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We construct the geometric optical knot in 3-dimensional Euclidean (flat) space of the Abelian Chern-Simons
integral using the variables (the Clebsch variables) of the complex scalar field, i.e. the function of amplitude
and the phase, where the phase is related to the refractive index.
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It is commonly believed there exists no topological ob-
ject in the linear theory, such as the Maxwell’s theory. It
is because of a topological theory must be a non-linear the-
ory1. The existence of topological object, a knot, in the
Maxwell’s linear theory so far has not been well known2.
How could a knot exist in the Maxwell’s linear theory?

In the Maxwell’s theory, the electromagnetic fields (the
set of the solutions of Maxwell equations) in vacuum has
a subset field with a topological structure1. Any electro-
magnetic field is locally equal to a subset field i.e. any
electromagnetic field can be obtained by patching to-
gether subset fields (except in a zero measure set) but
globally different1. This means that the difference be-
tween the set of the subset fields and all the electromag-
netic fields in the Maxwell’s theory in a vacuum is global
instead of local, since the subset fields obey the topologi-
cal quantum condition that the electromagnetic helicity
(consists of electric and magnetic helicities) is equal to
an integer number1.

The electromagnetic field satisfies a linear field equa-
tion, but a subset field satifies a non-linear field equation.
Both fields, the electromagnetic field and a subset field,
satisfy the linear field equation in the case of the weak
field3. It means that a non-linear subset field theory re-
duces to the Maxwell’s linear theory in the case of the
weak field. The space where the weak field lives approx-
imately represents the vacuum space. A knot could exist
in the vacuum Maxwell’s theory because of the vacuum
Maxwell’s theory is the weak field limit3 of a non-linear
subset field theory.

In this article, we propose there exists a knot in the
geometrical optics, as a solution of the eikonal equation.
The reason is, in fact, there exists a knot in the Maxwell’s
theory1–3 and the geometrical optics (the eikonal equa-
tion) can be derived from the Maxwell’s theory (Maxwell
equations)4–6. We treat the geometrical optics as an
Abelian U(1) local gauge theory7,8, the same as the
Abelian U(1) Maxwell’s gauge theory. To the best of our
knowledge, the formulation of a knot in the geometrical
optics has not been done yet1,2,9,10.

Let us consider a map of a subset field (consists of a
complex scalar field) from a finite radius r to an infinite
r which implies from the strong field to the weak field.
A scalar field has, by definition, the property that its

value for a finite r depends on the magnitude and the
direction of the position vector ~r, but for an infinite r it
is well defined3 (it depends on the magnitude only). In
other words, for an infinite r, a scalar field is isotropic.
Throughout this article we will work with the classical
scalar field.

The property of such a scalar field can be interpreted
as a map S3 → S21 where S3 and S2 are 3-dimensional
and 2-dimensional spheres, respectively. As maps of this
kind can be classified in homotopy classes, labelled by a
topological invariant called the Hopf index 1, an integer
number. We see there exists (one) dimensional reduc-
tion in such map. We consider this dimensional reduc-
tion related to the isotropic (well defined) property of a
scalar field for an infinite r. The property of a scalar
field as a function of space seem likely in harmony with
the property of space-time. The space-time could be lo-
cally anisotropic, but globally isotropic (the distribution
of matter-energy in the universe is assumed to be homo-
geneous).

In Ranada works1,3, because of the subset fields have
well-defined property at infinity, so the subset fields can
be interpreted as maps S3 → S2, after identifying, via
stereographic projection, R3 ∪ {∞} with the sphere S3

and the complete complex plane C∪{∞} with the sphere
S2. These maps can be classified in homotopy classes, la-
belled by the value of the corresponding Hopf indexes, the
topological invariants1,3. The other names of the topolog-
ical invariant are the topological charge, the winding num-
ber (the degree of a continuous mapping)11. In physics,
the topological charge which is independent to the space
metric tensor can be interpreted as energy12.

In physics, the idea of a knot, topologically stable mat-
ter, had been proposed in 1868 by Lord Kelvin that the
atoms could be knots or links of vorticity lines of aether2.
A knot is a smooth-embedding of a circle in E310, 3-
dimensional Euclidean space13. Two knots are equivalent
if one knot can be deformed continuously into the other
without crossing itself 10.

In electrodynamics, a knot could be formed by bending
the electric and magnetic field lines (the geometric con-
cept of magnetic lines of force - those lines of force are

today designated by the symbol ~H, the magnetic field
- is due to Faraday14) so that they could form closed



loops2. A set of closed loops in space forms a link15.
These closed loops can be linked2 (although links do not
actually need to be linked16). If two closed loops of field
lines are linked then we have a non-vanishing Gauss inte-
gral (Gauss linking integral). This linking could provide
the topological structure2. The self-linking number (an
integer number) i.e. a non-vanishing Gauss integral de-
scribes the knottedness2.

In mathematics, especially in algebraic topology, a
knot is defined by the Hopf index 2. The Hopf index is
related to the Hopf invariant1. In turn, the Hopf invari-
ant is related to a non-trivial Hopf map17.

