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TE( F W = SR AT £ (AT,
i

g (H2TH2Y A JRUKLY o (H2K2T g JRULHLL)

o (KUKLT g JHRLH2LY | 4 (KLTHIT 4 JH2LK2L)

g (K2TK2T g JHUHLY oy (K2TH2T 4 JHLLKLLY, (6.45)
g (HIH A JR2IK2T) |y (HITKIE g JK2TH2T) :

4 (H2UH2L A JEIKLY) o (H2K2 A JEITHLT)

(KUK g JH2IH2T) oy (KILHLL g JH2TK2T)

oy (K2H20 A JHITHIT) | (K20H2 A JHITKITY )

and

HHY, (Ri, Ra, 1L F 1)
LU+ ) wh(TE (R, Ra, TV EL (Re, R, 1) (6.50)
FU0 (R, R, ID)ivi Vi (Re, R, 11)).

Here we have also introduced the expressions for Wt (Ry,Ro,t, 1} — |1). The

integration yields
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fKKEmU_zl, R2,N_+ H)dvld_%
= 5(EF' () + B2 ()) + EEY (M) + EE* (1)),

_ (6.51)
M=(tL + A)nm = T AT (1] + 1)dVidVs

_ Z( 4(H1TH1T MK2¢K2¢) 4(7{2{”11TK1T Mrfgswuh

4 4(H2TH2T MKuKu) M(TI;[T?LTKQT Mrlrfr%wu)zl

FAETRIAIA) (ST,
AR (M) )

Therefore, integrating eq.(6.46), one obtains the eigenvalue equation

SWi (R, Ry t, M+ 1) Q1aWi (R, Ry t, T + L1)dVidVa

— () BB HR (1 1) — (1 ). 0

That means, for

E (1) + 1) = (L + [L)wh. (6.53)

the integral becomes zero. Here is

Epim(L+41) = (BN + ENY)
)+ M,

FEE2() + BEA0) + M, (1 + 1) o
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and due to the eqs.(6.34/6.41) it becomes

EH(1) = Elly(+) + AB(h,1 = 1,1), BT(1) = Elby(x) + AE(,1 = 1,4) and
EE(1) = Bl \(x) + AB(ri, 1 = 1,1) and EX(}) = Bl (+) + AE(h, 1 = 1,1).

Using the eqs.(6.47-6.50), the eigenvalue energy reads

E (L 4+ 41) = B x) + ((AB(A(R1),1=1,7)
FAE((kL), 1 =1,1) + AE(h(k2),1 = 1,1) + AE((h2),1 = 1,1)

+AFE(n(h1),l=1,])) + AE(m(kl),l =1,7) (6.55)
FAE((k2),1 = 1,1) + AE(h(h2),1 = 1,1)).
or
ELn® (4 4) = Bt () +5(AB((R), 1= 1,1) (6.56)
+AE(m(k)al — 17¢) + AE(Th(k),l - 17T) + AE(ﬁ(h)vl - 17¢)) .
The correction terms remain equal for EFZE (1] + 1) .
Case D:
Finally we replace eq.(6.41) by
Win(Ri, Ra,t, 1l — 1) = 5CD1(1) (L5, (Ri, Ra, 1) (6.57)

—C'Dy(t) T+ (Ry, Ra, 1))

or
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Win(R1, Ro, #, 1) = 1) i= H(CDy(#)ap’ — CDy(t) B ), (Ra, Ra). (6.58)

Then, analogously to eq.(6.46), it reads

Wit (Ri, Ra, t, 1 — IDQ1aWih, (R, Ra, t, 1L — 1)
= (Cl dgycgﬂbd%(KK;m(Rl, RQ, t, Ti — iT) + GG;‘L_m(Rl, RQ, t, Ti — iT) (659)

+AT, (= 1) + HH (R, Ra, L — L),

One finds the functions KK/, ect. also in the eqs (6.47-6.50) and one obtains by

m

integration of eq.(6.59) the relation

SWi (Ri, Ro, t, 1 — 11 Q1aWih (R1, Ro, t, 1 — 11 dVidVa

= (et S (B (1, — 1) — (14 11)uwh), (00
This expression is zero for
EFIK(1) — 1) = (1 + )wh (6.61)
with
(N = 1) = Biife) + 5(AB(I(R).1 = 1,7) 6.62)
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For E HX(+| — |71) one obtain equal correction terms. The values E7X() or
ESHE() yequire different frequencies (I + (1)w/(27) to fulfil eq.(6.53) or eq.(6.61).
If a frequency in one integral of eq.(6.4) meet this condition, the other integral does
not contribute to the radiation. Besides, it is reasonable to assume that only one
synchronous oscillation is possible during the same time.

A strong mathematical argumentation for the choice of the sign in W= () is
missing yet. However, some completions exhibit connections. For this reason we
add in the operators of the transition process Qf, (see eqgs.(5.41/5.42)) the poten-
tials of the radiation fields: A(29,.J,), Ay(3%.Js) = *°A4(R;) — *°AY(R;) — () (see
eqs.(4.52/4.53)). It depends on the spin orientation. With the modified operators

and the functions

W?itm(Rh RQa TT + TT)/ - qj%m(Rla R??TT);

_ _ 6.63
Wr:Ll’:m(RhRQaTT—*_TT)/ - qjim(RhRZaTT)a ( )
we form the expression
DL 4 1) = S W (R Ra. 1+ 1) (@
+Q12)Wﬁtm(RlaR27t7TT+TT)/d‘/? (6 64)

+iégn’(Rla T)r)/,an(Rla T)ffi,u(Rlv Z%’ JM(R27 TT))
+16Hy (Ra, 1)y Hp(R1, 1) Au(Ra, &7 Ju(Ra, 11)).

That reads (case a)
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BELEHE (T +11) = Hy(Ry, D) yaHa(Ry T)(Ei’”“( %) + AE(n(h),1,1))
+iéHy (Ry, N Hn (R, 1) Au(G 9 Ju(R2, 1))
— (B (%) + AEW (h), 1, 1) Hy (Ri, )vaHi(R1,7)
+i6Hyw (R, 1)y, Ha(R1, T)zi (R,m W(Ra, 1))

\./

i
_ 6.65
i (6.65)

Similar considerations result in (case b)

oL & (L4 1) = Hy (R, DyaHa(Ra, D (B (+)
+AE<ﬁ<h>7 l’ i)) + iéHn'<Rla \L)PYMHH(RM \L)AM (fL(V)l/ jM(R27 i\L))
—( B (%) + AB( (h),1,4)) Hy (R, L)y (R, )
v

+iéHy (R, D)9 (R, D ARy, 9 Ju(Ra, L))

(6.66)

In addition, one obtains

DAL (1 F )

= LHy (N yHo (D) (B (%) + AE(G(R), 1, 1))
26 H (D) (1) A (% Tu(1)

(1(h),1,1))

3 Hu(L)vaHu (D (B () +
) (6.67)

Tl
Jul
(7'(h), 1, 1))
Tl

)
(* AFE
+3 ¢H, (v Hn(d )v (654
At DB 3 < AE
LEH () Ha(1 A (07,0,
—Hy umHnuxEm(*g + AE( (h), 1)
FSEH (B (1) A7, (1)
and, because of

