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Abstract. This paper focuses on one of the most studied areas of number theory – the distribution 

of prime numbers. Particularly, the last section of this paper comes up with a conjecture that 

could lead to a new way to look the distribution of prime numbers.  
 

Introduction and Background 

The prime number theorem is one of the fundamental theorems in number theory. 

The prime number theorem, for a given value of x, takes π(x) (the prime counting function) to 

represent the number of primes that are not greater than x. 

 

Theorem 1.1.(Prime number theorem). The asymptomatic distribution of the prime numbers 

among the positive integers can be shown by: 

𝜋(𝑥) =
𝑥

log (𝑥)
 

In this paper, the proof of the prime number theorem is not presented as there are many 

literatures including many ways of proving it. 

In relation to the PNT, one of the most important works on prime numbers can be presented as 

of a consequential proof i.e. the Bertrand postulate. Bertrand’s work opened for lots of other 

scholarly advancements on the intervals of distributions of prime numbers it the Bertrand 

postulate (often regarded as ‘postulate’ but was proved by Tchebychev ) is presented as a theorem 

in this paper. 

Theorem 1.2(Bertrand-Tchebychev theorem): For all n ≥ 1, there is a prime number, p that is 

element of (𝑛, 2𝑛].         

 

N.B.: This interval in Theorem 1.2 is usually given as (𝑛, 2𝑛]., that is to include the only even 

prime number, 2. If the interval of n is given as (1, ∞), the interval of Theorem 1.2 follows as(𝑛, 2𝑛). Both 

are equivalent statements. 

 

In 1845, the French mathematician Joseph Bertrand conjectured Theorem 1.2. After five years, 

in 1850, Tchebychev proved the conjecture.  

This proof of Tchebychev of Bertrand postulate is found on ⌈1⌉. Elegantly elementary proof of 

the postulate was provided by Paul Erdos in 1932 is also found on ⌈2⌉. 

 



 

Bertrand- Tchebychev theorem and its implicative assumptions through Goldbach 

Conjecture 

Goldbach conjecture is one of the most famous open questions in whole of mathematics. In 

this paper, I am defining ‘Goldbach Sum’ as follows: 

Definition 2.1 (Goldbach Sum): is the sum of two prime numbers. 

Conjecture 2.1 (Goldbach Conjecture): Every even natural number, n > 2, can be expressed 

as the sum of two prime numbers. 
 

Now, following from a logical deduction, it is evident that: 

Theorem 1.2 implies for extended Bertrand interval, i.e., the theorem is also consistently true 

for n→2n and 2n→4n. 

 

Theorem 2.1: (Suppose Goldbach conjecture to be true.) Then, the set of all prime numbers that are 

between two unique Goldbach sums are infinitely many. (Or, between any two unique 

Goldbach sums, there is at least one prime number). 
 

Proof 2.1: Elementary Proof of Theorem 2.1. 

From Theorem 1.2: For n>1, n<p<2n implies for n>1, 2n<p<4n. [1.2.1.] 

Theorem 2.1 assumes Goldbach conjecture to be true. Therefore, the following holds: 

2n= r+s and 4n= a +b, where r, s, a, and b are unique odd prime numbers. [1.2.2] 

From [1.2.1.] and [1.2.2.], the following is deduced: 

r+s < p < a+b.     ∎ 

 

By proof 2.1, I have successfully shown that any possible proof of Goldbach conjecture makes 

Theorem 2.1 a corollary. 
 

The intervals regarding to the squares of prime numbers 

Lemma 3.1: For any prime number not less than 5, p≥ 5, p2-1 is always a multiple of 24. 
 

Proof 3.1: Common proof of Lemma 3.1 

P2-1 = (p+1) (p-1) and we know that every prime number with the specified interval is an odd 

number. Therefore: P2-1 = (2n+1)2 – 1. 

