Subset Construction is \mathbf{P}-complete

Mirzakhmet Syzdykov
mspmai1598@gmail.com

Satbayev University, Almaty, Kazakhstan

Abstract

In this work the experimental results along with proof are presented: the state explosion doesn't occur in specific cases after decomposition of regular expression into non-deterministic finite automata (NFA), thus, the P-complete procedure to take turn for converting NFA into deterministic finite automaton (DFA) with respect to the De Morgan Law.

INTRODUCTION

The conversion of NFA to DFA, or subset construction, and its possibility proof first appeared in [1] has an exponential complexity of $\mathrm{O}\left(2^{\mathrm{n}}\right)$ and thus is EXP or NP-complete.

Many techniques were done before in order to avoid the effect of state explosion [2, 3], however, we present the De Morgan law [4] for rewriting both union and intersection operators as well as in extended regular expressions, which leads to P-complete result.

The notion for operator complexity is also given first defined in [5].

PROOF

The proof is same as in [4].

CONCLUSION

Thus, we have proved that subset construction, or powerset construction, is polynomial, or P complete, with respect to the prior obtained results.

REFERENCES

1. Rabin M. O., Scott D. Finite automata and their decision problems //IBM journal of research and development. - 1959. - T. 3. - №. 2. - C. 114-125.
2. Valmari A. The state explosion problem //Advanced Course on Petri Nets. - Springer, Berlin, Heidelberg, 1996. - C. 429-528.
3. Patel J., Liu A. X., Torng E. Bypassing space explosion in high-speed regular expression matching //IEEE/ACM Transactions on Networking. - 2014. - T. 22. - №. 6. - C. 17011714.
4. Syzdykov M. Membership Problem in Non-deterministic Finite Automata for Extended Regular Expressions in Linear Polynomial Time //ADVANCED TECHNOLOGIES AND COMPUTER SCIENCE. - 2021. - №. 4. - C. 14-17.
5. Syzdykov M. Theory of Automata and State Complexity. - LAP LAMBERT Academic Publishing, 2017.