S (v Ha (DAL T(L) = —36Hu (D)7 Ho (D) Au(2oJ,(11)) ete.,
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HELENE (ML F 1)
= 3 Hy (M Ha (D (EihF(x) + AE((R),1,71))

— 2 Hy (D) Ha (D) AW (35T, (11))
+H (D) H, (L) (EERF(x) + AE((h),1,1))

—2EHy (D)7 Ha (DAL Tu(L) (6.68)
— 5 Hyw (1) 74 H,, (T)(Ei’”“( x) + AE('(h),1,1))

— 2,y (D)9 Hn (N A (07,7, (1))
—5Hu (1) H(U(EW ) +AE( (h),1,1))

— 2 (L 7 o (1) AL (07, (1),

The egs.(6.65/6.66) shows equal signs in front of AE() and %éf[n/()fyan()Au(fL%, Ju()
for the terms with the same orientation, however, the terms in eq.(6.68) have op-
posite signs. Maybe this is a hint for the possible radiation frequencies. It could
mean that radiation with the frequency, given in eq.(6.60), will only be excited if

the denoted terms have opposite sign in ZE K () The value

E-HE() = (1 +11)wh (6.69)

should be possible in all other cases. Then we get the the desired results. How-
ever, this consideration does not exactly explain the fine structure. That requires
more knowledge about the solutions and the excitation mechanism of the radiation
process. Finally we present the results assuming this hypothesis:

Case A

Ent (11 +11) = Egnf(+) + AE((R),1=1,1)

FAB(R(K), 1 =1,7); (6.70)

Case B
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E B (W + W) = B (x) + AB(R(h),l=1,1)

FAE (k)1 = 1,1); 671)
Case C:
E B (L 4+ 1) = () + MABGi(h). 1= 1,1) 612
+AE@(R),l=1,]) + AE(M(k),l = 1,]) + AE(m(k),l = 1,1); '
Case D:
EFIR(tL = 1) = EfhF() + MABG(h),1=1,1) 6

6.3 The calculation of the correction terms

We transform the eq.(2.4) with ¢ = U = H, or £ = U = H, to determine
E"1) or E* (1) in the known way and write

(Ep +i¢A)E = 60 (—ih) 2=,

y NE iy 08 (6.74)
(B! 4+ ié AK + 2MP)E = ¢35 (—ih) ;75
AK = —2i¢/r represents the electrostatic potential of the nucleus and & =
(01, 09, 03) is formed with Pauli matrices. This leads to (see [18])
: ElviéAF\ = —ih\ 9¢
§= (1= "yan)éo () o, (6.75)
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and therefore becomes

ho | s AKNE K2 (1 EMpieAKN 9 8¢
(ETL + Z€A4 )f - oM (1 IME2 )UMJVaxﬁ 8xﬂ
h? 9 s AK 9 ¢
+ope JﬂiaxﬂwAél Orgy§

or (in eq.(6.35): E(*,j = 1/2) = E"(x)o + A E"(x)o)

(Bl(¥)o + A BN (%) + AENT) +iéA)E = — 1 0

oy EMricAK 9 9é, + ieh> QALK o,
AM2£2 Oxp Oy AM?c? Oz Oxp

éh’oy DAL 06, | éWos OAF 96,
4M?32c? Oz 0y AM?2c? Oz 0xq
+ éntoy, OAF 05,  éhlo, DAY O,
4M?3c? Oz Oxs 4M?3c2? Qx3 Oxq
¢hloy OAK 0, | ¢h’oy OAK O¢,

T AM?2c? dzy Oxs 4M?c? Qxs Oxo

Here the relations

o0 06 0 06
o000 9s, 92, — Oz axﬂ[v

OAY 06, _ ;OAL 96,
Oxp 8951—, Oxp 8:@,1
=0 s~ s )

~

100y
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(6.77)

(6.78)

(6.79)



are used. The expressions A E"(x)y and A E"(1) describe the correction of the

energy eigenvalues E" of the Schrodinger equation (I:=1)

(Bli(x)o + i€AK )by = — Lz 20l (6.80)

After multiplying by (£,)* = H, and integration, the eq.(6.77) can be decomposed

nto

El(#)o = — L7 [(hn) 52-55dV — ié [ AF (hy) hdV (6.81)

and (see [18] eq.(70.14))

AB(, 1= j(1).1) = =3 (A — ). (6.82)

For ¢'(Rq,7n,1,m +1/2,7) is j=I-1/2 and therefore

2

AE(ﬁalaT) = _Sn%(% o %)7 [ 7é 07 (683)

while for x'(Ry,n,l,m = £1/2,]) is j=14+1/2 and

AE(h,1,1) = =% (1 — &) and

2 6.84
AE(h,1=0,%) = =%-(1—2). (6.84)
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6.4 The potential integrals

The charge components related to the eqs.(6.15), have the form

T (x) = ié fs( )*(Yoo)?,
K@) =ié\/5(fa(r) f2.(r)YooY10 = JIE(D),
KE(4) = iéfP (r)? (%(Yl()) (Yll) Yi1) (6:85)
= P P(Yo + L YooYao).

Therefore becomes

(IIMER), = (Yoo)' 1 2 (f20r)2 0,72V AV
— ) ) S (R E G )+ 25 ) F )
AN, = Ly (6.86)
2(¥o0)? 1 1 (£ (1) Yi0(8, 0) (P () F3() Yo (8, ')AV AV
— 2R P ) R (s (200 )+ 1 ) f 0 dr

Using the eqs.(6.16), it reads

T () = e f2(r)*((Yoo)* + JzYo0Y20),
JEE) = iéf(r) f2.(r)((Yoo)® + J=YooYao) = JEA(D), (6.87)
JER) = iéfh(r)*((Yoo)* + =YooYao).

The eqs.(6.37) give the same results. That means, the orientation has no influence

on the potential integrals and we can write in the cases A, B, C, D
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A(RIMER) = (Yoo) 1 55 (R ()2 fo.(r) 2 dVay”
+5(Y00)2 1 5 (f2(r) 220 (8, 0) (f5,(r')2Ya0 (68", ')AV V")
= o f ) o ()G (PP ) . dr 4 22 £ () £ () dr)dr - (6.88)
o T2 L) fE(r) G () () fo (e dr + 2 120 5 fR () f2 (") dr' ) dre
= 4l Mi* ).
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Chapter 7

The free solutions with self-field

7.1 The basic equations

We assume that no external electromagnetic field exists in the considered area.
Then the potential in the Schrodinger equation is reduced to the self-field described
by

AR ) = i€ [ Ry, )" u(Ry, Vi, (7.1)

o1

Here u represents a solution of the following Schrodinger equation

(ih2 + (h/(2M))A + iéAy)u(R,t) = 0. (7.2)

We restrict the investigation to spherically symmetric fields and use again the
notations introduce in section 3.2. The practical dimensions are: unit of the energy:
¢*/a and unit of the time At. Besides we use in this chapter the length unit d.
Therefore is d/dr := 4d/dr and eq.(7.2) reads
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52