- (2n+1)2 – 1 = 4n2+4n 

- 4n2+4n = 4n (n+1) ……… (𝑛∈ 2𝑘) ˅  ((𝑛 + 1)) ∈ 2𝑘) ≡ 𝑇𝑇 . . . k ∈ {1, 2,3 . . .} Implies 

that: P2 – 1 = 8k . . . k ∈ {1, 2, 3 . . . }  ……………….. [3.1.1] 



P, P +1, P – 1 are consecutive numbers. And P is a prime number. Therefore, the following 

holds true:((𝑃 + 1) ∈ 3𝑘 ) ˅ ((𝑃 − 1)) ∈ 3𝑘) ≡ 𝑇 . . . k ∈ {1, 2, 3 . . .} ........................................ [3.1.2.] 
 

From [3.1.1.] and [3.1.2.], it is evident that, P2 – 1 = 24(k) . . .. k ∈ {1, 2, 3 . . .}  ∎ 

 

By proof 3.1, Lemma 3.1 is proved. And from Lemma 3.1, I have deduced the following theorem 

which I proved in proof 3.2. 

 

Theorem 3.1.: There are infinite sets of triads of odd prime numbers, p, q and r, which fulfill the 

following condition: 

𝑃2 − 𝑞2 = 𝑟2 − 1 ................ 𝑤here 𝑃 > 𝑞 

Proof 3.2: Elementary proof of Theorem 3.1 

From Lemma 3.1, it directly follows that, for two prime numbers p and q, p2 – 1 and q2 – 1 are 

multiples of 24. 

Let p2 – 1 = 24(x) and q2-1 = 24(y) 

Then, p2 – q2 = 24 (x –y), p2 – q2 = 24w . . . where w= x-y ................................................... [3.2.1.] 

Let set A be the set of all multiples of 24 i.e. {24, 48, 72 ........ 24n} 

From all elements of set A, those elements that give prime numbers upon the addition of one 

are called vicinus primus (neighbors of primes). 

Let set B be the set of all vicinus primus. As it is obvious, set B is subset to set A. 

Let set C be the set of differences of different elements of set B, i.e., all possible values of ‘w’. 

Elements of set C that are in set B are, therefore, vicinus primus. This can be restated as the 

following: 

𝑤𝑤 ∈ (𝐵 ∩ 𝐶) Implies 24(𝑤) + 1 = 𝑟2 . . . where r is a prime number . . . . . . [3.2.2.]  ∎ 

From [3.2.1.] and [3.2.2.], it is shown that 𝑃2 − 𝑞2 = 𝑟2 − 1 where 𝑃 > 𝑞. 

Summative and Subtractive Intervals of Prime Numbers 

New technical terms I have used on section 4 are defined as follows. 

N.B.: Goldbach’s Sum (As defined in Definition 2.1): The sum of two prime numbers. 

Definition 4.1 (Goldbach’s Sequence): is a sequence of Goldbach’s sums. 

- Partially listed elements of Goldbach’s sequence: 5, 8, 12, 18, 24 . . . 

More clearly, Goldbach’s sequence is equivalent to the following expression: 

GN = (PN + PN+1), (PN+1 + PN+2), (PN+2 + PN+3) . . . (PN+K + PN+ (K+1)) 



Where N and K are any natural number 

PN is the Nth prime number 

Definition 4.2 (De Polignac’s Difference): is the difference of two prime numbers. 

Definition 4.3 (De Polignac’s Sequence): is a sequence of Polignac’s difference. 

- Partially listed elements of Polignac’s sequence: 1, 2, 2, 4, 2, 4, 2, 4, 6 . . . 

More clearly, Goldbach’s sequence is equivalent to the following expression: 

DN = (PN+1 - PN), (PN+2 - PN+1), (PN+3 - PN+2) . . . (PN+ (K+1) - PN+K) 

Where N and K are any natural number 

PN is the Nth prime number 
 

After my work on intervals of prime numbers, I have put forward the following conjecture: 

 

Conjecture 4.0 (Ali’s Conjecture): Between a Goldbach sum and De Polignac’s difference of the 

same prime numbers, p and q, there exist a prime number, r, that is different from both p and q. 