Suppose that we have a scalar field as a function of
position vector, φ(~r), with a property that, as we men-
tioned, can be interpreted using the non-trivial Hopf map
written below1,3

φ(~r) : S3 → S2 (1)

This non-trivial Hopf map is related to the Hopf
invariant17, H, expressed as an integral17–19

H =

∫
S3

ω ∧ dω (2)

where ω is a 1-form on S317.
The relation between the Hopf invariant and the Hopf

index, h, can be written as1

H = h γ2 (3)

where γ is the total strength of the field, that is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

The Hopf invariant have a deep relationship with the
Abelian Chern-Simons action17 (the Chern-Simons inte-
gral) and self-helicity in magnetohydrodynamics17.

In the case of the 3-dimensional Euclidean (flat) space,
E3, the Abelian Chern-Simons integral could be related
to the topological object, i.e. the geometric optical helic-
ity or the geometric optical knot, hgo

20, as follow

hgo =

∫
E3

εαµν ~Aα ~Fµν d
3x (4)

where hgo is integer (.., -2, -1, 0, 1, 2, ..), εαµν is the Levi-
Civita symbol, α, µ, ν = 1, 2, 3 denote the 3-dimensional

space, ~Aα is the U(1) gauge potential21, ~Fµν is the U(1)
gauge field tensor21 (the field strength tensor),

∫
E3 d

3x
shows that we work in 3-dimensional Euclidean space.

Using the scalar field, φ, the field strength can be writ-
ten as1

~Fµν = ~fµν = θ
∂µφ

∗ ∂νφ− ∂νφ∗ ∂µφ
(1 + φ∗φ)2

(5)

where θ = 1/(2πi) and φ∗ is the complex conjugate of the
scalar field. We call eq.(5) as the non-linear field equation
where the nonlinearity is shown by the φ∗φ term.

In the case of the weak field, i.e. φ << 1 so φ∗φ << 1
then the denominator in eq.(5) can be taken as being
equal to one and fµν(φ) (5) is equivalent to the Maxwell

linear theory1. We interpret the Maxwell’s linear theory
in a vacuum is the same as the non-linear field theory in
the case of weak field due to the field is taken far away
from the source (electric charge or current).

Let us assume22 that the scalar field could be written
as

φ = ρ eiq (6)

and

f = −1/[2π(1 + ρ2)] (7)

ρ is the amplitude, q is the phase, f is the function of
amplitude. This assumption is based on the wave point
of view of the field. We could interpret that the scalar
field, φ, as the disturbance where the physical disturbance
is the real part of φ23.

In the case of the weak field and by using the compo-
nents of the scalar field, f and q, eq.(5) can be written
as22

~Fµν = ~fµν = ∂µ(f ∂νq)− ∂ν(f ∂µq) (8)

where f and q are known as the Clebsch variables22. The
eq.(8) is equal to

~Fµν = ∂µ ~Aν − ∂ν ~Aµ (9)

We call eqs.(8), (9) as the linear field equations.

By observing the equality of eq.(8) and (9), we see
that22

~Aν = f ∂νq (10)

Eq.(10) shows that the gauge potential (the gauge vector
field) can be written using the Clebsch variables of the
scalar field.

By substituting eqs.(8), (10) into eq.(4), we obtain

hgo =

∫
E3

εαµνf ∂αq {∂µ(f ∂νq)− ∂ν(f ∂µq)} d3x

(11)

where the phase can be written as20,24

q = X(ψ1 − ct) = X

(∫ x2

x1

n d3x− ct
)

(12)

X = fθ/c, fθ is the angular frequency, c is the speed of
light in vacuum space, ψ1 is also called the phase, t is
time and n is the refractive index. The refractive index
is the real scalar function of coordinates with positive
values, the slowness at a point7. The refractive index is
typically supplied as known input, given, and we seek the
solution, the phase7, ψ1. The integral

∫ x2

x1
d3x shows the

propagation of ray from the initial position, x1, to the
final position, x2, in 3-dimensional space.
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By substituting eq.(12) into eq.(11), we obtain

hgo =

∫
E3

εαµν f ∂α

[
X

(∫ x2

x1

n d3x− ct
)]

{
∂µ

{
f ∂ν

[
X

(∫ x2

x1

n d3x− ct
)]}

− ∂ν

{
f ∂µ

[
X

(∫ x2

x1

n d3x− ct
)]}}

d3x

(13)

We see from eq.(13) there exists the relation between the
geometric optical knot and the refractive index. It means
that the knot could exists in the geometrical optics.

Mathematically, the interesting one is if the complex
scalar field is a smooth single-valued function of its vari-
ables. The smooth single-valued function of the complex
scalar field will give rise to the existence of the singular-
ities of the phase23,25–28. This phase singularity25 where
the phase is undefined25 or indeterminate26,29 have been
shown to have a well-defined mathematical structure29.

Physically, in our case this well-defined mathematical
structure is the geometric optical knot which could be
obtained for the weak scalar field. The analysis of the
phase singularity is given in a separated article30.
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