Q(Z% + #%72% — dAQ()(?", t’))f(r, t/)Ybo =0 (73)

a

A static solution of eq.(7.3) does not exist. That means, u has the form

w(R,t') = Yoof(r,t). (7.4)
This leads to

f(rt') = > cn(t) hn(r) (7.5)

with ¢, = b, expip,(t'). h, are, according to eg.(3.49/7.2), the eigenfunctions of

the following equation

2

(DNEL+ gz ap)n(r) = 0. (7.6)

These functions have the form

hn(r) = \/%% sin(nw'r) (7.7)

with E, = (62/4)E!, = (¢*/a)(nw)?. R is the large radius of the considered sphere.
hy(r) represents a complete system of singularity-free eigenfunctions in the range

0 <r < R. Using this system, the eq.(7.3)
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can be solved. In addition, u(r,t") = Yy f(r,t') describes a solution in the free
space if the conditions u(R) = 0 and (du(r)/dr = 0 are satisfied for r=R. The
charge density is given by

JP0 = iépoo(r,t") YooYoo (7.8)
with

poo = (f(r,t)" f(r,1). (7.9)

Therefore the quasi-static component of the vector potential A, follows from

A1) = Uoo(o0, 1) — [ (Lol 1) /7)) 710

Here the integral function

y
Ip(y,t') = /x2p00(:p,t')da} (7.11)
0

and aAg(r,t') are dimensionless. The eqs.(7.3/7.4) lead to

i-Len(t') = Elca(t') + My(t) (7.12)
with

M,(t) = d [ T2 Ago(r, ) ha(r) f(r, ) dr. (7.13)
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The Fourier transformation of this expression reads (w' = 27 /T")

to+1"

(mat) = & 1 52 expliled (¢ — th)) 12 G(AR(r ) (1) f(r, ) drdt.

With this equation and the relation

cn(t') = zl: dl exp(—ilw' (' —t}))

the Fourier-transformation of eq.(7.12) yields

Yy W ild exp(—i Lo’ (' —ty) = B>y d exp(—ilw (£ —1t)))
+ vy mal exp(—ilw (' —t))).

Therefore becomes

(7.14)

(7.15)

(7.16)

(7.17)

The eqgs.(7.12) must be solved with the aid of numerical methods that include

the calculations of M, (t'). The numerical determination of this integral can be
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avoided, using the procedure given in appendix D.

According to eq.(7.13) the energy of the electrostatic field has the value

é2

ea(t') = o= 32 en(t) em()e; () () (nmMj 1)

a n7m7j7k

with (see section 6.4 and appendix D, d/rgy := 1/r9¢)

wm M = @1 b (1) b (1) (Vg () AV AV,

The energy of the Dirac field amounts to

ed(t') = 2; ;(nw')2 ca(t) en(t') = eg — eal(t)).

7.2 The force balance of a free solution

(7.18)

(7.19)

(7.20)

The force and energy balance of the presented system results from the divergence

of the associated energy-momentum tensor. It reads

hé (77 0 oU
T3 = 5 (Uvipa.U = 507aU)

with
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and (see eq.(3.9))

or

U =5 ¢;(t)(— ihy(r)*Yoo 0)

U* =5 ¢5(t)(9;(r)" J5Y10 g;(r)"/3(Y11)").

Here is g,(r) = ; AZC,& ahgﬁr). Using the approximation (see [18], eq.(61.19))
- .
Uv - _ZQZ\F{,C’dﬁAVU’
U* =i VU7,
we get
2 ~ R R .
Ty = iy~ (UT)T 5LV0) + V(U 7) (T 5)

or (see eq.(2.30))

+(3ET) (T V) — (;ZVU*T)(7U))
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(7.25)
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Ty =1 Sy HEj( = hy(r) 5 Vo + S8V o) + Vhy(r) G2 — (VR (1) )

+ Snj HFjarot((hy(r) e + %ﬂg”hn)(o 01))

(7.27)

with HF;,(t) = %cj’(t’)*cn(t’) = %cj(t’)cn(ﬂ). The last expression in

eq.(7.27) has no influence on the force balance, since the divergence of the rotation

of a vector is zero. Therefore we can replace eq.(7.26) with

! ; *62hn r 62hj r)*
Ty = i X HEp(8)( = hy(r) G50 — G () s
4 Q)" Ohalr) 4 Ohy(r)" Ohalr) (7.28)
833,; 8:8,; 856,; 5x,; ’

or

*T Oh,(r r (9hj r)*
LR e et iy o L O RO
hj(r)* Ohy(r Oh;(r)* hy(r Ohj(r)* Ohy(r :
S ety o bl
The last column of this tensor is
/ Ty % Ohy (7 Ohj(r)*
Ty = 25, HE) (1) 2 (hy(r) 2al) O p (), (7.30)

OF,(r 2y OF, (1)

oxy ~ r Or
contribution of the electrostatic field, given by (see eq.2.19)/2.29/3.53))

N—

Here the relations are applied. One also has to consider the

c = . zp T dApo(rt)\2 _
Tﬂﬂ = 2 2, Cj(t/) Cn(t/)(YOO)Z (—77 + %517/1)( °§,§ t))Q =
Ty Th OAgo(r,t’
3 Sng HE(#) (=25 4+ 30) (F575)? (7.31)
Ty, =
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The eqs.(7.28/7.30) exhibit spherical symmetry when the terms are transformed
into a spherical system. For this reason we introduce the following four dimensional

unit-vectors

o= (2,2,2.,0),
ey = (cos(a) cos(v), sin(p) cos(¥), sin(d), 0),
ewz(—sm( ), cos(), 0, 0),

= (0, 0,0, 1),

(7.32)

which are associated with the following transformation matrix

T2

x
app = F Qrg = 72

r

a1 = cos(a) cos(¥)  age = sin(p) cos(¥) a3 =sin(d) asy =0

X
aj3="2 ap4=0

~

(y .
az1 = —sin(p)  age = cos(p) azz =0 azg =0
ag1 =0 ayg =0, gz =0 agq =1
(7.33)
The sum of eq.(7.28/29) and eq.(7.30) can be described by
T4, + TS, = anyon TP.(r, 1) + 6, T4, (r, 1) (7.34)

with
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Ty = i3y HEjo = hy(r) %5 = S50 h(r)

0%r 0%r
+Oho(r) | Ohi(r)*
() 2582+ 20 )

T — —j an HJn(hJ(r)* Oh, (1) + 5hj(r)* hn(T)) 4+ %Zn’j Han (81400(1”,25’))2

rr r or or r or

and

’ * n\T 8/1] r)*
TPy = (2/6) S j HF; () (hy(r)ys 2ard 00Ul (1))

TP, = (2/42) Sy HE;(t) (hi (1) ho(r). (7.36)

We transform eq.(7.34) with the aid of the matrix & into the following tensor

T = aprapr(agrag (TP (r,t") 4+ 05, T8, (r, 1))
= 0p1 5ﬁ 1 TfPr(T? t/) + 05 ﬂTﬁr(Ta t/)a (737)
T34 = (5,/4041,1T7?4(7“, t/).