To rephrase my conjecture: From any two prime numbers, p and q, there exists a prime 

number, r, which satisfies the following expression: 

r ∈ (D(p, q) , G(p, q)) or 

r ∈ (p - q, p + q) and r≠p, q 

 

Lazarus’ First Conjecture 

A New Development on Number Theory and the Twin Prime Conjecture 

Introduction 

The Twin Prime Conjecture is one of the oldest conjectures in not only number theory but also in 

whole of mathematical sciences. This conjecture famously states that there are infinite pairs of prime 

numbers whose difference is two. So far, major breakthroughs have been made by various 

mathematicians around the world, but whole edging solution has stayed out of sight.  

In this section of the paper, I will present a new conjecture that makes the twin prime conjecture 

merely a consequence of its potential proof. If this conjecture, namely the ‘Lazarus’ first conjecture, 

is proven, the twin prime conjecture will automatically become a corollary that is directly deducible 

from my conjecture.  

 

Lazarus’ First Conjecture: states that there exist infinite sets of four prime numbers p, q, r, and s, 

that are related in the following way: 

q is the p’th odd number, r is the q’th odd number, and that r – q – p = s.  



The orderly sequence of prime numbers that can fill the place of S under a given interval are called 

‘’Rachel’s Sequence’’ and the prime numbers that make up this sequence are called Rachel’s primes. 

For example, 17 is a Rachel prime. Because one can find three prime numbers that are related to it 

in the aforementioned numeric relation. 

These prime numbers are 19, 37, and 73. 37 is the 19th odd number and 73 is the 37th odd number. 

And 73 – (19 + 37) = 17.  

 

Computer Language Assisted Analysis of Lazarus’ Conjecture 
The following python program was used to analyze how far this conjecture: 
 
T=[*Comma Separated Values of all Prime numbers less than N*]………N = 1,000,000  
S=[  ] 
for i in T: 
    x=(2*i)-1 
    if x in T: 
        y=(2*x)-1 
        if y in T: 
            S.append(y) 
#print(S) 
h=[] 
f=[] 
 

for d in S: 
    j=(d+1)/2 
    l=(j+1)/2 
    a=d-j-l 
    if a in T: 
        f.append(a) 
     
print(f) 
print(len(f)) 
#print(T) 
 
And, as an outcome of this code, I have found about 118 Rachel primes for all primes < 1,000,000. 
All 118 Rachel’s prime numbers for P <1,000,000 are given below as comma listed values.  
 

17.0, 617.0, 827.0, 1277.0, 2087.0, 2129.0, 2309.0, 2789.0, 3767.0, 4157.0, 4229.0, 4259.0, 4637.0, 5417.0, 7559.0, 
8627.0, 13679.0, 15287.0, 16649.0, 17027.0, 17837.0, 18119.0, 19139.0, 20639.0, 20807.0, 21587.0, 25409.0, 26699.0, 
28547.0, 29207.0, 29669.0, 31769.0, 32117.0, 32189.0, 32717.0, 33179.0, 34847.0, 44087.0, 44129.0, 46817.0, 47657.0, 
48779.0, 49787.0, 49937.0, 51197.0, 53147.0, 55217.0, 55817.0, 57329.0, 57557.0, 58169.0, 61379.0, 61559.0, 63647.0, 
63839.0, 64919.0, 67427.0, 70139.0, 70619.0, 71807.0, 78539.0, 80489.0, 81929.0, 82349.0, 87629.0, 92219.0, 97847.0, 
99707.0, 104849.0, 108107.0, 108377.0, 109199.0, 109469.0, 112337.0, 115979.0, 117809.0, 119099.0, 121577.0, 
125219.0, 130649.0, 131249.0, 131477.0, 131837.0, 132707.0, 151607.0, 152039.0, 156059.0, 156257.0, 159167.0, 
164447.0, 164837.0, 168449.0, 170099.0, 170759.0, 174989.0, 175757.0, 179819.0, 187067.0, 189797.0, 193859.0, 
195047.0, 195929.0, 199739.0, 202637.0, 203657.0, 211049.0, 223919.0, 224069.0, 226199.0, 228509.0, 229589.0, 
231269.0, 233939.0, 239429.0, 240257.0, 247337.0, 248639.0, 249857.0. 



