Conjecture that no sum of divisors exists of the form $x^{2}+1$

Julian Beauchamp
julianbeauchamp47@gmail.com

November 23, 2022

Abstract

In this paper, we conjecture that no sum of divisors exists of the form $x^{2}+1$. We offer a proof only for prime numbers, showing that prime numbers cannot have a sum of divisors that is of the form $x^{2}+1$.

0.1 Introduction

The divisor function, $\sigma_{k}(n)$, for any integer, n, is defined as the sum of the k th powers of the integer divisors of n, i.e. d, and represented as:

$$
\sigma_{k}(n)=\sum_{(d \mid n)} d^{k}
$$

When $k=1$ the divisor function is called the sigma function, sometimes denoted as $\sigma_{1}(n)$ but conventionally and more often denoted simply as $\sigma(n)$. Here we only consider the case $k=1$.

The first few values of $\sigma(n)$, where $\sigma(1)=1$, are (OEIS: A000203): $1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,18,39,20,42,32,36,24,60,31,42,40 \ldots$

Where r is the number of distinct prime factors of n, p_{i} is the i th prime factor, and a_{i} is the maximum power of p_{i} by which n is divisible:

$$
\begin{equation*}
\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\left(a_{i}+1\right)}-1}{p_{i}-1} \tag{1}
\end{equation*}
$$

The divisor function is multiplicative (since each divisor c of the product $m n$ with $\operatorname{gcd}(m, n)=1$ distinctively correspond to a divisor a of m and a divisor b of n), but not completely multiplicative:

$$
\begin{equation*}
\operatorname{gcd}(a, b)=1 \Longrightarrow \sigma(a b)=\sigma(a) \sigma(b) . \tag{2}
\end{equation*}
$$

When n is prime p, then

$$
\begin{equation*}
\sigma(p)=p+1 \tag{3}
\end{equation*}
$$

Finally, it is known that the sum of divisors is only ever odd if n is a square, x^{2}, or twice a square, $2 x^{2}$.

However, a study of the values of n up to 30 shows that there are no sums of divisors of the form $x^{2}+1$.

Alternatively stated, in the following OEIS sequence, which describes $\sigma(n)-$ $1, a(0)=0, a(1)=0$, there are no values equal to a square: $0,0,2,3,6,5,11,7,14,12,17,11,27,13,23,23,30,17,38,19,41,31,35,23,59,30,41$, $39,55,29,71,31,62,47,53,47,90,37,59,55,89,41,95,43,83,77,71,47,123,56,92,71$, $97,53,119,71,119,79,89,59,167,61,95,103,126,83,143,67,125 \ldots$

Using this sequence, it is straightforward enough to see why this is true for prime n, but not for composite n.

From this sequence, we can see that

$$
\begin{align*}
\sigma\left(p^{2}\right) & =\sigma(p)^{2}+\sigma(p) \tag{4}\\
\Rightarrow \sigma\left(p^{2}\right) & =\sigma(p)[\sigma(p)+1] \tag{5}
\end{align*}
$$

The right hand side can never be a square.
For composite n, we can see that:

$$
\begin{equation*}
\sigma(a b)=\sigma(a) \sigma(b)+\sigma(a)+\sigma(b) \tag{6}
\end{equation*}
$$

But showing that this cannot be a square is not so easy.

