$$
\begin{gathered}
\text { On the sequence } \\
\left\{x_{N} \in(0,1) \wedge 3 x_{N}^{N}+3 x_{N}=1, N=1,2,3, \ldots\right\}
\end{gathered}
$$

Edgar Valdebenito
November 10, 2022
Abstract
We study the sequence :

$$
\left\{x_{N} \in(0,1) \wedge 3 x_{N}^{N}+3 x_{N}=1, N=1,2,3, \ldots\right\}
$$

Introduction

Let $\left\{x_{N}\right\}$ be the sequence given by

$$
0<x_{N}<1,3 x_{N}^{N}+3 x_{N}=1, N \in\{1,2,3, \ldots\}
$$

In this note we give some formulas related to $\left\{x_{N}\right\}$.
The number Pi is defined by

$$
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots\right)=3.1415926535 \ldots
$$

Formulas

Entry 1.

$$
x_{1}=\frac{1}{6}, x_{2}=\frac{\sqrt{21}-3}{6}, x_{\infty}=\frac{1}{3}
$$

Entry 2. for $N=3,4,5, \ldots$ we have

$$
x_{N}=\sum_{k=0}^{\infty} \frac{(N k)!(-1)^{k} 3^{-(N-1) k-1}}{((N-1) k+1)!k!}
$$

Entry 3. for $N=1,2,3, \ldots$ we have

$$
\pi=2 \sqrt{3} \sum_{n=0}^{\infty}\left(-x_{N}\right)^{n} \sum_{k=0}^{\left[\frac{n}{N}\right]}\binom{n-(N-1) k}{k} \frac{(-1)^{(N-1) k}}{2 n-2(N-1) k+1}
$$

Entry 4. for $N=1,2,3, \ldots$ we have

$$
\pi=3 \sum_{n=0}^{\infty}\left(x_{N}\right)^{n} \sum_{k=0}^{\left[\frac{n}{N}\right]}\binom{2 n-2(N-1) k}{n-(N-1) k}\binom{n-(N-1) k}{k} \frac{\left(\frac{3}{16}\right)^{n-(N-1) k}}{2 n-2(N-1) k+1}
$$

Entry 5. for $N=1,2,3, \ldots$ we have

$$
\pi=6 \sqrt{3} \sum_{n=0}^{\infty}(-1)^{n} x_{N}^{n+1} \sum_{k=0}^{\left[\frac{n}{N}\right]}\binom{n-(N-1) k}{k} \frac{(-1)^{N k} 3^{k}}{2 n-2 N k+1}
$$

Entry 6. for $N \gg 1$ we have

$$
x_{N} \approx \frac{1}{3}-\frac{3^{-N}}{1+N 3^{-N+1}}+\frac{(N-1) N 3^{-3 N+2}}{2\left(1+N 3^{-N+1}\right)^{3}}-\ldots
$$

Entry 7. for $N=1,2,3, \ldots$ we have

$$
y_{N, 0}=0, y_{N, k+1}=\frac{\left(1-3 y_{N, k}\right)^{N} 3^{-N}+N 3^{-N+1} y_{N, k}}{1+N 3^{-N+1}}, k=0,1,2, \ldots \Rightarrow \lim _{k \rightarrow \infty} y_{N, k}=\frac{1}{3}-x_{N}
$$

Entry 8. for $N=2,3,4, \ldots$ we have

$$
x_{N}=z_{N}^{-\frac{1}{N-1}}
$$

where

$$
z_{N}=\left(3+3\left(3+3(3+\ldots)^{\frac{N-1}{N}}\right)^{\frac{N-1}{N}}\right)^{\frac{N-1}{N}}
$$

Entry 9. for $N=2,3,4, \ldots$ we have

$$
x_{N}=\frac{1}{3}-\left\{\left(\frac{1}{3}-\left(\frac{1}{3}-\left(\frac{1}{3}-\ldots\right)^{N}\right)^{N}\right)^{N}\right\}
$$

Entry 10.