 
 

Relationship between Lazarus’ conjecture and the Twin prime conjecture 
In this section, I am going to present an elementary proof that proves that the twin prime conjecture 
is can be proved by default if Lazarus’ conjecture can be proved, i.e., for a possible Lazarus’ theorem, 
the twin prime conjecture serves as a corollary.  
 
Proposition 5.0 (On the Generalization of solutions for declarations of infinite size): If set A 
is a sub set of set B and if set A is proved to have a size of X, then, it is necessary that set B has at 
least the size of X. 

i.e., A⊆B ⇒ n(B) ≥n(A) 
If one is able to show that a pair of the four prime numbers of Lazarus’ conjecture are subsets of set 
of twin primes, and if we assume the suggested conjecture to be true, it would be necessary to 
conclude that the twin prime conjecture is a direct consequence for the Lazarus’ conjecture. 
 
Theorem 5.0 (On the relationship between the twin prime and the Lazarus’ conjecture): A 
mathematically deducted solution of Lazarus’ conjecture implies a solution for the twin prime 
conjecture.  
 

Elementary proof for Theorem 5.0: 
 Let the four prime numbers in Lazarus’ conjecture be p, q, r and s.  
i.e., q = 2p – 1 ………………………   1 
r = 2q – 1 ………………………… … 2 
 s = r – (p + q) ………………………. 3 
Substituting the assigned relationships of equation 1 and 2 inside equation 3, we get: 
s = 2q – 1 – (p + 2p -1)                                     
  = 2(2p – 1) – 1 – (3p – 1)              
  = 4p – 2 -1 – 3p + 1                   

s= p – 2  ∎ 
By this, we have shown that two of the four prime numbers involved in the Lazarus’ conjecture 
are twin prime numbers. Hence, supposing Lazarus’ conjecture to be true, it appears an absolute 
mathematical necessity to conclude that twin primes are infinite. 
 
 

Additional Contributions of the Lazarus’ conjecture. 
A possible proof of the Lazarus’ conjecture can also be used for proving the infinite number of 
Sophie-Germain primes at primes that create overlapping cases of Lazarus conjecture with the twin 
prime conjecture. If Rachel’s primes are infinite in size, so are couple of prime numbers, p and r, 
where r = 2p -1. Hence, intersecting points of the two conjectures appear at a point where another 
prime number w, that can be substituted to the value of 2p + 1, exists. So, at points where w exists, 
both twin prime numbers and Sophie Germain prime numbers appear. 
 
Considering that Rachel’s primes are infinitely existing, so are couple of prime numbers, p and r, 
where r= 2p – 1. Hence, from the infinitely standing twin prime numbers, those that create a twin 
prime relation with the prime number, r, are either in the form of 2p – 3 or 2p +1. The latter is 
what we call a format of Sophie – Germain prime numbers. In this regard, the Lazarus’ conjecture 
creates link between two very famous problems: the twin prime and the Sophie-Germain problem.  
 



Moreover, from equation 1 of theorem 1.0, by substituting the final value of s, which is p – 2, unto 
p, we get the prime number q = 2s – 3. Again, this shows that, supposing the Lazarus’ conjecture 
true, it is mathematically evident that there are infinite number of three prime numbers, p, r, and q, 
that 2q – 1= p and 2q + 1= r. 
 
The role of Rachel’s primes are also profound in the world of data encryption.  
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