
 Author: Herman Schoenfeld <herman@sphere10.com>

 Version: 1.0

 Date: 2020-07-20

 Copyright: (c) Sphere 10 Software Pty Ltd

 License: MIT

AMS - Abstract Merkle Signature Scheme

Abstract

An abstract post-quantum digital signature scheme is presented that parameterizes a one-time
signature scheme (OTS) for "many-time" use. This scheme permits a single key-pair to efficiently
sign and verify a (great) many messages without security degradation. It achieves this by following
the original Merkle-Signature Scheme but without a coupling to a specific OTS. Various
improvements include a reduction in signature size, resistance to denial-of-service attacks and
smaller keys. This construction comprises a bit-level specification for the Abstract Merkle
Signature Scheme (AMS).

1. Introduction
Abstract Merkle Signatures (AMS) are a class of a quantum-resistant digital signature schemes
that utilize hash-based cryptography without any dependency on elliptic-curves or discrete

logarithms. AMS is a formalization of the scheme originally proposed by Ralph Merkle 1 but in an
OTS-agnostic manner.

AMS is a "high-level abstract" scheme that takes as a parameter a one-time signature scheme
(OTS) and transforms it into a "many-time" equivalent. To this end, AMS serves as an "algorithm
wrapper" of the parameterized OTS algorithm. AMS achieves this goal by encapsulating the
cryptography of the OTS in an ephemeral manner[^*] and by isolating the complexity of multiple
OTS keys through the use of merkle-trees.

AMS is similar in goal and scope to XMSS 2 but without a coupling to a specific OTS, with
simplified tree structuring and with DoS-vulnerability hardening. An AMS algorithm generally
retains the performance, memory and security characteristics of the underlying OTS scheme but
adds additional computational complexity in it's key generation. This arises from the fact that an
AMS key is essentially a commitment to many pre-generated OTS keys.

In practice, an AMS implementation comprises of two layers, the OTS and AMS layers respectively.
The AMS-layer of an AMS-algorithm requires the use of a cryptographic hash function (CHF) which
is typically chosen to be the same as that employed by the OTS-layer of the algorithm (although
this is not a strict requirement). The AMS-layer is itself quantum-resistant as it relies solely on the
proper use of a cryptographic hash function. Thus, if the OTS-layer is quantum-resistant then the
full AMS-algorithm is quantum-resistant.

Whilst this document focuses on the AMS-layer and the integration points that an OTS-layer must
comply with, it does not cover specific implementations of OTS-layers.

[*]: When an OTS algorithm is encapsulated within an AMS algorithm, the OTS key and signature
objects are always short-lived and only computed when needed. In this sense they are ephemeral. As
such, only the AMS key and signature objects are ever persisted or transmitted.

af://n0
af://n5
af://n12

2. AMS Scheme
AMS is a general-purpose, quantum-resistant cryptographic scheme offering the following
features:

Multi-use keys: a single private/public key-pair can be used to securely sign and verify many
messages.
Compact keys: keys are small and contain (compressed) hash commitments to OTS keys.
Efficient comparisons: testing if a public key derives from a private key is time efficient.
Parameterized: the underlying OTS and CHF can be changed without affecting the AMS-layer
whatsoever.
Quantum-resistant: AMS inherits all the PQC characteristics of the selected OTS algorithm.

Whilst AMS is strictly a "stateful" algorithm in that the signer must "remember information" about
the most recent signature, it can used in a "practically stateless" manner in blockchain/DLT use-
cases. This is possible since changes to the key-store are not required in this scheme, only
remembering the index of last used OTS key is necessary. Thus in blockchain/DLT applications,
rather than maintaining this index in a local key-store, the blockchain maintains a public strictly
increasing nonce that is associated with the signer. Every time a signature is generated by the
signer, the public nonce field is correspondingly incremented on the public ledger as part of the
consensus rules. So long as this nonce is atomically and strictly increased within the same
transaction that contains the signature, no risk key re-use arises (which could if relying on local
data-stores susceptible to local corruption).

The AMS-layer of the scheme relies on a single cryptographic hash function (CHF) for all
processing without any dependency on elliptic-curves or discrete logarithms. This CHF is also
parameterized and, by convention, chosen to match that of the selected OTS scheme (although
not strictly required).

The construction can be basically summarized as follows:

1. A "Private Key" is a user secret that deterministically generates batches of OTS key-pairs.
2. A "Public Key" is a merkle-root of a batch of OTS key-pairs.
3. A "Signature" comprises of an OTS signature, an OTS public key to validate that signature,

and a merkle-proof of that key within a "batch".
4. Signature verification entails both the underlying OTS verification algorithm and a merkle-

proof verification of the key.

2.1 Notation & Definitions

1. || is operator that denotes byte array concatenation. If the operand is a BYTE , DWORD ,
QWORD it is implicitly converted to byte array using ToBytes function.

