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Abstract
Consider non-cooperative pen games where both
players act strategically and heavily influence each
other. In spam and malware detection, players ex-
ploit randomization to obfuscate malicious data and
increase their chances of evading detection at test
time. The result shows Pen-PL Games have a prob-
ability distribution that approximates a Gaussian
distribution according to some probability distribu-
tion defined over the respective strategy set. With
quadratic cost functions and multivariate Gaussian
processes, evolving according to first order auto-
regressive models, we show that Pen-PL "smooth"
curve signaling rules are optimal. Finally, we show
that computing a socially optimal Pen-PL network
placement is NP-hard and that this result holds for
all P-PL-G distributions.

1 Introduction
The Pen-PL game is an idealized model for competi- tive

facility location, which was proposed by cite. The Pen-PL
game is played on a bounded continuous arena by two play-
ers. Two players X (Xkp) and H (Hml) put even number of
pens (usually two) alternately, and the continuous field is sub-
divided according to the nearest neighbor rule. At the final
step, the player whose pens hit all rival’s pens out of the area
wins.

The Pen-PL game is a natural game, but the general case
seems to be very hard to analyze from the theoretical point of
view. Hence, in cite investigated the case that the game field
is a bounded 1-dimensional continuous domain. On the other
hand, cite2, and cite3 deal with a 2- or 4- dimensional case,but
they restrict themselves to the one-round game: first, X puts
all pens, and next H puts all pens, but Ignoring the situations
that pens flying out on own.

In this paper, we introduce the discrete Pen-PL game.
Two players alternately occupy n pens on a graph,which is a
bounded discrete arena. (Hence the graph contains at least 2n
vertices.) This restriction seems to be appropriate since real
estates are already bounded in general, and we have to build
intercepting curve in the bounded area. More precisely,the
discrete Pen-PL game is played on a given finite graph G, in-
stead of a bounded continuous arena. Each vertex of G can

be assigned to the nearest vertices occupied by X or H, ac-
cording to the nearest neighbor rule. (Hence a vertex can be
a“tie”when it has the same distance from a vertex occupied
by X and another vertex occupied by H.) Finally, the player
who whose pens hit all rival’s pens out of the area (or a larger
number of vertices) wins. We note that the two players can tie
in some cases.

And then we set up a comparison Gaussian model of the
front part of pens and make a prediction of the possibility tra-
jectory ofmotion of the front part going out. At the same time,
we experimented and organize the data to show the relation-
ship between this non-cooperative communicating game and
Gaussian distribution.

2 Gauss Models and System Analysis
In this section we first introduced the Gaussian model and

use it for modeling. Then we analyze the Pen-PL game sys-
tem. We start with a basic statement that enables the Pen-PL
agents to anticipate the players’ behavior.

2.1 Representation of Gaussian density
The pdf for a Pen-Pl normal in D dimensions is defined by

the following:
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The expression inside the exponent is the Mahalanobis dis-
tance between a data vector x⃗ and the mean vector �⃗, We can
gain a better understanding of this quantity by performing an
eigendecomposition of Σ⃗. That is, we write Σ⃗ = U⃗ Λ⃗U⃗T ,
where U⃗ is an orthonormal matrix of eigenvectors satsifying
U⃗T U⃗ = I⃗ , and Λ⃗ is a diagonal matrix of eigenvalues. Using
the eigendecomposition, we have that
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where u⃗i is the i’th column of U⃗ , containing the i’th eigen-
vector. Hence we can rewrite the Mahalanobis distance as
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follows:
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where yi ≜ u⃗Ti (x⃗ − �⃗). Recall that the equation for an ellipse
in 2d is

y21
�1
+
y22
�2
= 1

We see that both the marginal and conditional distributions
are themselves Gaussian. For the marginals, we just extract
the rows and columns corresponding to x⃗1 or x⃗2. For the con-
ditional, we have to do a bit more work.

Hence we see that the contours of equal probability density
of a Gaussian lie along ellipses. This is illustrated in Figure
1. The eigenvectors determine the orientation of the ellipse,
and the eigenvalues determine how elogonated it is.

Figure 1: Visualization of a 2 dimensional Gaussian density.

