
 Author: Herman Schoenfeld

 Version: 1.0

 Date: 2020-07-20

 Copyright: (c) Sphere 10 Software Pty Ltd

 License: MIT

WAMS - Winternitz Abstract Merkle
Signature Scheme

Abstract

A quantum-resistant, many-time signature scheme combining Winternitz and Merkle-Signature
schemes is proposed. This construction is compatible with the Abstract Merkle Signature (AMS)

Scheme 1 and thus is an AMS-algorithm called "WAMS".

1. Introduction
WAMS is a specialization of the AMS 1 scheme parameterized with the standard Winternitz one-
time signature scheme (W-OTS). WAMS is a quantum-resistant cryptographic scheme suitable for
blockchain-based applications.

This document focuses only on the OTS-layer of WAMS. The merkle signatures themselves are

performed as part of the AMS-layer of WAMS which is defined in the AMS document 1 . The
reader should familiarize themselves with the AMS document as it provides the background
context for AMS-algorithms of which WAMS is one.

2. WAMS Scheme
The Winternitz Abstracted Merkle Signature (WAMS) Scheme is a general purpose, quantum-
resistant digital signature scheme. WAMS is an AMS algorithm that selects the standard Winternitz
OTS (W-OTS) as the OTS parameter. As part of the parameter set inherited from AMS, WAMS
includes the additional parameters H a cryptographic hash function and w , the Winternitz

parameter.

The cryptographic hash function used is fundamental to the security of WAMS (an analysis of
which is not provided in this document). So long as the user selects a standard Cryptographic
Hash Function (CHF) such as SHA2-256 or Blake2b the security of WAMS is equivalent to

standard W-OTS constructions. For performance, the use of W-OTS# may be used in conjunction
with Blake2b-128 to reduce signature sizes without introducing vulnerability to birthday-class
attacks.

In this construction, the Winternitz parameter w refers to the number of bits being

simultaneously signed as famously proposed by Merkle 2 (who was inspired by Winternitz).
Varying the parameter w changes the size/speed trade-off without affecting security. For

example, the higher the value the more expensive (and slower) the computations but the shorter
the signature and private key size. The lower the value the faster the computation but larger the
signature and key size. The range of values for w supported in WAMS is 1 <= w <= 16 .

Since the WAMS scheme inherits the AMS scheme, it is required to define the following:

af://n0
af://n5
af://n8

Parameters Description Bits

h Tree height (used in AMS layer) 8

w
Winternitz parameter, how many bits are simultaneously signed via
the Winternitz process

8

H
Cryptographic hash function, and security parameter for the
scheme (digest length)

8

The OTS private key which is a standard W-OTS private key.
The OTS public key is a standard W-OTS public key (hash).
Definitions for GenOTSSig and VerOTSSig which generate and verify W-OTS signatures in

accordance to the WAMS 1 specification.

Definitions for all of the above are provided below.

2.1 Notation & Definitions

1. Notations and definitions from AMS 1 are inherited by this document.
2. ReadBits(arr, N, M) is a function that skips N bits and then reads M bits from the byte

array arr and re-interprets the bits as a big-endian unsigned 32-bit integer.
3. WriteBits(x, arr, N, M) is a function that converts unsigned 32-bit integer x to big-

endian byte array of 4 bytes and writes the first M bits of the array into array arr start at bit

offset N .
4. Bit-ordering in (2) and (3) is such that bit i of arr maps to byte arr[i SHR 3] and to in-

byte bit-index (i SHR 3) - (i SHL 3) . Explained below:

2.2 WAMS Parameters

Note that the Winternitz w and H are stored in the RESERVED part of the AMS private key. The

cryptographic hash function is stored as a code, defined as follows:

Bit-ordering within `ReadBits` and `WriteBits` are such that the

 least-significant bit (LSB) is the left-most bit of that byte.

 For example, consider an array of two bytes C = [A,B]:

 Memory layout of C=[a,b] with their in-byte indexes marked.