2. H(x) is a one-way cryptographic hash function (CHF) of U -bits.

3. H^n is cryptographic hash function that iterates the H function n times such that H^0(x) =
x, H^1(x) = H(x), H^2 = H(H(x)), etc .

4. LastDWord(arr) is a function that extracts the last 4 bytes of byte array arr and re-

interprets it as a little-endian 32-bit unsigned integer.
5. LastQWord(arr) is a function that extracts the last 8 bytes of byte array arr and re-

interprets it as a little-endian 64-bit unsigned integer.
6. RandomBytes(N) is a function that returns an array of N cryptographically random bytes.

7. ToBytes(N) is a function takes an unsigned 64-bit (or 32-bit) integer argument N returns it
was an array of 8 (or 4) bytes in little-endian layout.

af://n12
af://n37

Field Description Bits
Value
Range

v AMS version 8 1..256

OTS OTS algorithm 16 1..65536

h Height parameter 8 0..255

RESERVED 30 bytes reserved for OTS parameters 224 0

Entropy
Cryptographically random bytes used to seed OTS key
generation

256 CRNG

AMS
Algorithm

Description
OTS
Algorithm

Value

LAMS Lamport Abstracted Merkle Signatures Lamport 1

WAMS Winternitz Abstracted Merkle Signatures W-OTS 2

WAMS+
Winternitz Abstracted Merkle Signatures
Plus

W-OTS+ 3

WAMS#
Winternitz Abstracted Merkle Signature
Sharp

W-OTS# 4

8. Unless otherwise specified, all byte layouts are in little-endian format by default.

2.2 Private Key

A Private Key P is generated as follows:

P = v || OTS || h || RESERVED || Entropy

A private key is 64 bytes in length and can be used to sign up to 2^(64 + h) messages. A Private
Key can derive up to 2^64 unique Public Keys.

2.2.1 Field: Version

Version is an 8-bit value mapping to integers 1..256 . As of this revision, the version is always 1
(mapping to all zeros). Values 2..256 are reserved for future revisions of the AMS scheme which

can evolve independently from underlying OTS schemes.

2.2.2 Field: OTS

The OTS field is a 16-bit field mapping to the integers 1..65536 which determines the AMS
algorithm being used. These values are globally allocated by the author. Currently, they are:

2.2.3 Field: Height

The height parameter h is a 1-byte value that determines how many OTS keys are coupled to a

single public key. From the AMS perspective, the security of a public key degrades after being
used more than 2^h signature generations.

af://n55
af://n90
af://n92
af://n120

Term Description Bits Value Range

C Key Code 64 UInt64

B Batch Number 64 UInt64

Z Spam Code 32 UInt32

R Batch Root U hash digest

Specifically, h refers to the height of a merkle-tree whose leaves are a set of OTS public key

hashes called the "batch". The merkle-root of the batch is called the "batch-root". A public key
commits to a single batch. Signatures are signed using one of the OTS keys from the batch and
never used again. The cardinality of a batch is 2^h .

Whilst a public key can only be used for up to 2^h signature verifications before necessitating

replacement, a private key can be used for 2^(64+h) signature generations. This follows from the

property that one private key can generate 2^64 unique public keys (and 2^h * 2^64 =
2^(64+h)). Although a private key must be discarded beyond that number, it is for all practical

purposes a reusable private key.

Choosing parameter h is left to the user as it's selection impacts the computational performance

of the private key (but negligibly for the public key). Specifically, signing and verifying are
negligibly impacted by h but generating keys and matching public keys to private keys is
impacted as O(h^2) . If the user is able to replace their public key regularly, a low value of 0 <= h

<= 8 is desirable. If a user plans to infrequently use their keys, a value h=16 may be more

appropriate in that expensive computations are done infrequently. The range 16 <= x <= 255

should be carefully considered, if at all.

NOTE Choosing h=0 will result in an private key that signs a single message, a redundant OTS but
permitted for elegancy of the scheme.

2.3 Public Key

The public key K is a many-time public key and defined as follows:

K = v || h || C || B || Z || R

The public key is (U/8 + 16) bytes in length and can be used for 2^h signature verifications

before security begins to degrade. A single private key can derive up to 2^64 public keys by
varying the B parameter.

2.3.1 Field: Key Code

The key code C is a 64-bit unsigned integer derived as:

C = LastQWord(H^2(P))

The key code is used to efficiently test if a public key derives from a private key P . Since the key

code is a cryptographically random checksum with 2^64 possible values, it is unlikely to collide
with other (genuine) keys and thus can be used to efficiently filter matching keys.

af://n126
af://n156

Term Description

K'_i The i'th OTS public key in the batch B (i=0 in above)

Term Description

MerkleRoot The root of the hash-tree of the input leaf nodes

K'_i The i'th OTS public key in the batch B

h Tree Height parameter which determines batch size 2^m

n Index of last item in batch (which is always 2^h - 1)

2.3.2 Field: Batch Number

A private key can generate up to 2^64 public keys each of which commits to 2^h OTS public
keys. The batch number identifies which batch a public key commits to. All batches are derived
from the private key using the batch number as a generating nonce.