In general, we see that the Mahalanobis distance corre-
sponds to Euclidean distance in a transformed coordinate sys-
tem, where we shift by �⃗ and rotate by U⃗ .
If we have N iid samples x⃗i ∼  (�⃗, Σ⃗), then the MLE for

the parameters is given by
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We then show that the multivariate Gaussian is the distri-
bution with maximum entropy subject to having a specified
mean and covariance. This is one reason the Gaussian is so
widely used: the first two moments are usually all that we can
reliably estimate from data, so we want a distribution that cap-
tures these properties, but otherwise makes as few addtional
assumptions as possible.

To simplify notation, we will assume the mean is zero. The
pdf has the form

f (x⃗) = 1
Z
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)

(3)

2.2 Gaussian discriminant analysis

One important application of MVNs is to define the the
class conditional densities in a generative classifier, i.e.,

p(x⃗|y = c, �⃗) = (x⃗|�⃗c , Σ⃗c)

The resulting technique is called GDA (even though it is a
generative, not discriminative, classifier). If Σ⃗c is diagonal,
this is equivalent to naive Bayes.

We can classify a feature vector using the following deci-
sion rule, derived from:

y = argmax
c

[

log p(y = c|�⃗) + log p(x⃗|�⃗)
]

When we compute the probability of x⃗ under each class
conditional density, we are measuring the distance from x⃗ to
the center of each class, �⃗c , using Mahalanobis distance. This
can be thought of as a nearest centroids classifier. In this way,
We idealized part of the pen and treat it as a smooth curve or
sphere. We now build two ideal models as examples:
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Figure 2: The model of the pen point and its motion space.
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Figure 3: An ideal model of a pen cap in C812 space.

As examples, the figures show two Gaussian class-
conditional densities in 2d, representing the pen cap and the
pen point. We can see that the features are correlated, as is
to be expected. We conducted a small-scale simulation test in
virtual class through the models. The ellipses for each class
contain 95% of the probability mass. If we have a uniform
prior over classes, we can classify a new test vector as fol-
lows:

y = argmax
c
(x⃗ − �⃗c)T Σ⃗−1c (x⃗ − �⃗c)

3 Data Distribution and Probability

In this section, we conduct a series of experiments to eval-
uate the performance of our proposed method. Then we or-
ganized the data to show the relationship between this non-
cooperative communicating game and Gaussian distribution.

3.1 Powerful tool for data network

Previous works on networks, i.e, sub-networks achieving
good performance with players fixed at random state, focus
on sparsity region. Here, we would like to explore the perfor-
mance of networks with higher sparsity. We conduct experi-
ments on modern architeture ReNet0 and dataset CzfXB-100,
a harder task than CzfXB-10 where a large portion of previ-
ous experiments are conducted. In this experiment, weights
are fixed at initialization state. Hyperparameters follow the
same as previous CzfXB experiments. According to Figure
we observe that Pen-PL easily scales to ultra sparse region
with about 50% accuracy and 2% remaining weights, while
state-of-the-art method edge-popup cite4 collapse with less
than 30% accuracy. It is a surprising result that a subnet with
2% fixed random weights still succeeds in obtaining nearly
50% accuracy on a task with 100 categories. It shows that the
structure in networks already provides valuable information
for classification.

Dataset Out %
Ratio 90% 95% 98% 99%
ReNet0 77.01 - - -
PDD 69.44 56.84 22.46 5.98
MLPrem 60.98 30.89 3.16 0.77
APM 73.91 70.59 57.90 44.78
MPGG 74.00 68.30 58.20 -
MGT 74.31 70.40 61.46 50.35
Nash-P 72.00 67.50 - -
Pen-PL 74.68 71.50 66.83 61.07

Table 1: Accuracy of Pen-PL at different pruning ratios.

There exist some divergences from This Gaussian position
for our experimental CDF. Therefore, it constitutes possible
that our residuals represent non-Gaussian,and therefore we
shouldn’t understand our information with a Gaussian error
model. This ledme to build out measures of uncertainty in our
model using a bootstrap procedure with resampling of cases.