 A:[7][6][5][4][3][2][1][0] B:[7][6][5][4][3][2][1][0]

 C:[0][1][2][3][4][5][6][7] [8][9]...

 The bit indexes of the 16-bit array C are such that:

 Bit 0 maps to A[7]

 Bit 1 maps to A[6]

 Bit 7 maps to A[0]

 Bit 8 maps to B[7]

 Bit 16 maps to B[0]

af://n21
af://n32

Value Cryptographic Hash Function

0 user specified

1 SHA2-256

2 Blake2b-256

3 Blake2b-160

4 Blake2b-128

Variable Formula Description

U
sizeof(H(x)) * 8

for any x
Security parameter for the scheme (and
number of bits in a hash H)

DigitBase 2^w
The number of values a signed "digit" can
take

SigDigits ceil(256 / w)
Number of digits in the message-digest being
signed

CheckDigits
Log((2^w - 1) *

(256/w))_{2^w}
Number of digits in checksum being signed

OTS_KeyDigits
SigDigits +

CheckDigits

Number of "digit keys" in a W-OTS private
key (used by AMS-layer)

OTS_SigLen OTS_KeyDigits
Number of "digit signatures" in a W-OTS sig
(used by AMS-layer)

2.2.1 Cryptographic Hash Function Code

The author reserves the right to update this list as new use-cases emerge.

2.3 WAMS Variables

During key generation, signing and verification the following variables are calculated based on the
parameter set.

2.4 W-OTS Theory Basics

The W-OTS scheme follows the Lamport 3 signature approach but allows a signer to sign w bits

of a message-digest simultaneously rather than 1. This collection of bits is a treated as a "digit" of
base 2^w .

For example, in the case of w=8 the digits simply become bytes since each digit can take any

value within 0..255 . The fundamental cryptographic mechanism in W-OTS is the ability to sign
individual digits using a unique "digit private key".

af://n51
af://n72
af://n104

For example, to sign the byte b (for w=8), a signer first derives a "private digit key" as K =

H(secret) and a "public digit key" P = H^255(K) . Notice that all the values of b map to a unique
hash in that chain of hashes. The signer advertises the "public digit key" prior to signing any digit.
When signing a digit b , the signer provides the verifier the value S=H^(255-b)(K) referred to as

the "signature of b ". The verifier need only perform b more iterations on the signature s to

arrive at the public key P , since H^b(S) = H^b(H^(255-b)(K)) = H^255(K) = P .

At this point, the verifier has cryptographically determined the signer had knowledge of K since
the signature S was the b'th pre-image of P . This process of signing digits is repeated for each

digit in the message and each digit signature is concatenated to form the signature. The message
being signed is always a digest of an actual logical message, and thus referred to as the "message-
digest".

In W-OTS, the individual "digit keys" and "digit signatures" are concatenated to comprise the "key"
and "signatures" respectively. This results in order of magnitude larger key and signature objects
when compared to traditional elliptic-curve / discrete logarithm schemes. This is a significant
down-side of OTS schemes when used in post-quantum cryptography (PQC) use cases. The
burden of large keys can be optimized by using the hash of a public key as WAMSD prescribes.
The burden of large signatures can be halved by choosing shorter hash functions without

impacting security, as prescribed by the W-OTS# 4 variant. .

NOTE In order to prevent signature forgeries arising from digit signature re-use for prior
messages, a checksum is calculated and appended to the message-digest and co-signed. The
checksum is calculated in such a way that any increment to a message digit necessarily decreases
a checksum digit. Thus it is impossible to forge a signature since it requires the pre-image of at
least one checksum digit signature.

The reader can further their understanding of the theory and basics of W-OTS by reviewing the

literature and through this succinct diagram 5 .

2.4.1 W-OTS Private Key

A W-OTS private key P' is a one-time key used to generate W-OTS signatures and defined as

follows:

The W-OTS private key is an array of OTS_KeyDigits "digit keys" each of U/8 bytes in length. The

total size of the W-OTS private key is thus (OTS_KeyDigits) * (U/8) bytes.