2.3.3 Spam Code

The Spam Code Z is a 32-bit unsigned integer checksum value derived as:

Z = LastDWord(H(K'_0)))

The spam code works similarly to the key code except it is intended to thwart DoS attacks arising
from deliberate key code collisions sent by a spammer. Without a spam code, a DoS attack could
arise if a verifier is overwhelmed by a large list of public keys with key codes that (deliberately)
collide with a known verifiers key code.

This can occur since calculating the batch-root is a computationally expensive process and a
verifier can never determine if a public key is "cryptographically invalid". It can only determine if a
public key derives from a private key (or not). This entails a batch-root calculation. The spam code
is a mechanism to allow rapid filtering of such maliciously colliding invalid keys.

In the case where an attacker floods a verifier known good B and Z values, a verifier need only

perform the expensive batch-root calculation once and cache the computed Public Key for B for
future comparisons.

In the case where an attacker floods with varying B and C values, in an attempt to force the

verifier to always evaluate the batch-root for B , precomputing/caching will not work since the

range of values of B is too vast. In this scenario, the computation of the spam code is sufficient to

discard this key, since the spammer cannot guess this code as it requires knowledge of the Private
Key.

NOTE Knowledge of C or Z does not provide an attacker any computational advantage in a
brute-force attack on P .

2.3.4 Field: Batch Root

The batch root is a merkle-root of the set of OTS public keys in the batch. It is defined as follows:

R = MerkleRoot(H(K'_0), ..., H(K'_n))

af://n160
af://n162
af://n177

Term Description Bits

v Version (from P) 8

h Height (from P) 8

i
The index of the selected OTS key from
the batch

32

S' The OTS signature for the message OTS_SigBits

P'_i The OTS private key which derives K'_i OTS_PrivKeyBits

K'_i
The i'th OTS public key from the

batch
OTS_PubKeyBits

R
The batch-root of the batch which
contains K'_i

U

Here the batch-root commits to a set ephemeral OTS keys which will be used in signature
generation and verification. Selection of the OTS key-pair is performed by the signer during the
signing process and care should be taken to never re-use an OTS key.

REMARK In blockchain-based applications, this is achieved by using a strictly increasing Nonce
field associated to the signer identity and stored in a public consensus database. The nonce is
strictly incremented after every signature and part of transaction itself. Since the transaction
update is ACID, it can be reliably used to for OTS key selection.

Merkle-tree roots and proofs follow standard merkle-tree constructions constructions widely
documented and developed.

NOTE In the definition above, the leaf-set of of the merkle-tree comprise of public key hashes. If
the OTS-layer of the AMS-algorithm passes up a public key hash, and matching CHF's are used, it
need not be hashed again. Re-using the public key value is sufficient (as it is already a hash
digest).

2.4 Signature Generation

For any message M , private key P and public key K a signature S is derived as follows:

 1: algorithm AMS_Sign

 2: Input:

 3: M: a message to sign (arbitrarily long byte array)

 4: P: an AMS private key to used to sign

 5: B: the batch of OTS keys to use

 6: i: the index of the OTS key in the batch

 7: Output:

 8: S: an AMS signature

 9: Pseudo-Code:

10: let v = P.Version

11: let (P'_i, K'_i) = GenOTSKeys(P, B, i)

12: let S' = GenOTSSig(H(M), P'_i)

13: S = v || h || i || K'_i || S' || GenMerkleProof(H(K'_i), i, R)

14: end algorithm

af://n200

Term Description Bits

GenOTSKeys(x,y,z)

OTS-layer function that generates the
z'th OTS key-pair in batch y for

private key x

GenOTSSig(x,y)

OTS-layer function that generates an
OTS signature of message-digest x

using OTS private key y

GenMerkleProof(x,y,z)

A standard merkle-tree function that
generates a merkle-proof that x is

y'th leaf of a merkle-tree with root z

OTS_SigBits
Length of the OTS signature as returned
by the OTS layer

OTS_PrivKeyBits
Length of an OTS signature as returned
by the OTS layer

OTS_PubKeyBits
Length of an OTS signature as returned
by the OTS layer. See Note below.

Signatures are (48 + OTS_PubKeyLenLength(S') + (h+1)*(U/8)) bytes in length, the bulk of

which comprises of the OTS signature.