That means, the sum 79, = T, VdIM—I—T » , obtains in the system with the unit-vectors
defined in the eqs.(7.32) the form

Trgr 0 0 T7°g4
o T¢y 0 0
e P (7.38)
Py

T4gr 0 0 T494
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Here are

T8, =i S0y HEjo( = hy(r) e — 2000, () 42

oror oror

— & g HEj (P50,

Tﬁﬂ — Tg& ZZTL] HF (h ( )*8hn(r) + ahj(r)*h

or
A5 HE (Yt

or

T?

or
T = 1"47

Ty = —(2/4%) Tn; Han(t’)hj(T)*hn(T’)-

Yy =(2/4) 0 HEju(t') (hy ( Jrhalr) _ o),

M Ohn(r)

ar)

(7.39)

All terms are independent of the direction of the radial unit-vector due to the

spherical symmetry. Therefore the r-component of the four-dimensional divergence

of this tensor reads

(divT?), = T + T8, — (T, + T4,) + 55

respectively

(7.40)

8r
02h; 8h h r

(ding) —iEnjHF]n( (- ( H(2[(Ehalr
(%

arar

0%h; 8h
+( 37’(51") +2 S"))

aarhn(r))

87"87“

- az Snj HEjn (Yoo)? 8Aoo(r,t ) (32Aoo(r,t) 42

or oror

éY a(c;(t)en(t)) « Ol (7 oh.:
—{ Gl 5, A (p (e 2alr) “h

or due to eq.(3.54)
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(divT?), = i <Y00> S j(t')cn(t')(z(E;
— B (hy(r)e(Palr) Ol hn(r))— A5, HF;, 2000 o0 o ) (7.42)
dé? «Ohn(r)  Ohi(r)*
—SE L0 [ HGCTADD () 2al) — O (1)),

The constants follow from 1/(¢At) = &/a, exp(—iEt) = exp(—iE't') and At /dh =
1. The numerical results recommend the approach ¢, = b, (t') expi(—E/t' — p,(t)).
This leads with HFj,(t') = %c}* (t")en(t')) to the following force balance equa-
tion

(divT?), + Gl = i g HEju(2(E;, — E)(hy(r )*ahaf) P (1))
)

Sy HF} 22080 00+ 265, H Fy (5 2 (7.43)
O¢n B ") oh; _
o ((Evlz + wat(, ) E]/ T @at(/ )))(hj(r) hayf D asn) hn(r)) = 0.

Hence becomes

4 OAgo(rt A(b;(t")bn(t"))
a2 Zn’j HFJn 055 ) = 24 an HF’;m ( b, (t )bn(t’) o (7 44)
. Ovn, 0 j *0 8hj r)* .
—(E, — B)(~1+1i) — %,5 D4 28Uy (b (s Pomlr) Oy,

The left side looks like a part of a Lorentz force density and the right side is the
local change in the radial current. Here you can see that the expansion rate of the
mean radius becomes constant because the limit of M%fmgoo is zero.

Finally we mention the energy law which follows from the divergence of the

fourth line. That reads

(divT9); = %% 4 274, + 91 = 0 (7.45)
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or

(divT?)y = (4/&) Xn; HEj(t') (hy(r ) (1) 2(E; — )
)

. A(b; ()b, ('
/&) S HE ()1 (1) h(r) (s 2 ) (7.46)
den(t) Dy
H(B, — B+ 254 = 2500 = o

respectively

A(b; (') (1))

(divT9)y = 4/&) S HFj () hi(r) (1) (bj(t/)é)n(t’) ot (7.47)

Doult))  Doit)y _
+5550) — %t(’t))_ 0.

In this approximation the energy law represents the charge conservation law, shown

above.

7.3 A ”free” solution in an external field

The determination of a ”free” solution in an external field requires a great effort.
However, it should be possible using modern computer systems. Here we discuss
only the problems. Examples are the dynamics of the tensor of an electron in the
field of an accelerator or a television tube [27]. It means that vector potentials have

to be replaced by

A, = AS+ A3, (7.48)

where A (1,2, 73) represents a static external field and A} (1, 29, 23,1) the self

field. We suppose that J;, the source of Aj, be on the outside of the space consid-
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ered. Hence is J, = J; (w1, 72, 23,t) = i¢U~,U. The complete energy-momentum

tensor in this area is formed by the following contributions

a . d Ssrpw ssrpe esrpw esrye eerje
Lyy=1,,+ 7L, + ~1;,+ “T;,+ “1T;,+ “1;, (7.49)

with

SST;& = —As Js eST;l/)J, — —A¢ Js

v v Y
BTy, = ax (FooFrs — 10 FED), (7.50)
esTVe'u - ﬁ(FZfUFSU - iéVMF;)\F;A)7
Ty, = 1 (FLFly — 100\ Fry).

The divergence of all lines from T, , must be zero. That is also independently fulfils

for ““T7, and we neglect this tensor. Using the eqs.(2.34-2.36) one obtains

04, Ay L 0A o4

oz, 8xu) N ”(8% 89:,)’ (7.51)

d ssre es e
%( Tuu+ TI/;L):_JM(

o ., 04T 9A
T = (5 + (51 (7.52)
and
0 S 0A¢ 0A;

85(,’# 8:15,1 8xu
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which also results in the eq.(2.38). Therefore the divergence condition 97},,,/0x, =
0 leads for v = to
0 A, 0AY

g —
(T ) ‘]M(axﬁ 637M

. ) (7.54)

with
d sse
), =T, + 7T, + T, (7.55)
T}, represents all components of the energy-momentum tensor of the electron sys-

tem. Consequently describes eq.(7.54) its general response to an external electro-
magnetic field. Due to ié = é/4, h% = —MEU, you get

Td, = (U180 — 90 D)), (7.56)
Td) = YUy 3% — 20 U) = iMELT, (7.57)

and
Tf, = (U180 — 9 I0) + ifrot (U T U),. (7.58)

The integral over the momentum eqs.(7.54) reads

[ ThAV + 5 (5T 4% T6)dV = [ J, (55 — Yyav.  (7.59)

Oz,
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One obtains for the motion of the electron system the equation

g dvy 8‘42 814; 1
WE fJM(a—% — axﬂ)dV with (7.60)
vy = gf Jﬁd‘/v
because of eq.(7.57), the approximation
f%ﬂﬁﬂ% ST )V 22 [ J, (% )M/NO (7.61)
and
S T5,dV = 5o S TEhdV = 50 [ T ,dV. (7.62)

The right side of eq.(7.607 has the form of an integral description of the Lorentz
force JM(% — g‘f;) = —iJ,E — iJ x H.

