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Abstract. Applying the pothole method on the factors of numbers of the

form 2n − 1, we prove the inequality
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3
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where b·c denotes the floor function and ι(n) the shortest addition chain pro-
ducing n.

1. Introduction

An addition chain producing n ≥ 3, roughly speaking, is a sequence of numbers
of the form 1, 2, s3, s4, . . . , sk−1, sk = n where each term is the sum of two earlier
terms in the sequence, obtained by adding each sum generated to an earlier term
in the sequence. The length of the chain is determined by the number of entries in
the sequence excluding n. There are numerous addition chains that result in a fixed
number n. The shortest or optimal addition chain produces n. However, given that
there is currently no efficient method for getting the shortest addition yielding a
given number, reducing an addition chain might be a difficult task. This makes
addition chain theory a fascinating subject to study. Arnold Scholz conjectured the
inequality by letting ι(n) denote the length of the shortest addition chain producing
n.

Conjecture 1.1 (Scholz). The inequality holds

ι(2n − 1) ≤ n− 1 + ι(n).

It has been shown computationally that the conjecture holds for all n ≤ 5784688
and in fact it is an equality for all n ≤ 64 [2]. Alfred Brauer proved the scholz
conjecture for the star addition chain, an addition chain where each term obtained
by summing uses the immediately subsequent number in the chain. By denoting
the shortest length of the star addition chain by ι∗(n), it is shown that (See,[1])

Theorem 1.1. The inequality holds

ι∗(2n − 1) ≤ n− 1 + ι∗(n).
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In this paper we study short addition chains producing numbers of the form
2n−1 and the Scholz conjecture. We adopt the method of filling the potholes to
obtain an explicit improved upper bound for an addition chain producing 2n − 1.
This method by itself never really helped to obtain an upper bound of this type.
In order to improve on the previous bound via this method, we will consider the
numbers of the form 2n− 1 and carry out a certain decomposition according to the
parity of the exponents n. For each of these specific decomposition - informed by
choice of exponents - we apply the pothole method on individual factors, so that
by applying an inequality of Alfred Braurer one can get some control on the length
of the addition chain producing the individual factors. The situation becomes a
little less straight-forward in the odd case, where some partition is carried out at
the compromise of a longer addition chain.

2. Sub-addition chains

In this section we introduce the notion of sub-addition chains.

Definition 2.1. Let n ≥ 3, then by the addition chain of length k − 1 producing
n we mean the sequence

1, 2, . . . , sk−1, sk

where each term sj (j ≥ 3) in the sequence is the sum of two earlier terms, with
the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n

with ai+1 = ai + ri and ai+1 = si for 2 ≤ i ≤ k. We call the partition ai + ri
the i th generator of the chain for 2 ≤ i ≤ k. We call ai the determiners and
ri the regulator of the i th generator of the chain. We call the sequence (ri) the
regulators of the addition chain and (ai) the determiners of the chain for 2 ≤ i ≤ k.

Definition 2.2. Let the sequence 1, 2, . . . , sk−1, sk = n be an addition chain pro-
ducing n with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then we call the sub-sequence (sjm) for 1 ≤ j ≤ k and 1 ≤ m ≤ t ≤ k a sub-
addition chain of the addition chain producing n. We say it is complete sub-
addition chain of the addition chain producing n if it contains exactly the first t
terms of the addition chain. Otherwise we say it is an incomplete sub-addition
chain.

2.1. Summary sketch and idea of proof. In this section we describe the method
of filling the potholes which is employed to obtain our upper bound. We lay them
down chronologically as follows.

• We first construct a complete sub-addition chain producing 2n−1. For tech-
nical reasons which will become clear later, we stop the chain prematurely
at 2n−1.

• We extend this addition chain by a length of logarithm order.
• This extension has missing terms to qualify as addition chain producing

2n−1. We fill in the missing terms thereby obtaining what one might refer
to as spoof addition chain producing 2n − 1.
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• Creating this spoof addition chain comes at a cost. The remaining step will
be to cover the cost and render an account to obtain the upper bound.

3. Addition chains of numbers of special forms and Main result

In this section, we prove an explicit upper bound for the length of the shortest
addition chain producing numbers of the form 2n− 1. We begin with the following
important but fundamental result.

Lemma 3.1. Let ι(n) denotes the shortest addition chain producing n. Then we
have the inequality

b log n

log 2
c ≤ ι(n).

Proof. The proof of this Lemma can be found in [1]. �

Lemma 3.2. Let ι(n) denotes the shortest addition chain producing n. If a, b ∈ N
then

ι(ab) ≤ ι(a) + ι(b).

Proof. The proof of this Lemma can be found in [1]. �

Theorem 3.3. The inequality

ι(2n − 1) ≤ 3
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holds for all n ∈ N with n ≥ 2, where b·c denotes the floor function and ι(·) the
length of the shortest addition chain.