NOTE Whilst an AMS signature embeds an OTS public key, it's possible to compress the OTS
public key in the OTS layer before passing it up to the AMS layer. This is done by using the hash of
the public key (i.e. the "public key hash") rather than the public key itself. This works for many OTS
algorithms since the signature verification process rebuilds the public key from the signature and
thus it can verify against the public key hash instead. This optimization is employed in WAMS
where the W-OTS public key is actually the W-OTS public key hash. Thus for any Winternitz
parameter w , the "W-OTS public key" in the WAMS signature only consumes U bits (a significant
optimization).

2.4.1 OTS Index

When signing. the selection of i is performed by the signer and care should be taken to not re-
use a previously used one-time key. In blockchain-based applications, this is achieved by using the
strictly increasing Nonce field from signing identity object stored in a public consensus database.
Since this does not require local database updates, and the Nonce is always updated across a
consensus database after a signed transaction is confirmed, there is no risk of accidental key
reuse arising from local state corruption. Signature re-use could still exist but this would arise
from a bug or attack to the client code (no different to traditional cryptographic schemes). When
used in this manner, the AMS scheme can be considered "practically stateless", however it is not
strictly so.

In non-blockchain/DLT applications, care should be taken to remember the index of the last OTS
signature so as not to re-use. Note, if an attacker is able to trick the code into re-using an OTS key,
it's security could be totally compromised after a few re-uses.

af://n262

Term Description

VerOTSSig(x, y,

z)

An OTS-layer function that returns true iff x is an OTS signature of
message-digest y which verifies with OTS public key (hash) z ,

otherwise returns false.

VerMerkleProof(u,

v, w, x, y)

An OTS-layer function function that returns true iff u is the merkle-
proof that v is the w'th leaf in a merkle-tree whose leaves are a

set of cardinality x and whose merkle-root is y .

2.5 Signature Verification

The VerMerkleProof term ensures that the OTS key used by the signature was committed to by

the public key and the VerOTSSig term verifies the OTS signature verifies to that OTS key. With

these two steps, the verifier has determined the AMS signature contains a valid OTS signature and
that the OTS public key in the signature was committed to by the AMS public key. Since only the
bearer of the AMS private key can know the OTS private key, it follows the AMS signature was
signed by the bearer of the AMS private key.

NOTE it is desirable that the merkle-tree construction employed within AMS should not require
existence proofs to contain direction flags when traversing the tree. Instead these directions
ought to be implicit and inferred from the index of the leaf-node being traversed from and the
cardinality of the set of leaf nodes. Merkle "existence proof" should only ever contain the minimal
set of parent-node hashes required to evaluate the proof.

References

 1: algorithm AMS_Verify:

 2: Input:

 3: M: the message being verified (arbitrary byte array)

 4: S: the AMS signature of M

 5: K: the AMS public key used to verify S

 6: Output: Boolean

 7: Pseudo-Code:

 8: let size0 = U/8 ; byte size of a CHF digest

 9: let size1 = OTS_SigLen/8 ; byte size of an OTS

signature

10: let size2 = OTS_PubKeyLen/8 ; byte size of an OTS public

key (hash)

11:

12: let reader = byte stream reader for S ; a little-endian byte

reader

13: let v = reader.ReadByte ; AMS version

14: let h = reader.ReadWord ; height

15: let i = reader.ReadUInt ; OTS key index

16: let PKH = reader.ReadBytes(size2) ; OTS public key (hash)

17: let S' = reader.ReadBytes(size1) ; OTS signature

18: let MP = reader.ReadBytes(h * size0) ; merkle-proof

19: let R = K.R ; batch root

20: Result = (v == K.Version) AND VerMerkleProof(MP, PKH, i, 2^h, R) AND

VerOTSSig(S', H(M), PKH)

21: end algorithm

af://n265
af://n279

1. Ralph Merkle. "Secrecy, authentication and public key systems / A certified digital signature". Ph.D. dissertation, Dept. of Electrical
Engineering, Stanford University, 1979. Url: http://www.merkle.com/papers/Certified1979.pdf ↩

2. IRTF. "XMSS: eXtended Merkle Signature Scheme". Accessed: 2020-07-01, URL: https://tools.ietf.org/html/rfc8391 ↩

http://www.merkle.com/papers/Certified1979.pdf
https://tools.ietf.org/html/rfc8391

	AMS - Abstract Merkle Signature Scheme
	1. Introduction
	2. AMS Scheme
	2.1 Notation & Definitions
	2.2 Private Key
	2.2.1 Field: Version
	2.2.2 Field: OTS
	2.2.3 Field: Height

	2.3 Public Key
	2.3.1 Field: Key Code
	2.3.2 Field: Batch Number
	2.3.3 Spam Code
	2.3.4 Field: Batch Root

	2.4 Signature Generation
	2.4.1 OTS Index

	2.5 Signature Verification

	References