It makes sense to show, how strongly the eq.(7.60) deviates from the following

basic equation of the electron optics

d M7

ﬁl_m@J:dE+7xHL (7.63)
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which describes the movement of a point charge. Here we also use the time unit At
and the relations E(t)dt/h = E'(t')dt', h/At = é2/a. If ﬁ t) = (yi (), ya2(t), ys(t))
represents the solution vector of eq.(7.63), one obtains

R() — R(th) = Ji (%, bz duygy (7.64)

dt’ > dt’ > dt’

and v, = We put the function

dt’ ’

U(R,t') = exp(—i([ E'(t")dt' + vy(t)z,))W (R, t) (7.65)
in eq.(3.37). That is

(120 4 i€ Ay — —(zh O AL+ o, H,)U

= W (i — m(zh ) T Mzhaiﬂ)exp( i(JE'()dt + vu(t)zy))
FEO 9 (i B()E + vp(t)ag) (7.66)

+exp(—i(f E'(t)dt' + vp(t)xy)) (152 + ié A,

— i (g + SAR)? + 5o H) W = 0

respectively

(i%0 + i¢ Ay — o (g O 4 CA)+ 2;3\3 o H,)U
= W(R t') (57 exp(— i(s E’( dt" +iva(t)zn))
+5 exp(—i [ E'(t')dt") ax ax exp(—ivy(t)zy)
+i%Ayexp(—i(f E’(t’)dt’ + vp(t)xn))
+exp(—i(J E'(t)dt' + vu(t)xp)) (i + i2A4)))W
+exp(—i(/ E’(t’)dt’ + vp(t)zp))( — i(ih% CA;)?
) 2M iHy +idéavy Ap)W (R, 1)
—iGugexp(—i(f E'(t")dt" + vy(t')x ﬂ»aTcﬁW(R’ t)y=0

(7.67)
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or

( + €Ay — —(zh 0 + CA; )2 cn O'HHM)(A]

= g(E’( ) - 7%(75')%(75’) + T + Z“144)U(73, t')
+ exp(—i(/ E’(t’)dt’ + vt ) (12 + %Ay (7.68)

—m(zh 0 4 aA 2%+ H —|—ZozecwMA YW(R, )
Zi%exp( (fE’( )dt' + Uu(t) i) a-W(R. ') =0.

Here the relationships h?/M = é%, h/(Mé) = da and A, = Al (w1, 12, 23) +
A (1,9, w3, ") are used. For a purely electrostatic external field (A, = 0, A7 = 0)

it becomes

(120 + ¢ Ay — L(ih b )2)(7
= Z(E'(t) — Joa(t)oa(t) + 7 M i AND(R, 1)

2 7.69
+exp(—i(f E'(t"dt' + va(tzp))(i2 i2 +ibA+ ﬁ)W(R, t') (7.69)
—iGvgexp(—i(f B'(¢)dt' + vp(t)zz)) 5= W (R, t') = 0.
We replace the energy E'(t') by
E'(t) = jua(t)? — i%AZ(ﬁ(t’)) (7.70)
and obtain instead of the eqs.(7.68/7.69) the expressions
( 0 1 i¢Ay — —(zh 2 4 aA 2)?+ 2M Hﬂ)U
@m£+MNW)AW3»%ﬂRmWWU
+exp(—i(J E'(t)dt" + vu(t)xp))( — —(zhi gdAﬂ)2 (7.71)

—|—2M oaHp +idéav; A )W (R, )

—Svpexp(—i(f E'()dt' + va(t)zp))52-W (R, ¢') =0
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or

( 0 1 j¢A, _|_7( 31)) )

C(zamt + (Ae( ) — (75( ) + Ai(R,1)))U(R, 1)
Fexp(—i( E'(0)t -+ vt i) + gy )W(R.Y)
0

zuﬁxﬁ)
—igjvﬂexp(— (JE'({)dt + va(t)x )8— (R,t") =0.

(7.72)

=

According to this expressions, the energy E’(t") depends on the coordinates of the
solution ﬁ t') = (y1(t') yo(t') y3(t')) of eq.(7.63). The energy law of the movement
of such point charge has in é?/d the form [28,29]

—i¢(Af(n (), 1 (t), y3(1)) (7.73)
— AS(y1(th), w2 (), ys(t)) = 5(V*(') — v2(tp)).
Due to
—id [ Gt = =3 (AL (), (), ys(¢)) (7.74)
—Ae(yl(t6)7y?(t6)7y3(t6))7
it becomes
—if PGt = L (0(t)? — o(ty)?). (775)

Hence the right side of eq.(7.70) is independent of time and we get E'(t) = E'(to).
Eq.(7.63) must be solved to determine the linked energy-momentum tensor and to
check the difference to eq.(7.60). It is
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qcd, Mﬁ(ﬁ( )

e = (VAR () + T (R() x HR(t), (7.76)
4 dt ﬁ R(1))]/¢)?

or for || < ¢

Lo R @) 2 g a R ) + TRE) x HR(E)). (7.77)

dt &é

This must be compared to the integrals given in the eqs.(7.61/7.62). Using the

approximation Tpdﬂ =~ ( on the surface of the area, it reads

f%TEf dV = %% [(Uyz — 52=UyaU)dV (7.78)

or (see eq.(7.58))

[rot(U*TU)ydV. (7.79)

fax Tddeac f(U*IaU 8U [U)dv_’_zecdci/

With the eq.(7.65) and 7ié = é*/d one obtains for the tensor components

Td, = —i%v, (YW W + (WA, 5% — SWry W) (7.80)

vp
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and for the integrals over the divergences

| 52-(Tg,)dV = &2t owWdV — iy () 2 gy
é2 Y o*wW ow oW (9W *wW
"‘de J (Wf)/,u 0z, 0y + 8x /YM dr, Oz, Y gr. oz, 33%83:; ’VMW)dV

If the integration region V is great enough for the assumption Tpdﬂ
surface, eq.(7.81) can be approximated by ( 0/0zy = —i50/0t')

| 5o (T3,)AV = £ &

Co (W w —’y W)dV.

Then, it is possible the eq.(7.59) to replace by

c2uell) 4 Dy = [ J, (5t — 94y

with
¢ 0 0w oW 0A%  0AS
D=t 2 - b 9
24,0t / (W dry,  Oxp aW)dV /J“(axp 8xu)dv

where D; depends on the internal dynamics of the electron field.

0 on its

(7.82)

(7.83)

(7.84)

Eq.(7.83) describes the deviation between the influence of the Lorentz force on a

point charge and the balance equation of the linked field tensor.
LI (Gt = 95)dV = é(B+ T x H) and Dy —

9A _ d
Mﬂ)dV = 0. That means, e

eq.(7.76) are equal for
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one can put v = v. Such test requires the solution of the linked differential equations
(see eq.(7.71)). In addition, one can assume that the field of a strong positive charge
captures and brings together the ”free” electron field as long as the balance of which
momentums allows it. Internal vibration should be the consequence. If the ”free”
electron field is influenced by external fields, it must be checked whether the final
results of such capturing processes correlate with paths of point charges. Then
the field model also explains the known results of the electron optics. The basic
equations of the field theory always guarantee the unit of the electron field. It
is an important point for the interpretation. In this picture the dynamics of an
isolated electron field with a short distance to a proton must likely lead to vibrating
hydrogen atom.