Proof. First, we consider the number 2n−1 and examine the length of the addition
chain according to the parity of the exponents n. If n ≡ 0 mod 2 then we obtain
the factorization

2n − 1 = (2
n
2 − 1)(2

n
2 + 1).

By setting n
2 = k, we construct the addition chain producing 2k as 1, 2, 22, . . . ,

2k−1, 2k with corresponding sequence of partition

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2k−1 = 2k−2 + 2k−2, 2k = 2k−1 + 2k−1

with ai = 2i−2 = ri for 2 ≤ i ≤ k + 1, where ai and ri denotes the determiner and
the regulator of the ith generator of the chain. Let us consider only the complete
sub-addition chain

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2n−1 = 2k−2 + 2k−2.

Next we extend this complete sub-addition chain by adjoining the sequence

2k−1 + 2b
k−1
2 c, 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c . . . , 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.

We note that the adjoined sequence contributes at most

b log k

log 2
c = b log n− log 2

log 2
c < b log n

log 2
c ≤ ι(n)
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terms to the original complete sub-addition chain, where the upper bound follows
by virtue of Lemma 3.1. Since the inequality holds

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21 <

k−1∑
i=1

2i

= 2k − 2

we insert terms into the sum

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21(3.1)

so that we have
k−1∑
i=1

2i = 2k − 2.

Let us now analyze the cost of filling in the missing terms of the underlying sum.

We note that we have to insert 2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1 into (3.1) and this is

comes at the cost of adjoining

k − 2− bk − 1

2
c

terms to the term in (3.1). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.(3.2)

Again we have to insert 2b
k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1 into (3.2) and this comes at the

cost of adjoining

bk − 1

2
c − bk − 1

22
c − 1

terms to the term in (3.2). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
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2 c+1) + 2b
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2 c + (2b
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By iterating the process, it follows that we have to insert into the immediately
previous term by inserting into (3.3) and this comes at the cost of adjoining

bk − 1

2s−1
c − bk − 1

2s
c − 1

terms to the term in (3.3) for 1 ≤ s ≤ b logn
log 2 − 1c since we filling in at most b log k

log 2 c
blocks with k = n

2 . It follows that the contribution of these new terms is at most
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obtained by adding the numbers in the chain

k − 1− bk − 1

2
c − 1
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2
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...
...
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...
...
...
...
...
...
...
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Appealing to Lemma 3.2 the inequality

ι(2n − 1) ≤ ι(2n
2 − 1) + ι(2

n
2 + 1) ≤ δ(2n

2 − 1) + ι(2
n
2 + 1)

holds for even n, where δ(·) is the length of the constructed addition chain. By
undertaking a quick book-keeping, it follows that the total number of terms in the
constructed addition chain producing 2k − 1 with k = n

2 is

δ(2k − 1) ≤ k + k − 1−
⌊
k − 1

2b
log k
log 2 c

⌋
− b log k

log 2
c+ ι(n)

= n− 1−
⌊

n− 2

2b
log n
log 2−1c+1

⌋
− b log n

log 2
− 1c+ ι(n).

Now we construct an addition chain producing 2k + 1. We construct the addition
chain producing 2k as 1, 2, 22, . . . , 2k−1, 2k with corresponding sequence of partition

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2k−1 = 2k−2 + 2k−2, 2k = 2k−1 + 2k−1

with ai = 2i−2 = ri for 2 ≤ i ≤ k + 1, where ai and ri denotes the determiner and
the regulator of the ith generator of the chain. By adding 1 to the last term of the
chain, we obtain the addition chain producing 2k + 1 of the form 1, 2, 22, . . . ,
2k−1, 2k, 2k + 1 of length k + 1 = n

2 + 1. By combining the contribution of the
length of the addition chains constructed, we obtain in the case n ≡ 0 (mod 2) the
inequality

ι(2n − 1) ≤ 3
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n− 2

2b
log n
log 2−1c+1

⌋
− b log n

log 2
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We now examine the case n ≡ 1 (mod 2). In this case, we write

2n − 1 = (2n−1 − 1) + (2n−1 − 1) + 1

so that we construct an addition chain producing 2n−1 − 1. Once this addition
chain is obtained, then we add the term 2n−1 − 1 to itself and finally add 1 to
obtain the addition chain producing 2n − 1. It will follow from this construction
that the length δ(2n− 1) is the sum of the length of the addition chain δ(2n−1− 1)
and 2. Since n − 1 ≡ 0 (mod 2), we can adapt the argument of the even case to
obtain the upper bound

δ(2n−1 − 1) ≤ 3

2
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so that the length

ι(2n − 1) ≤ δ(2n−1 − 1) + 2 =
3
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so that the length

ι(2n − 1) ≤ 3

2
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2b
log n
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log 2
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1

2
.

The claimed inequality follows by combining both the even and the odd case. �
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