
Algebraic Programming Language

Sing Kuang Tan

November 15, 2022

Abstract

In this paper, I am going to propose a new programming language in
mathematical algebraic form. Represent all algorithms in canonical form,
that is easy to read, analyse and communicate with other people. Loop
invariant, preconditions, post conditions are difficult to use. It can use to
derive all properties of algorithms. It can be fed into computer to analyze
and manipulate symbolically. Analyze an algorithm sequentially cannot
see global pattern in the algorithms, and this is not a long term solution.

1 Introduction

I have always been interested in programming. I was once labeled as ‘Super
Programmer’ by my colleagues. I have thought of developing my own program-
ming language. But for many years, I did not know what aspect of program-
ming language should I improve on and built into my programming language.
Looking at the Python programming language, it has many features that make
programming easier, such as garbage collection, matrix vector operations and
highly readable codes without comment. My improvement to my programming
language should follow the innovation techniques used to improve the Python
programming language.

I thought the best programming language is fully mathematical and alge-
braic, so that complex nested while loops can be represented in 1 line of mathe-
matical equation. Look at how a problem is formulated in convex optimization.
It is very human readable and succinct that can represent the problem in a few
lines of equations. In the past, the professor wrote the equations and the student
wrote the codes to implement the equations. My ideal programming language is
the programmer will write out the objective function in mathematical equations,
the compiler will optimize the equations and convert it to a step by step algo-
rithm, optimize the time complexity so that it can run in fewer operations (and
space complexity by for example making using of the sparse matrix), compile
it to machine codes and optimize the machine codes to distribute the execution
tasks to multiple processors. From the equations, the compiler can derive the
properties of the algorithm for verification and automatic analyze the properties
for any faults or poor designs of algorithm. The compiler can rewrite the equa-
tion in canonical form (just like linear programming) for storing the equations

1



and making them more readable. The compiler can also do codes obfuscation
so that it is difficult to reverse engineer.

There are some existing algebraic approaches to represent an algorithm. In
Fibonacci numbers

F0 = 0, F1 = 1,

Fn = Fn−1 + Fn−2,

for n > 1, (1)

an algorithm is represented in recursion. An algorithm can also be represented
in summation notations,∑

a

∑
b

∑
c

∑
d

f(a, b, c, d) > 0. (2)

This algorithm returns a 1 if the left side of the equation is greater than 0,
otherwise it is a 0. An algorithm can also be represented in convex optimization,

maxxf(x)

such that

g(x) = 0

h(x) > 0. (3)

This is frequently used in machine learning in computer science to do dimension
reduction, manifold learning and clustering. Markov random field, Boolean
algebra, linear programming and many other representations can be used to
represent an algorithm.

2 A new kind of programming language

An example of an algorithm is shown below (Algorithm 1). This algorithm
shows how to implement it. However it is not in it’s canonical form. Because
we can swap line 7 and 8 of codes and get the same algorithm and result (is
shown as Algorithm 2 below). Algorithmic representation has too many pseudo
codes that represent same thing.

We need to represent algorithm in canonical form. One way is to use algebra
to represent algorithm. Assume there is 4 elements in an array to be sorted. For
simplicity, we can assume that all the elements in the array have distinct values.
The equations can be easily modified to accommodate to non-distinct element
values. Using Discrete Markov Random Field, a potential function can represent
whether the lth element is greater than the kth element. H(ai = vk, ai+1 =
vl) = 1 if lth element is greater than the kth element, H(ai = vk, ai+1 = vl) = 0
otherwise. For example a 4 elements array with items v1 = 3, v2 = 16, v3 =
11, v4 = 7, then H(ai = v2, ai+1 = v4) = 0, H(ai = v4, ai+1 = v2) = 1,
H(ai = v1, ai+1 = v3) = 1 and H(ai = v3, ai+1 = v1) = 0.

2



Algorithm 1 A BubbleSort algorithm

1: procedure bubbleSort(A : list of sortable items)
2: repeat
3: swapped← False
4: for i = 1 to n− 1 inclusive do
5: if A[i− 1] > A[i] then . if this pair is out of order
6: . swap them and remember something changed
7: swap(A[i− 1], A[i])
8: swapped← True
9: end if

10: end for
11: until swapped = False
12: end procedure

Algorithm 2 A BubbleSort algorithm with 2 lines swapped

1: procedure bubbleSort(A : list of sortable items)
2: repeat
3: swapped← False
4: for i = 1 to n− 1 inclusive do
5: if A[i− 1] > A[i] then . if this pair is out of order
6: . swap them and remember something changed
7: swapped← True
8: swap(A[i− 1], A[i])
9: end if

10: end for
11: until swapped = False
12: end procedure

3



An equation to represent the algorithm is therefore

4∑
i1=1

4∑
i2=1

4∑
i3=1

4∑
i4=1

H(a1 = vi1 , a2 = vi2)H(a2 = vi2 , a3 = vi3)H(a3 = vi3 , a4 = vi4) > 0.