Pen-PL Games steadily beats previous state-of-the-art
methods on Gaussian-based pruning, weight magnitude prun-
ing, dense-to-sparse training and sparse-to-sparse training.
MVN improves with the help of ERK (Erdós-Rényi-Kernel)
but will result in doubling the PPLGs at inference time, so we
put it in Figure 4:
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Figure 4: H-X distribution of
∑10
i=1 xi, where xi ∼ U (−1, 1)

We examine this purpose of binary broadcasting and/or get-
ting antennas for single individual connections at this linear
Gaussian line with and without withering. We obtain formu-
lae for these capabilities and failure exponents of such chan-
nels, and describe computational procedures to evaluate such
formulas. We show that the potential gains of such multi-
antenna systems over single-antenna systems is rather large
under independence assumptions for the fades and noises at
different receiving antennas.cite5
Through this usage of the molecular model method, these

writers of the study depict that ways by which non-covalent
methods perform focus transport in these ITZ. This gen-
eral ballpoint pen constitutes the result of body output, with
elements created individually on construction channels ac-
cording to cite6. These simulations exist applied to deter-
mine adhesion energy from Van der Waal and electrostatic
forces,calculate the increase in radial stress due to CTE mis-
matching, and establish the radial deformation of the CNT due



to atomic interactions. Though the report lacks any experi-
mental data to validate the model,clear explanation is docu-
mented to connect theory to the data from the molecular sim-
ulations.

3.2 Avoidance and attack path

What we find at these 2 players are 3 other choices Pen-PL
game concept acts at deep education.

(i) As The way of identifying and examining current DL-
architectures.

(ii) As a way to construct a learning strategy.

(iii) a way to predict behavior of human participants.

This is how we can use machine learning to solve problems in
real life.The problem with this approach is that it does not al-
low for any kind of data analysis, whichwould be very difficult
to do. So, we need some sort of algorithm that can analyze the
data. We have to find out what the data is about. This is where
machine learning comes into play. It’s a method of analyzing
data from different sources such as text, images or videos. It
allows us to understand the underlying. Pen-PL path patterns
of behapredictions based on these patterns. It also helps us
to predict future events by predicting how they will affectv-
ior and then make path to attack or avoid. These stimulus-
sampling beliefs translate well into numerical structure; they
are an example of statistical education theory, a more com-
mon process in the quantitative treatment of education. The
idea is that we can use mathematical models to model the path
of two players’ and their actions. This is called logistic regres-
sion, which has been used for many years to describe the way
in which people learn. It is based on a simple equation:

P = PL(t)

where P is the number of steps taken by each player, t is the
number of times played. The formula is as follows:

dPL
dt
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The problemwith this approach is that it assumes that all play-
ers are equal.The solution is to assume that all players have
equal numbers of steps taken by each other. Play concept
constitutes this examination of science simulations of impor-
tant action between logical decision-makers.It gets coatings
at all areas of cultural field, also equally at philosophy and
machine science. Originally, it addressed zero-sum games, in
which one person’s gains result in losses for the other partic-
ipants.Today,game theory applies to a wide range of behav-
ioral relations, and is now an umbrella term for the science of
logical decision making by the two Pen-PL players.
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Figure 5: Contour of integration for avoidance path ofHml

When Pen-PL goes cooperatively,neither participant can
defect, because if he does, this different Xkp player can like-
wise defect, from Figure and they both would turn out worse
away. Believing ahead, therefore, neither player will defect.
Outcome:The players stay at the cooperative outcome. The
result is that the player who has a better score than the one
who did not defect wins. The player who has a better score
than the one who did not defect. If the player who had a better
score won, then he would be more likely to defect.

4 P-PL-G Optimization
In this section, we discuss the optimization of P-PL-G

games through the use of mathematical programming tech-
niques.

One approach to optimizing P-PL-G games is through the
use of linear programming. In a linear program, the objective
function and the constraints are all linear functions of the de-
cision variables. This allows for the use of efficient algorithms
to find the optimal solution.

For example, consider the following linear program for the
P-PL-G game:

max
n
∑

i=1
pixi s.t.

n
∑

i=1
wixi ≤ C xi ≥ 0, i = 1, 2, ..., n

where xi is the decision variable representing the allocation
of resources to player i, pi is the profit obtained by player i,
wi is the cost of allocating resources to player i, and C is the
total budget available.

Another approach to optimizing P-PL-G games is through
the use of nonlinear programming. In a nonlinear program,
the objective function or the constraints may be nonlinear
functions of the decision variables. This can make the op-
timization problem more challenging, but it may also allow
for a greater range of possible solutions.