$$
\begin{gathered}
x_{N}<x_{N+1}, N=1,2,3, \ldots \\
\left(x_{N}\right)^{N}>\left(x_{N+1}\right)^{N+1}, N=1,2,3, \ldots
\end{gathered}
$$

Entry 11. for $N=2,3,4, \ldots$ we have

$$
\begin{gathered}
c(N, k)=3 c(N, k-1)+3 c(N, k-N), c(N, 0)=1, c(N,-k)=0, k=1,2,3, \ldots \\
\lim _{k \rightarrow \infty} \frac{c(N, k)}{c(N, k+1)}=x_{N}
\end{gathered}
$$

Examples:

$$
\begin{gathered}
c(2, k)=\{1,3,12,45,171,648,2457,9315, \ldots\} \\
c(3, k)=\{1,3,9,30,99,324,1062,3483, \ldots\} \\
c(4, k)=\{1,3,9,27,84,261,810,2511, \ldots\}
\end{gathered}
$$

Entry 12. for $N=2,3,4, \ldots$ we have

$$
f(N, z)=\frac{1}{1-3 z-3 z^{N}}
$$

$$
\begin{gathered}
g(N)=\int_{0}^{2 \pi} f\left(N, \frac{1}{4}+\frac{\mathrm{e}^{i x}}{6}\right) \mathrm{e}^{i x} \mathrm{~d} x \quad, i=\sqrt{-1} \\
x_{N}=\left(\frac{1}{N}\left(-1-\frac{4 \pi}{g(N)}\right)\right)^{\frac{1}{N-1}}
\end{gathered}
$$

Entry 13.

$$
\begin{gathered}
\frac{\pi}{\sqrt{3}}=24 \sum_{n=1}^{\infty} \frac{3^{-n} \cdot(n+1)}{4 n^{2}-1} \sum_{k=1}^{n}(-1)^{k-1} x_{n}+18 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}\left(\frac{x_{n}}{3}\right)^{n} \\
\frac{\pi}{\sqrt{3}}=12 \sum_{n=1}^{\infty} 3^{-n} \sum_{k=1}^{n} \frac{(-1)^{k-1} x_{k}}{2 k-1}+18 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}\left(\frac{x_{n}}{3}\right)^{n}
\end{gathered}
$$

Entry 14. for $N=2,3,4, \ldots$ we have

$$
\begin{gathered}
y_{N, 0}=0, y_{N, k+1}=\frac{1}{3+3\left(y_{N, k}\right)^{N-1}}, k=0,1,2,3, \ldots \Rightarrow \lim _{k \rightarrow \infty} y_{N, k}=x_{N} \\
y_{N, 2 k}<x_{N}<y_{N, 2 k+1}, k=0,1,2,3, \ldots
\end{gathered}
$$

Entry 15. for $N=1,2,3, \ldots$ we have

$$
\frac{1}{x_{N}}=3+3\left(3+3\left(3+3\left(3+3(3+\ldots)^{1-N}\right)^{1-N}\right)^{1-N}\right)^{1-N}
$$

Entry 16. for $N=1,2,3, \ldots$ we have

$$
\pi=6 \sqrt{x_{N}} \sum_{n=0}^{\infty}(-1)^{n}\left(x_{N}\right)^{n} \sum_{k=0}^{\left[\frac{n}{N}\right]}\binom{2 n-2(N-1) k}{n-(N-1) k}\binom{n-(N-1) k}{k} \frac{(-1)^{N k}\left(\frac{3}{4}\right)^{k}}{(2 n-2 N k+1)\binom{2 n-2 N k}{n-N k}}
$$

References

[1] Milton Abramowitz and Irene Stegun, A Handbook of Mathematical Functions, U.S. National Bureau of Standards, Washington, DC, 1970.
[2] D. H. Bailey and J. M. Borwein, Experimental Mathematics: examples, methods and implications. Notices Amer. Math. Soc., 52(5): 502-514.
[3] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21 st century. AK Peters Ltd, Natick, MA, 2003.