Whilst the W-OTS scheme requires that private keys be cryptographically random, they can be
deterministically derived from a secret seed. In WAMS the AMS Private Key is used (see below).

2.4.2 W-OTS Public Key Hash

A W-OTS public key hash K' is a one-time key used to verify W-OTS signatures signed by a W-OTS

private key P' and defined as follows:

1: P' = byte-array[OTS_KeyDigits, U/8]

2: for n in {0, OTS_KeyDigits - 1}

3: P'[n] = cryptographically random U bits

af://n112
af://n117

The length of a W-OTS public key hash is U/8 bytes.

NOTE In WAMS, the W-OTS public key hash is used rather than the W-OTS public key since
signature verification always rebuilds the public key from the signature. Since the verifier derives
the public key it can derive the public key hash with one additional step. By using the hash rather
than the key in the AMS signature, a ~50% space saving is made to the AMS signature length.

NOTE 2 Since the OTS layer passes the public key hash to the AMS layer, the AMS layer does not
need hash the public keys when building the hash-tree of OTS keys, it simply re-uses the OTS
public key value which is itself a hash digest (saving 2^h hash computations when computing a

batch).

2.5 WAMS Key Generation

Given a AMS Private Key P and batch number B , the i'th W-OTS key-pair (P' , K') are derived

as follows:

2.6 W-OTS Signature Generation

A W-OTS signature is an 2D array of bytes of dimensions [OTS_KeyDigits, U/8] and generated

as follows:

1: k = byte-array[OTS_KeyDigits, U/8]

2: for n in {0, OTS_KeyDigits - 1}

3: k[n] = H^(DigitBase - 1)(P'[n])

4: K' = H(k[0] || k[1] || ... || k[OTS_KeyDigits - 1])

 1: algorithm GenOTSKeys

 2: Input:

 3: P: AMS Private Key

 4: B: batch number (UInt64)

 5: i: index (UInt16)

 6: Output:

 7: P': the W-OTS private key that derives K'

 8: K': the i'th W-OTS public key hash in the batch

 9: Pseudo-Code:

10: P' = byte-array[OTS_KeyDigits, U/8]

11: k = byte-array[OTS_KeyDigits, U/8]

12: let seed = ToBytes(i) || ToBytes(B) || P

13: for n in {0, OTS_KeyDigits - 1}

14: P'[n] = H^2(n || seed)

15: k[n] = H^(DigitBase - 1) (P'[n])

16: K' = H(k[0] || k[1] || ... || k[OTS_KeyDigits - 1])

17: end algorithm

 1: algorithm GenOTSSig

 2: Input:

 3: m: a message-digest (U/8 bytes)

 4: P': a W-OTS private key

 5: Output:

 6: S': a W-OTS signature

 7: Pseudo-Code:

 8: S' = byte-array[OTS_KeyDigits, U/8]

af://n124
af://n127

2.7 W-OTS Signature Verification

Here a W-OTS signature is verified to a W-OTS public key hash by rebuilding the W-OTS public key
from the signature, hashing it and comparing with public key hash provided by the AMS layer.

3. WAMS#
WAMS# is a variant of WAMS which selects W-OTS# 4 rather than W-OTS as the OTS. W-OTS# is
virtually identical to W-OTS except the message-digest is salted to harden the signature security to
a sufficient level that thwarts birthday-class attacks. This allows the selection of shorter hash
functions which produce shorter and faster signatures for same security as W-OTS.