The components of the fourth line of the tensors are

52

é vy (5N 77
Tf, = =5 (e + B + 24555 (U0) (7.85)
g W OW oW 7 )
g (W — G 1)
and the divergence is
oy, &2 vy (s = é2 0vg (77
9z, = —7(% + E, + 8(?) )%(U%U) 2o (UaU) (7.86)
G axﬂ(W%%Ig/ = GrnWV).
Because of (%(U%U) = 0) and 5 (63T4M + “T5,) = eJ (83/;)
it becomes
0 é2 v
7Tg = —a (U’YﬂU) (7 87)

ow a
—laz axu(WW o WWW) i ( ot )-

This must be compensated through the divergence
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0 & . 0Ajf
_ esrpw esey — ;" ] 4 . .
8$u( 4,u+ 4,u) ZC/ZJM((().Z'M) (7 88)

7.4 A few numerical results

Numerical calculations show that the charge distributions of a ”free” solution

always and permanently expands for all initial distributions. That means, it is (see
eq. 7.13))

calt') = ;zﬂ:an(t’)*Mn(t’) ~ 1/RR(¢) (7.89)
where
R
RR(#) = [ poo(r, t"))dr (7.90)

describes the mean radius. Consequently is ea(t;) > ea(t; + t') and ed(t;) <
ed(t, + t'). Besides, the calculations exhibit that only spectral coefficients a,, (')
contribute to the Dirac energy ed in a small range around a,,(t') if t' approaches
infinity (t — oo). This underlines the shapes in Fig.12. The charge distributions
are located in an expanding shell, in which the empty inner cavity expands too.
Therefore, the spectral coefficients a,, are enriched in a small distribution around

the limit function

B (1) = \Igl sin(mwr). (7.91)

r
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The value of m follows from the condition ed — eg, (eg:= total energy), what
leads to m = y/2eg/w and to the solution

n=m+N
flrt' — o00) = an(t") hy(r), m >> N. (7.92)

n=m—N

When approaching this limit, the coefficients can be described by

an(t’) = bu(t) exp(—i (pu(t) + ELt")), (7.93)

where b, represents the amount. If you insert this sum in eq.(7.2), you obtain by

multiplying with a,(t')*h,(r) and integrating the equations

.dan(t/) o d@n(t/) ! ! -bn(t/) . / Nl
it = (T Eba(t) + i) exp(—ip(t) —iE,t)  (7.94)
and
(B Ebult')? + iba(t') 257 = Enba(t)” + an(t')" M (t). (7.95)

The split in real and imaginary part yields

ba()2 424450 = Re(an () Mo(t')) (7.96)
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respectively

b ()220 = Im(an()* Mo (t)). (7.97)

These equations result in

ou(t' +dt') = pu(t') + ;G Re(an(t)) Ma(t))) (7.98)
and
b (' + dt') = by (') + 9= Im(an (') My (t')). (7.99)
The changes are very small due to eq.(7.89). Eq.(7.94) can therefore be approxi-
mated by
day, (t’
P dt(, ) o (B Yoo (#) exp(—iE. 1), (7.100)

These limits of the coefficients explain the behaviour of the expanded cloud which
is independent of the self-field. However, its influence must be taken into account
when the field of an opposite charge causes an attraction of the cloud.

Assuming such a behaviour, one can also given a weak explanation of the scat-
tering effect, caused by a double slit screen (see Fig. 13). Numerical calculations
show that the charge distribution forms in a rest system an expanding spherical
shell. If the influence of the Lorentz transformation is neglected, one obtains also

the shown scape of the charge cloud. However, one dimension is compress by
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the Lorentz contraction for a fast moving electron field. Due to the charge con-
servation law one can expect that an electron field with high speed and a special
direction could completely pass the scree. To show that, one has to solve the linked
time-dependent Schrodinger equation with the potential of the screen. The screen
potential can be described by the field of many static dipole moments with a proper
arrangement. This changes the shape of the cloud in time and internal vibrations
are the consequence. An exact solution ensures that the charge conservation and
the unit of the field are given. The direction of the charge centre behind the screen
depends on the path and the speeds of the of the incident charge cloud. This could
result in scattering patterns on a detector at a great distance. In addition, the
extended electron field must be brought together by the external electromagnetic
field in the vicinity of the detector. But, the last considerations are only hypothe-
ses and guidelines for further investigations. It should be possible to determine the
behaviour in the rest system of the electron when the screen with the slit moves.

For this aim one can use the following solution function

U(R, t/) - Z Ynmfnm(ra t/) (7101)
with

fam(r,t') = %cnm(t’) (7). (7.102)

This requires the calculation of eigenfunctions h,,,,(r) for a large R (see Appendix

Q).
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Fig. 12: Expansion of the charge cloud:
RR(t") = ro(t/At) mean radius (see eq.7.90),
r1(t/At) low limit radius (f]" 0oo(r)r2dr < 0.001),
r9(t/At) high limit radius (f;? 0o(r)r2dr = 0.999).
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Fig 13: Symbolic sketch of the double slit experiment:

The come in sphere-shell contains the most of the charge of a single electron which moves in the
arrow direction. The screen can be described by special potentials that influence the dynamic
solution of the Schrodinger equation. Possible interpretation: Different paths of incident clouds
cause different escape directions. A sum of individual clouds at different times of incoming could,
after an appropriate time, produce a pattern on a screen far behind the slit. Such screen must be

able to capture the clouds.
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Fig. 14: Change of electrostatic energies ea of ”free” solutions.
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Appendix A

Numerical calculations of solution functions

The time integration of eq.(3.55) in a small step yields

ap(ty + At') = ay(tp)

_ Al
LiAE(BYAl(t) + (R AN ) () S tydr). )

With the aid of this equation, the time development of af(#) and thus also of

f3o(r,t") can be determined step by step. For this reason the integrals

M= Jytr? AGR(r, to) (R (r))" foo(r, to)dr (A.2)

must be calculated. Therefore, we put g(r) = AJ8(r, 1) (hY(r))* fJo(r, ty) in eq.(3.56)
for different k and fixed ¢ and obtain fJ,(r,ty + At') according to the eq.(Al). A
few small programs were implemented for the calculation of the function f§,(r,t')
step by step. The size of At must be so small that all conservation laws are satis-
fied. The start function fJ,(r,ty) is mostly unknown and arbitrary. It makes sense
to start with a defined deviation from a static state. The total energy without rest

energy
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eg = — /T44dV — Mc?

has a minimum in static cases. Applying eqs.(3.33/3.34), it becomes

Tf4 + T = % UO(—'yﬁh%ﬁ + i%Aﬁ(’M — MC)UO
— ¢ (=h, — i€ AKTyys + Me))UP.

2 Tp

The integral over the share

ed = & fUO(—yﬁha%ﬂ + S ARy UAV

_ % f(_ﬁaaTU;”yﬁ — z%AfU()% )UOdV

can with the aid of the egs.(3.26) in the used dimension be replaced by

ed(t) = G B ah)allt)

For the quasi-static electromagnetic energy ea(t') = — [T,dV one gets

¢* (R \
ca(t') = oo [Tr AR ) (fio(r )7 fia(r,t)dr.

The entire energy of the system
eg = ed + ea
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is constant if the radiation losses are negligible. Then it must be

d d
%ea(t) = —%ed(t). (A.9)

Checking this condition is a test of the accuracy of the numerical results. The total

eg is smaller than the Hamilton energy because of

eh(t) = ed(t) + 2ea(t). (A.10)
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Appendix B

Calculation of potentials

According to eq.(3.53) and eq.(3.68), the potentials AJQ(r,t') and A}}(r,t') have

the form

Alr) = (1o, 1) = [ 1757 [ 4%, ) dy).
0 0

The integral

I(r,t") = /0 y *Ls(y,t')dy

can be calculated approximately using the Simpson’s rule in the form
I(mA7r) = I((m—2)Ar) +Is((m—2)Ar)/(Ar(m —2))?
+41s((m — VA7) /(Ar(m —1))2+ Is(mAr)/(Arm)?.