(4)

The variables vi1 , vi2 , vi3 , vi4 that make the Markov Random Field greater than
zero, represent the solution of the sorting problem. This is the naive way to
compute it where all 256 operations (exponential number of computations with
respect to 4 inputs). However if we can rewrite this algorithm by factoring the
summations, then

4∑
i1=1

4∑
i2=1

H(a1 = vi1 , a2 = vi2)
4∑

i3=1

H(a2 = vi2 , a3 = vi3)
4∑

i4=1

H(a3 = vi3 , a4 = vi4) > 0.

(5)

becomes a 16× 3 operations algorithm (in algorithmic sense, it is n3 time com-
plexity where n is the number of input).

Using equations to represent algorithm make it easy to read analyze and
communicate with other people. Equations can be used to do automatic pro-
gram verification. Program verification using loop invariant, preconditions, post
conditions on sequential algorithm is difficult to use. It can be used to derive all
properties of algorithms, can be fed into computer to analyze and manipulate
symbolically.

Sequential analysis is not a long term solution and cannot see global pattern
in algorithms. An example from the internet shown in figure 1. The algorithm
is analyzed sequentially with the change in variable values printed line by line
and a next step is dependent on a previous step, which is a time consuming
process. If algebraic equations (equations 4 and 5) are used, it can analyze the
algorithm out of order, based solely on the constraints of the equations.

4



Figure 1: Sequential analysis of a Bubble Sort algorithm

Representing an algorithm in canonical form has an advantage that it can de-
tect many algorithms are actually the same in the same canonical form. We can
borrow concepts (canonical form, sparsity, convergence, convergence rate, nu-
merical stability, independence, eigenvector analysis, function approximation,
relaxation, energy function, stochastic matrix, stochastic function and many
other terms) from mathematics and use it in computer science. Express an al-
gorithm in canonical form enables us to classify algorithms, and search for new
algorithms that are different from existing algorithms that have different canon-
ical form. Algebraic canonical form enables the use of mathematics techniques

5



such as power series to analyze the algorithms.
NP time complexity is usually because the problem is discrete. There are a

lot of existing work using algebra on non-discrete problem. Here we concentrate
on discrete problem.

3 Algebra is the most Advance Form of Math

Algebra presentation in math is the most advance form math. Algebra repre-
sents the constraints and/or objective function of an algorithm, without spec-
ifying the steps to solve it, so it is the most general form of representation of
algorithm, better than a step by step pseudo codes of an algorithm. Algebra
representation has fewer lines of equations than a step by step pseudo codes
algorithm.

Logic , language, terminology representation are difficult to understand than
algebraic representation. Logic can also be used to represent an algorithm.
However the number of lines in the logic is equivalent to the number of statement
rules in the logic. For example, the logic statements

raining → cloudy

raining → dark, (6)

which means that when it is raining, the sky will be cloudy and dark. This can
be rewritten in Discrete Markov Random Field format,∑

a∈{raining,¬raining}

∑
b∈{cloudy,¬cloudy}

∑
c∈{dark,¬dark}

h(1)(a, b)h(2)(a, c) > 0, (7)

which is much more succinct and 1 line of equation instead of 2 lines of equa-
tions in logic. h(1)(a, b) = 1 when (a=raining and b=cloudy) or a=not raining,
otherwise h(1)(a, b) = 0. h(2)(a, c) = 1 when (a=raining and c=dark) or a=not
raining, otherwise h(2)(a, c) = 0. This Markov Random Field can be simplified
to ∑

a∈{raining,¬raining}

∑
b∈{cloudy,¬cloudy}

h(1)(a, b)
∑

c∈{dark,¬dark}

h(2)(a, c) > 0, (8)

which runs in fewer operations than the previous Markov Random Field repre-
sentation.

The figure 2 shows an example of a mathematical definition.

Figure 2: An example of a mathematical definition with many terminologies
(underlined)

6



Instead of using English language to describe a mathematical definition,
we can convert it to fully logic or algebraic equations (without any English
description) that is more succinct, less ambiguous, more mathematical, more
systematic and human readable, easier to communicate between people, and
can be algebraically processed for simplification with properties extraction for
analysis.

4 Example of How to Represent An Algorithm
in Canonical Form

Shortest path problem is a problem in graph theory. Given two vertices, its
goal is to find the shortest path between the two vertices such that the sum
of all weights of the edges of the shortest path between the two vertices are
minimized. Note that a path is a sequence of vertices and the length of the path
is the sum of all weights of all edges that join each vertex to the next vertex in
the sequence.