 9: // sign message part

10: let c = 0 ; checksum value

11: for n in {0, SigDigits - 1}

12: let v = 2^w - ReadBits(m, w*n, w) - 1

13: c = c + v;

14: S'[n] = H^v(P'[n])

15:

16: // sign checksum part

17: let c_bytes = byte-array[4]

19: WriteBits(c, c_bytes, 0, 32)

20: for n in {0, CheckDigits - 1}

21: let v = 2^w - ReadBits(c_bytes, w*n, w) - 1

22: S'[SigDigits + n] = H^v(P'[SigDigits + n])

24: end algorithm

 1: algorithm VerOTSSig

 2: Input:

 3: S': a W-OTS signature (byte[OTS_KeyDigits, U/8])

 4: m: a message-digest (byte[U/8])

 5: K': W-OTS public key/hash (byte[U/8])

 6: Output: Boolean

 7: Pseudo-Code:

 8: k = byte[OTS_KeyDigits, U/8] ; the W-OTS public key

 9: ; verify message part

 10: let c = 0 ; checksum value

 11: for n in {0, SigLen - 1}

 12: let d = ReadBits(m, w * n, w) ; note: d + v = 2^w - 1

 13: c = 2^w + d - 1

 14: k[n] = H^d(S'[n]) ; note: k[n] = H^d(H^c(P'[n]))

 15:

 16: ; verify checksum part

 17: let c_bytes = byte-array[4]

 18: WriteBits(c, c_bytes, 0, 32)

 19: for n in {0, CheckDigits - 1}

 20: let d = ReadBits(c_bytes, w * n, w)

 21: k[SigDigits + n] = H^d(S'[SigDigits + n])

 22:

 23: ; compare pub key hash

 24: let PKH = H(k[0] || k[1] || ... || k[OTS_KeyDigits - 1])

 25: return (K' = PKH) ; check sig rebuilt the public key

hash

 26: end algorithm

af://n130
af://n133

OTS
CHF
bits

Winternitz
w

Height
h

Public
Key
Length
(b)

Signature
Length (b)

Sign
Throughput

Verify
Throughput

W-
OTS

128 2 0 32 2163 3620 18098

W-
OTS#

128 2 0 32 2211 3425 13139

W-
OTS

128 2 8 32 2163 3832 17919

W-
OTS#

128 2 8 32 2211 3523 12056

W-
OTS

128 2 16 32 2163 3759 18137

W-
OTS#

128 2 16 32 2211 3528 12111

W-
OTS

128 4 0 32 1107 2821 11479

W-
OTS#

128 4 0 32 1155 2619 10403

W-
OTS

128 4 8 32 1107 2803 13454

W-
OTS#

128 4 8 32 1155 2610 9861

W-
OTS

128 4 16 32 1107 2810 13470

The WAMS# implementation is virtually identical to WAMS except for the following changes:

1. A cryptographically random salt R of U -bits is generated during signing.

2. For any message m , the signer signs the "sig-mac" SMAC(m, R) rather than the message-

digest H(m) which is defined as
SMAC(m, R) = H(R || H (R || H(m))) .

3. R is appended to the signature.

4. During verification, the verifier similarly verifies SMAC(m, R) rather than the ordinary
message-digest.

The reader is referred to the reference implementation of WAMS# which succinctly overloads
WAMS with these minor changes.

4. Object Lengths & Throughput
A C# implementation in .NET 7 was developed and object lengths and performance metrics are
measured below. All tests were performed on a single thread on an Intel Core i9-10900K CPU 3.70
GHz with 32GB RAM. The implementation was not performance tuned so the throughput metrics
are useful when compared relative to each other.

af://n146

OTS
CHF
bits

Winternitz
w

Height
h

Public
Key
Length
(b)

Signature
Length (b)

Sign
Throughput

Verify
Throughput

W-
OTS#

128 4 16 32 1155 2602 9515

W-
OTS

128 8 0 32 579 432 2406

W-
OTS#

128 8 0 32 627 414 2079

W-
OTS

128 8 8 32 579 434 2403

W-
OTS#

128 8 8 32 627 419 2749

W-
OTS

128 8 16 32 579 432 2411

W-
OTS#

128 8 16 32 627 404 2749

W-
OTS

160 2 0 36 2703 3850 17026

W-
OTS#

160 2 0 36 2763 3607 11620

W-
OTS

160 2 8 36 2703 3828 16875

W-
OTS#

160 2 8 36 2763 3567 11800

W-
OTS

160 2 16 36 2703 3871 16969

W-
OTS#

160 2 16 36 2763 3551 11572

W-
OTS

160 4 0 36 1383 2864 12419

W-
OTS#

160 4 0 36 1443 2702 9318

W-
OTS

160 4 8 36 1383 2841 12564

W-
OTS#

160 4 8 36 1443 2685 9841

W-
OTS

160 4 16 36 1383 2854 12586

W-
OTS#

160 4 16 36 1443 2680 9120

W-
OTS

160 8 0 36 723 434 2154

OTS
CHF
bits

Winternitz
w

Height
h

Public
Key
Length
(b)