Is(y) == [2®p(x,t))dz is

O —w

Is(mAr) = Is((m—2)Ar) +5(((m—2) Ar)?p((m — 2)Ar)

+4((m—=1)Ar)?p((m—1)Ar) + (mAr)?p(mAr)) form=23, ...
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The starting values are

A similar procedure is possible to determine

A%g(n t/) - T

Due to I(r) = fJy~* J§ 23p(x,t")dxdy, eqs.(B3/B4) have to be replaced by

IlmAr) = I((m—

and

Is(mAr) = Is((m—2)Ar) +
+4((m—=1)Ar¥p((m—1)Ar) +

with the starting values

I5(0) =
1(0)

2)Ar) + Is((m
+4 Is((m—1D)Ar)/(Ar(m —

0,
0,

%\

(

Ar)* p(0)/3,
Ar)?p(0)/6.

/T /x?’pig x,t'))dx dy).
30

Is(Ar) =

I(Ar)=
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(mA7r)?

(

—2)Ar)/(Ar(m—2))*
)4+ Is(mAr)/(Arm)?

J(((m=2) Ar)'p((m —2)Ar)
p(mAr)) for m=2,3,..,

Ar)* p(0)/4,

Ar) p(0)/4.

(B.5)

(B.9)



In case of

Agp(r,t') = r? (I35 (00, t) — / 1/y6({w4p%é(x,t))d$ dy)

the integral I(r) = [Jy~ 5 J§ 250/ (x, t")dzdy leads to

I(mAr) = I((m—2)Ar) +Is((m—2)Ar)/(Ar(m —2))8
+4Is((m —1DA7)/(Ar(m —1))5 + Is(mAr)/(Arm)S

and

Is(m A7) = Is((m—2)Ar) +L(((m —2)Ar) p/((m —2)Ar)

+4(m =1 ArY p((m—=1)Ar) + (mAr)’ ' (mAr)) for m=2,3,.

The starting values are

Is(0) = 0, Is(Ar) = (Ar)? p/(0)/14,
1(0) = 0, I(Ar)= (Ar)7 p/(0)/7.

(B.10)

(B.11)

(B.12)

(B.13)

Here the modification p/(r,t') = r=2p(r,t') is introduced because p'(r.t') is not sin-

gular on r=0. Other numerical methods can also be applied that take singularities

into account.
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Appendix C

Calculation of eigenfunctions

C.1 Eigenfunctions of s-states

To find eigenfunctions A and eigenvalues E} := (EY)" of eq.(3.49) in the range
0 < r < R, the following equation

EXR) (r) = — ((0.5/r*)(0/dr)(r*0/0r) + 2/r)RY(r) (C.1)

must be solved numerically. After reorientation and integration of eq.(C1) it gives

= —2/ —2/ (1/z + EDRY (x)dxdy. (C.2)

This expression is similar to the integral in eq.(B1). If we replaced p(r) by g(r) =
(1/r + EQ)hY (r), we can write

RY (mdr) = RhY(0) — I} (mAT). (C.3)
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Here the integral I)(mAr) is given by

RimAr) = IX(m—2)Ar) + ISY((m —2)Ar)/(Ar(m —2))?

+4 1S ((m —1)A7)/(Ar(m — 1))+ ISY(mA7r)/(Arm)?
with
ISY(mAr) = ISP((m —2)Ar)
+3(fR(m = 2)Ar)(m —2) Ar (1 + E)(m — 2)Ar))
+4 f2(m—=1)Ar)(m—1)Ar)(1+ E)(m —1)Ar))
+fAmAr) mAr) (1 + EYmAr))) for m=2,3,..

and the starting values by

1900) =0, I9(Ar) = (1+ EAr/3)Ar hY(0),
IS(0) = 0, IS(1) = (0.5Ar + E?/3)(Ar)? BY(0),
h(Ar) = (14 ERAr/3)Ar hy(0) .

In eq.(C3) the missing value can be described by the extrapolation

A(mAr) = 2h)((m — 1)Ar) — hY((m —2)Ar).

(C.4)

(C.5)

Using these formulas, a simple program was realised for calculating of eigenfunc-

tions in the mentioned range. The functions h)(r) must satisfy the condition
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h{(R) = 0. This can be achieved by varying the input parameter E}, while the

staring value h{(0) follows from the normalising integral

R

(h)(r)* = 1/( [ r*(h(r))*dr). (C8)

Here Bg(r) represents a function that satisfies the condition BQ(R) = 0. The number
of zero points in interval 0 < r < R must be given by the index k, where k includes
the last point r=R. For k=n the functions h)(r) are identical to the known radial
functions F,o(r) of the ns-states (Fig. 1) as long as F},o(R) and whose derivations
near R are negligible. With R=100 that is given up to k=5. For £ > 5 up to
k=120 the functions h{(r) were calculated numerically and stored in a file. The
orthogonality of these functions is proven. By numerical calculations it could be
demonstrated that the integrals [Ir" fO(r) fO(r)dr = 6(k —n) + AI%(k, n)

show only slightly deviations AI(k,n) from the ideal value 6(k —n). AI°(k,n) is
for n # k less than 0.00001 and for k=n less than 0.0000001. Therefore the eigen-
functions hY(r) with the associated eigenvalues EY can be used to solve eq.(3.50).
h{(r) and EY depend on the choice of R, how mentioned above. However, solutions
f3o(r,t) of eq.(3.50) are independent on R as long as R is large enough that the
functions fJ,(r,t) and whose derivations near r=R are approximately zero during
the entire calculation time. The asymptotic solutions for EY > 0 and large r have

the form f{(r) = glsin(y/2 E%r + ¢9)/r. Amount g and phase ¢ result from nu-
merical calculations.
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C.2 Eigenfunctions of p-states

The radial eigenfunctions hi.(r) with the eigenvalue E} := (E})" of p-states in a

sphere from a radius R must, according to eq.(3.74), fulfil the following equation

Elhi(r) = —((0.5/r%)(0/0r)(r*0/0r) — 1/r* + 1/r)h(r). (C.9)

This leads to

0.5/73(0/0r)(r*0/0r) (hy(r)/r) = —(E} + 1/r)hi(r) (C.10)

and thus to

(hi(r)/r) — I}(0) = —2/0ry_4'0yx3(E,i + 1/z)hj(x) dv dy. (C.11)

A numerical approximation of the internal integral of eq.(C12) is given by

ISMy) = ISi(y — Ay) + /yyAy (B +1/2)hi(2) dw. (C.12)

With the limit of h}.(r) = rBi(r) for r — 0 the eq.(C11) yields

1
ISi(y) = — [ 2} (Bl + hi(x)de = — BL(0) (02 By’ + 025y").  (C.13)
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Using this approximation the second integration can be described by

L(r) = Iir=Ar)+2 [y *ISi(y) dy. (C.14)

and therefore becomes

hy (r) = (B (0) — I (r)). (C.15)

In addition if r is large enough, the following transformation (see eq.(C10))