Figure 3: An example of a graph with directed edges and weights. The shortest
path in this graph is shown in blue.

The MRF used to represent the shortest path algorithm is shown below.

dist(vi1 , vi4) =
4

min
i2=1

H(a1 = vi1 , a2 = vi2)
4

min
i3=1

H(a2 = vi2 , a3 = vi3)H(a3 = vi3 , a4 = vi4)H(a4 = vi4).

(9)

We assume that this graph has only 4 vertices. The values vi4 , vi3 , vi2 and vi1
of a4, a3, a2 and a1 represent the shortest path sequence of vertices from origin
vi4 to destination vi1 .

The equation

H(ai = k, ai+1 = l) = ec(k,l) (10)

7



represents the cost of traversing from vertex k to vertex l (or vertex l to vertex k)
where c(k, l) is the edge cost of traversing from vertex k to vertex l. The number
e is Euler’s number, a constant equals to 2.71828. Note that c(k, k) is 0 if we
are traversing from the destination vertex to the destination vertex, otherwise
c(k, k) is ∞ of vertex k other than destination vertex because traveling from a
vertex to itself is not allowed. To allow traversing from destination vertex to
destination vertex so that our algebraic algorithm are able to compute shortest
path that are shorter than 4 vertices in length. c(k, l) is∞ if there does not exist
an edge that connects vertex k to vertex l. This equation is valid for H(a1, a2),
H(a2, a3) and H(a3, a4).

The equations

H(a4 = k) = e0 = 1 if k is the origin vertex

H(a4 = k) = e∞ otherwise (11)

are to eliminate shortest path solution where the source vertex is not the origin.
The Dijkstra algorithm in summation notation is

dist(vi1 , vi4) =
4

min
i2=1

(
c(vi1 , vi2) +

4
min
i3=1

(
c(vi2 , vi3) + c(vi3 , vi4) + c(vi4)

))
. (12)

c(vi4) is exp(0) if vi4 is the origin vertex, otherwise it is exp(∞).
This algebra above can be easily converted to Markov Random Field notation

using

edist(vi1 ,vi4 ) =
4

min
i2=1

(
ec(vi1 ,vi2 )

4
min
i3=1

(
ec(vi2 ,vi3 )ec(vi3 ,vi4 )ec(vi4 )

))
, (13)

which can transformed to

edist(vi1 ,vi4
) = e

min4
i2=1

(
c(vi1 ,vi2 )+min4

i3=1

(
c(vi2 ,vi3 )+c(vi3 ,vi4 )+c(vi4 )

))
(14)

where it is similar to the distance sum form in Equation 12.
H(a1 = k, a2 = k) = H(a2 = k, a3 = k) = H(a3 = k, a4 = k) = e0 if k is the

destination vertex of the shortest path algorithm, otherwise it is e∞. This is to
ensure the convergence of the shortest path algorithm when the shortest path
is 2 or 1 edge away from the origin vertex.

The algorithm 3 below is the Dijkstra shortest path algorithm.
The precondition, loop invariant and post condition can be derived alge-

braically from the MRF equation.
Since shortest path problem is a minimization problem, dist[v] is initialized

to infinity such that dist[v] >= dist(origin, v). Since dist(origin, origin) = 0,
dist[origin] = dist(origin, origin) = 0. These are the dist[v] for the preconditions.

8



Algorithm 3 A Dijkstra algorithm

1: procedure Dijkstra(A : list of sortable items)
2: for each vertex v in Graph.Vertices do
3: dist[v]← INFINITY . precondition d[v]=∞ if v is not equal to

source
4: prev[v]← UNDEFINED
5: add v to Q
6: end for
7: dist[source]← 0 . precondition d[source]=0 for source vertex
8: while Q is not empty do
9: u← vertex in Q with min dist[u]

10: remove u from Q
11: for each neighbor v of u still in Q do
12: alt← dist[u] + Graph.Edges(u, v)
13: if alt < dist[v] then
14: dist[v]← alt . loop invariant dist[v]>=dist(source,v)
15: prev[v]← u . dist(a,b) is the shortest path between vertex a

and vertex b
16: end if
17: end for
18: end while

return dist[], prev[] . post condition dist[v]=dist(source,v) shortest
path is found for all vertices to the origin

19: end procedure

9



The equation below represents the preconditions.