Signature
Length (b)

Sign
Throughput

Verify
Throughput

W-
OTS#

160 8 0 36 783 417 2184

W-
OTS

160 8 8 36 723 428 2145

W-
OTS#

160 8 8 36 783 422 2425

W-
OTS

160 8 16 36 723 427 2156

W-
OTS#

160 8 16 36 783 421 2032

W-
OTS

256 2 0 48 4323 3937 12474

W-
OTS#

256 2 0 48 4419 3662 9235

W-
OTS

256 2 8 48 4323 3951 12275

W-
OTS#

256 2 8 48 4419 3620 8829

W-
OTS

256 2 16 48 4323 3905 12373

W-
OTS#

256 2 16 48 4419 3666 9168

W-
OTS

256 4 0 48 2211 3059 8653

W-
OTS#

256 4 0 48 2307 2885 7711

W-
OTS

256 4 8 48 2211 3081 8549

W-
OTS#

256 4 8 48 2307 2873 7151

W-
OTS

256 4 16 48 2211 3025 8527

W-
OTS#

256 4 16 48 2307 2865 7035

W-
OTS

256 8 0 48 1155 485 1299

W-
OTS#

256 8 0 48 1251 464 1849

W-
OTS

256 8 8 48 1155 489 1345

OTS
CHF
bits

Winternitz
w

Height
h

Public
Key
Length
(b)

Signature
Length (b)

Sign
Throughput

Verify
Throughput

W-
OTS#

256 8 8 48 1251 471 1372

W-
OTS

256 8 16 48 1155 487 1331

W-
OTS#

256 8 16 48 1251 458 1502

1. Herman Schoenfeld. "AMS - Abstract Merkle Signature Scheme", 2020. URL: https://vixra.org/abs/2212.0019 ↩ ↩ ↩ ↩ ↩

2. Ralph Merkle. "Secrecy, authentication and public key systems / A certified digital signature". Ph.D. dissertation, Dept. of Electrical
Engineering, Stanford University, 1979. URL: http://www.merkle.com/papers/Certified1979.pdf. ↩

3. L. Lamport. "Constructing digital signatures from a one-way function". Technical Report SRI-CSL-98, SRI International Computer Science
Laboratory, Oct. 1979. ↩

4. Herman Schoenfeld. "W-OTS# - Shorter and Faster Winternitz Signatures". URL: https://vixra.org/abs/2007.0194. Accessed on: 2020-07-
20. ↩ ↩

5. Sphere 10. "Winternitz One-Time Signature Scheme (W-OTS)". URL: https://sphere10.com/articles/cryptography/pqc/wots. ↩

Throughput is measured in "Signatures Per Second"

References

https://vixra.org/abs/2212.0019
http://www.merkle.com/papers/Certified1979.pdf
https://vixra.org/abs/2007.0194
https://sphere10.com/articles/cryptography/pqc/wots
af://n645

	WAMS - Winternitz Abstract Merkle Signature Scheme
	1. Introduction
	2. WAMS Scheme
	2.1 Notation & Definitions
	2.2 WAMS Parameters
	2.2.1 Cryptographic Hash Function Code

	2.3 WAMS Variables
	2.4 W-OTS Theory Basics
	2.4.1 W-OTS Private Key
	2.4.2 W-OTS Public Key Hash

	2.5 WAMS Key Generation
	2.6 W-OTS Signature Generation
	2.7 W-OTS Signature Verification

	3. WAMS#
	4. Object Lengths & Throughput
	References

