Abstract: We prove the non-existence of odd perfect numbers, by the non-existence of natural numbers with sum of divisors equal to two.

As usual, ceil denotes the ceiling function, i.e. the least integer greater than a given value; p and n denote an arbitrary prime ($2,3,5 \ldots$ such that p is a sum but not product of smaller natural numbers) and natural number $\left(1,2,3 \ldots n_{+1}=n+1\right)$ respectively; $\sigma_{s}(n)$ denotes the sum of the divisors of n raised to the $s^{\text {th }}$ power; and $v_{p}(n)$ denotes the power of p in the prime factorization of n. To investigate the sum of divisors function empirically with the web based graphing calculator, Desmos ${ }^{\mathrm{TM}}$, we use,

$$
\sigma_{s}(n):=s_{i g m a}(s, n)=\sum_{k=1}^{n} k^{s}\left(1-\text { ceil }\left\lceil\frac{n \bmod k}{k}\right\rceil\right)
$$

The definition of a perfect number [1, 2], is a natural number with the sum of its' divisors equal to twice the number itslef. Symbolically, $\sigma_{1}(n)=2 n$. Our proof turns on well known properies of the sum of divisors function and a lemma. The sum of divisors of a prime number is one more than the prime, because a prime is only divisible by one and itself. The sum of divisors function is multiplicative. When a function is multiplicative, given co-prime co=factors, f and f, the product of co-factors evaluated as independent arguments, equals the function evaluated with the single argument as their product. Symbolically,
this
is,

$$
\operatorname{gcd}\left(f, f^{\prime}\right)=1, \quad \sigma_{1}(f) \sigma_{1}\left(f^{\prime}\right)=\sigma_{1}\left(f f^{\prime}\right)
$$

Lemma: No natural number has sum of divisors equal to two. $\nexists n: \sigma_{1}(n)=2$.
Proof: Direct.

1. $\quad \sigma_{1}(1)=1$.
2. $\sigma_{1}(p)=p+1$.
3. $\sigma_{1}(n)=\prod_{k=1}^{\infty} \sigma_{1}\left(p_{k}^{\alpha_{k}}\right), \alpha_{k}=v_{p_{k}}(n)$. By the fundamental theorem of arithmetic.
4. Since no primes are less than two, and, $\sigma_{1}(n)$ for all n greater than 1 , is the product of numbers at least three, the lemma must be true by the properties of multiplication.

Theorem: There are no odd perfect numbers.
Proof. By contradiction.

1. Suppose N is an odd perfect number. Then, because the sum of divisors function is multiplicative, we can find a pair of natural numbers that are co-prime factors. f and f.of N, such that, by the definition of a perfect number,

$$
\sigma_{1}(f) \sigma_{1}\left(f^{\prime}\right)=2 N
$$

2. We know N is odd by the premise, and since the factors are co-prime, we have, $\sigma_{1}(f)=N$, and, $\sigma\left(f^{\prime}\right)=2$.
3. By the lemma,,f^{\prime} does not exist. contradicting the multiplicative nature of the sum of divisors function. Hence, there can be no odd perfect numbers.

References

[1] Euclid, Elements, Alexandria, 300 BC.
[2] N. Sloan, "Online Encyclopedia of Integer Sewuences," in A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n)., https://oeis.org/A000203, 2022.