B (r) = —205 y~2 i eX(EL + 12 — 1/2?)h} (x)ddy (C.16)

can be used. With

g(x) = (E} +1/z — 1/2*)h.(z), (C.17)

the methods of the s-case can also be applied in this range. Therefore, three dif-
ferent integration areas were introduced in the program. The selected examples
require an integration border of R=200 and 250 eigenfunctions. k again stands for
the number of zero points. The well-known description of h} can be applied up
to k = 8, because all values hi(r > 0.8R) are small enough for these cases. The

numerical accuracy around the values E} = 0 (k=6 until 15) is critical. Here the
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error coefficients AI'(k,n) come close to 0.0001, while for other combinations of n
and k these coefficients have values of about 0.00001 or 0.0000001 for k=n.
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Appendix D

The potential integral of a free solution

The numerical determination of the potential integral formulated in section 7.1

can be replaced by the following analytical calculation of

wm My = [ 1L b (7Y (1) (') () AV AV (D.1)
This reads
wm M = S T2 (1) han (1) [2° 35 S5 () 2R (7)) hie () dir' dsdlr (D.2)

The internal integral

Hi(s) = %fos(cos((j —k)wr') —cos((j + k)wr'))dr’ (D.3)

yields
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F(s — msm(z]ws) for s<R,j=k
1 >R, j=k
Hyv=|, ., . fOT R (D.4)
E(Wsm((j — k)ws) — Giie +k) sin((j + k)ws) fors < R,j#k
0 for s>R,j#k

and therefore is

71— In(f) = 52 + Cil2jwR) = Ci(2jer))
1 forj =k
" ptoseds = | R+ Cil —par) — Cii ~ ) | (D)
—slTEber) — Ci((j + k)wr) + Ci((j + k)wR)))
forj #k

Finally nmMj;, is given by

nmMjp = ﬁ(% — 2)Si((B — a)m) + %(% +1)Si((8 + a)m)
o (5 = DSi((B = 8)m) + £+ DSi((B+ o)) o
+ 5= (L = DYSi((y = )7) + 5= (2 + 1)Si((y + ) .
i = S0 = Om) + 53+ DS +0)7)

Here we have introduce the notations a« = j — k, 8 = n—m,y = m +n,d
j+k, and w = m/R and the integral-functions Si(z) = Jj Lsin(y)dy and Ci(x) =
[ cos( )dy . In addition, one must taken into account the following limits:

218



a—0,8=0:,,M; = %—i— SR ( Si(om) + %Si(57r)+
+(5 = 5)Si((y = 0)m) + (5 + 5)Si((v + 6)m)) +
B—=0: oM, = 55 (2Si(am) + 2Si(0)

(= 1S = 8)m) + (+ DSil + )
+(%—*)SZ((W 0)m) + (5 + 5)Si(y + 0)m))) + -..ec.
a—0: ;= 50 (%Sz( ) + 352(57r)
b= DI - ) + (4 + DSI((5 +0)m)

+(%—*)51((7 0)m) + (5 + 5)Si((y + 0)m)) +

=2 \

(

1
gl
41
]

The step from eq.(D5) to eq.(D6) requires the integrals:

0417 JE rsin(awr)hy, (), (r)dr
= 5oz (Si((a+ B)m) + Si((a — B)m) (D-8)
—Si(( = 7y)m) = Si((a +~)m)),

o (SR Jotrsin(wor) b (1) by, (r) dr
= goqs (S1((0 — 7)) + Si((67)) (D.9)
= Si((6 + B)m) — Si((6 — B)m)),

%IOR r2Ci(war)hy (r) by, (r)dr
= QWRﬂ (Si((a+ B)m) + Si((a — B)m) (D.10)
%RV (Si((a+~)m) + Si((—a + v)7))

or
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L r20i(wdr) h (r) o (r)dr
= 27rRﬂ (Si((B + 0)m) + Si((B — d)m) (D.11)
2771-3:7 (Si((0 +y)m) + Si((0 —y)m)).
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Appendix E

General Notations

Conventions:

T1 =T, To =19, Tyg =2, Tg =1Cl
3
Ty = ﬂZ:jl TaTy

e

TuTy = > Ty
p=1

R = (21, 29, 73)

T01=‘R—R1‘
d(n) =1 for n=0 and 0 for n # 0
% Ou(x)
U($)87: ox
o 0 —iaﬂ
f}/‘u_ ZO"[L O
B 0 1
1711 0
0 —1
O9 =
? i 0
B 1 0
= \o -1
7 — (0—170-270-3)

four dimensional coordinates
sum convention for three dimension
sum convention for four dimension

three dimensional space coordinate
distance

trigger function

special definition of a derivation;

special matrix

Pauli-matrix

221



B I 0
Y4 = 017

=y )

Constants:

[N

special matrix;

elementary charge,é = 1.6010" A s

speed of light

Planck constant, h = 6.6262 x 107341/ s
used form, i = é2/(aé) = Até*/a

rest mass of the electron, M = 0.91096 x 10730 kg
(= constant of the Dirac equation)

rest energy of the electron, M& >~ 05MeV
Bohr-radius, ¢ = 5.292 * 10~ m

used energy unit, é/(4)* = 27.21eV

used time unit, At = 0.24167 % 10165

time in s

time in At

fine structure constant, & = 0.0072974;

Functions of the one electron field:

UR,t) =3, c(1) Hy(R)
UA(R, 1) = (1) (R)

Z

(_](R, t) = Zp(cp(t))*ﬁp(R)

solution of the Dirac equation
share of the solution
number of excitation level

solution of the conjugated Dirac equation
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h2
H, = P = g eigenfuction of the Dirac equation
hy hs
4
_ hy
H, = ((hy)* (hy)* — (h,)* — (h,)*) conjucated complex function
A 1
h, = (O) Ry, special relation between the functions
u =3, ay(t)h, solution of the Schroedinger equation
Yim spherical area functions;
Field functions:
JE = —iéol charge component of the nucleus
J, = iéU~,U component of the electron current:

i = fi: normal current
i = 4: charge component
Jy=iéy, . Uy, U" distribution of the current:

7z and z-s: excitation levels

A, () component of the vector potential of the self field
JE AT current and vector potential of the nucleus (eq.(300)
E electric field strength
H magnetic field strength;
Field tensors:
T,, = TEM + T, + AT +1T7, complete field tensor of one electron and the
related electromagnetic field
Tlﬁlu tensor component of the Dirac field
i Z_STVdu special component of the tensor:

7z and z-s excitation levels
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T
AT
TE,

interaction tensor
transformation tensor

tensor of the electromagnetic self field;

Notations of the two electron system:

p =P,
Py = ?j

Qi = T

Qs = Qs -

U(R1,t,7)

V(Ra,t, 1)

\I/i(Rl,RQ)

U (R1, Ra)

Al AU

(bt M ) =
J(1/r12) Hy (Ra) v, Hn (R1)
X[_(m/(RQ)’YMKm(RQ)d‘/Qd‘/l
Win(Ri, Rat, 1L + 1)

Dirac operator react to R;

Schroedinger operator react to R;

Dirac operator react to R, Ro
Schroedinger operator react to Rq, R
solution of the Dirac equation of electron 1
solution of the Dirac equation of electron 2
eigenfunctions of ()19

eigenfunctions of ()7,

vector potentials

electro-magnetic energy integral
A Combination of eigenfunctions
W, n(Ri, Ry) with different orientation;
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