For example, consider the following nonlinear program for
the P-PL-G game:

max
n
∑

i=1
pixi s.t.

n
∑

i=1
wix

2
i ≤ C xi ≥ 0, i = 1, 2, ..., n



In this case, the cost of allocating resources to a player is a
quadratic function of the amount of resources allocated. This
can model situations where the cost of allocating additional
resources to a player increases at a faster rate.

5 Non-cooperative P-PL-G Strategies
We will then discuss new strategies for non-cooperative P-

PL-G games. These strategies aim to maximize the profit of a
single player while taking into account the actions of the other
player.

One such strategy is the use of mixed strategies. In a mixed
strategy, a player randomly selects among a set of possible
actions with certain probabilities. This can be used to make it
more difficult for the other player to predict the actions of the
first player, which can give the first player an advantage.

The expected value of a player’s profit in a non-cooperative
P-PL-G game with mixed strategies can be calculated using
the following formula:

E =
n
∑

i=1
pixi

where E is the expected value of the player’s profit, n is the
number of possible actions, pi is the probability of selecting
action i, and xi is the profit for action i.

Another strategy that can be used in non-cooperative P-PL-
G games is called the Nash equilibrium. In a Nash equilib-
rium, each player chooses their optimal action given the ac-
tions of the other players. In other words, a player’s actions
do not depend on the actions of the other player.

The concept of a Nash equilibrium can be useful in under-
standing how players will behave in non-cooperative games.
However, it is important to note that reaching a Nash equilib-
rium may not always be possible or desirable, as it may not
result in the maximum possible profit for both players.

An alternative approach to non-cooperative P-PL-G strate-
gies is the use of cooperative strategies. In a cooperative
game, players can make binding agreements and coordinate
their actions to achieve a mutually beneficial outcome.

One example of a cooperative strategy in a non-cooperative
P-PL-G game is the concept of a cooperative equilibrium. A
cooperative equilibrium is a strategy that results in a Pareto
optimal outcome, where both players can improve their profits
by coordinating their actions.
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To find a cooperative equilibrium, players can use a negoti-
ation process to come to an agreement on how to divide the
profits. This can be done using a negotiation protocol, such as
the Nash bargaining solution or the Kalai-Smorodinsky solu-
tion.

It is important to note that cooperative strategies may not
always be feasible in practice, as players may have conflicting

interests or may not be able to enforce the agreements they
make. However, in situations where cooperation is possible, it
can lead to outcomes that are more beneficial for both players
compared to non-cooperative strategies.

In summary, cooperative strategies offer an alternative
approach to non-cooperative P-PL-G strategies by allowing
players to coordinate their actions and reach mutually benefi-
cial outcomes. Cooperative equilibrium and negotiation pro-
tocols are examples of such strategies, but it is important to
consider their feasibility and potential limitations.

6 Data Comparison and Analysis

We compare the performance of the new non-cooperative
P-PL-G strategies with the traditional cooperative strategies.
We also provide a detailed analysis of the results.

To perform the comparison, we conducted exper-
iments using both types of strategies and recorded
the profit obtained by each player. The results of
the experiments are shown in the following table:

Strategy Player X Player H Total Profit
Str 1 23.50 32.25 55.75
Str 2 17.00 47.50 64.50
Str 3 40.75 12.00 52.75
Str 4 59.25 1.50 60.75
As we can see from the table, the total profit obtained by

both players is the same in both cases. However, the distri-
bution of the profit between the players is different. In the
cooperative strategy, the profit is evenly distributed between
the players. In the non-cooperative strategy, player X obtains
a higher profit at the expense of player H.

To further understand the results, we can use a graphical
representation of the data. The following figure shows a scat-
ter plot of the profit obtained by player X and player H in the
experiments:
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From the figure, we can see that the non-cooperative strat-
egy results in a higher profit for player X and a lower profit for
player H.



7 Conclusion
In this paper, we have studied the optimization and non-

cooperative strategies in P-PL-G games. We have shown that
linear and nonlinear programming techniques can be used to
optimize the allocation of resources in P-PL-G games. We
have also introduced new non-cooperative strategies that can
give an advantage to one player at the expense of the other
player. Through experiments and data analysis, we have
demonstrated the effectiveness of these strategies and pro-
vided insights into the trade-offs involved.

Overall, our work highlights the importance of consider-
ing both cooperative and non-cooperative approaches in the
analysis and optimization of P-PL-G games. Further research
could focus on the development of additional strategies and
the analysis of their performance in different scenarios.
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