∞ ≥
4

min
i1=1

4
min
i2=1

H(a1 = vi1 , a2 = vi2)
4

min
i3=1

H(a2 = vi2 , a3 = vi3)
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4)

≥
4

min
i2=1

4
min
i3=1

H(a2 = vi2 , a3 = vi3)
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4)

≥
4

min
i3=1

4
min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4)

≥
4

min
i4=1

H(a4 = vi4). (15)

Since H(a4 = vorigin) = exp(0) if the a4 variable value represents the origin
vertex,

exp(0) =
4

min
i4=1

H(a4 = vi4). (16)

Since during computation of the Dijkstra algorithm, the solution dist[v] is
always greater or equal to the solution of shortest distance to vertex v (loop
invariant),

exp(dist[vi1 ]) ≥
4

min
i2=1

H(a1 = vi1 , a2 = vi2)
4

min
i3=1

H(a2 = vi2 , a3 = vi3)
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4).

(17)

After the Dijkstra algorithm has finished computing its solution, dist[v] is
the shortest distance between vertex v and origin vertex (post conditions),

exp(dist[vi1 ]) =
4

min
i2=1

H(a1 = vi1 , a2 = vi2)
4

min
i3=1

H(a2 = vi2 , a3 = vi3)
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4).

(18)

So using my algebraic representation of the shortest path algorithm (using
MRF equation), we are able to derive the preconditions, loop invariant and post
conditions of the Dijkstra algorithm. So my algebraic approach can derive from
the objective of the algorithm to the step by step algorithm solution to the
problem, then derive the preconditions, loop invariant and post conditions of
the algorithm.

The solution of the Dijkstra algorithm can be represented by a spanning tree
of the shortest path to the origin.

4
min
i1=1

4
min
i2=1

H(a1 = vi1 , a2 = vi2)
4

min
i3=1

H(a2 = vi2 , a3 = vi3)
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(a4 = vi4) > 0

(19)

10



can be rewritten as

H(1)(a1) =
4

min
i1=1

4
min
i2=1

H(a1 = vi1 , a2 = vi2)H(2)(a2)

H(2)(a2) =
4

min
i3=1

H(a2 = vi2 , a3 = vi3)H(3)(a3)

H(3)(a3) =
4

min
i4=1

H(a3 = vi3 , a4 = vi4)H(4)(a4 = vi4)

H(4)(a4) = H(a4 = vi4) (20)

where we compute step H4(a4) first, followed by H3(a3), H2(a2) and lastly
H1(a1). Since Hi(ai) is computed from the minimum of H(ai, ai+1)H(i+1)(ai+1),
every value in ai is connected to 1 value in ai+1. So the shortest path solution to
the origin vertex can be represented by a minimum spanning tree to the origin
vertex.

The figure below shows that the shortest path to all vertices in a graph from
an origin vertex can be represented by a shortest path spanning tree.

Figure 4: The shortest path to all vertices in a graph from an origin vertex can
be represented by a shortest path spanning tree.

This allows very efficient storage of all possible shortest paths from an origin
vertex. The storage space is equal to the number of vertices in a graph. Using
my algebraic representation of Dijkstra algorithm (using MRF), we are able
to prove the property of shortest path minimum spanning tree using algebraic
derivation.

11



5 Represent MRF as Indexing Notation

We can also represent Markov Random Field as indexing notation instead of
potential notation. The equations

4∑
i1=1

4∑
i2=1

4∑
i3=1

4∑
i4=1

H(a1 = vi1 , a2 = vi2)H(a2 = vi2 , a3 = vi3)H(a3 = vi3 , a4 = vi4) > 0

(21)

and

4∑
i1=1

4∑
i2=1

H(a1 = vi1 , a2 = vi2)

4∑
i3=1

H(a2 = vi2 , a3 = vi3)

4∑
i4=1

H(a3 = vi3 , a4 = vi4) > 0,

(22)

can be rewritten as

4∑
i1=1

4∑
i2=1

4∑
i3=1

4∑
i4=1

h(1,2)
vi1 ,vi2

h(2,3)
vi2 ,vi3

h(3,4)
vi3 ,vi4

> 0 (23)

and

4∑
i1=1

4∑
i2=1

h(1,2)
vi1 ,vi2

4∑
i3=1

h(2,3)
vi2 ,vi3

4∑
i4=1

h(3,4)
vi3 ,vi4

> 0. (24)

This indexing notation is shorter and more readable. Those who are not math-
ematically inclined will feel very frightened seeing many brackets in the original
representation.

6 Conclusion

I have developed a new programming language. This programming language
can represent in objective format (goals of the algorithm), then convert to a
sequential algebraic form that can be computed by a computer. The properties
of the algorithm such as pre-conditions, loop invariant, post conditions and
inductive properties can be automatically derived. The user can feed in to the
computer the objective format of the algorithm in algebraic form, the computer
will analyse the algorithm and generate the sequential algebraic form of the
algorithm to compile into machine codes. The properties of the algorithm can
also be generated to analyze the correctness of the algorithm. The algorithm
can also be rewritten into standard form (canonical form) or more readable form
so that it can be recorded into an online user manual that can be reused later.

12


