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Abstract
In this paper, we give an elliptic curve (E) given by the equation:
Y =p(x) = 2"+ pr+q (1)

with p, ¢ € Z not null simultaneous. We study the conditions verified
by (p, q) so that 3 (z,y) € Z? the coordinates of a point of the elliptic
curve (E) given by the equation .
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1 Introduction

Elliptic curves are related to number theory, geometry, cryptography, string
theory, data transmission,... We consider an elliptic curve (F) given by the
equation:

v =plz) =2’ +pr+q (2)
where p and ¢ are two integers and we assume in this article that p, ¢ are not
simultaneous equal to zero. For our proof, we consider the equation :

px)—y* =2 +pr+q—y* =0 (3)

of the unknown the parameter x, and p,q,y given with the condition that
y € Z". We resolve the equation and we discuss so that x is an integer.

2 Proof
We suppose that y > 0 is an integer, to resolve , let:
r=u+v (4)
where u, v are two complexes numbers. Equation becomes:
w’ +v° 4+ q =y + (u+v)(Buv +p) = 0 (5)
With the choose of:
3uv—|—p:O:>uv:—§ (6)
then, we obtain the two conditions:
p
=—C 7
uv 3 (7)
w4 vP =9 —¢q (8)
Hence, u?,v3 are solutions of the equation of second order:
2 2 P’
X*— —) X —==0 9
- a)X - L ©
Let A the discriminant of ([9) given by:
4p3
A=y —qP+ = 10
v~ 9"+ 5= (10)



2.1 Case A =0

In this case, the @D has one double root :

X =X, =L "1 (11)

4 3
AsA=0— 71; = —(yz—q)2 = p < 0. y, g are integers then 3|p = p =

3pr and 4p} = —(v* — q)> = p1 = —p3 = y* — ¢ = £2pj and p = —3p3.
As y* = q + 2p3 | it exists solutions if:

q %+ 2p3 is a square (12)

We suppose that g 4 2p3 is a square. The solution X = X; = X, = +p3.
Using the unknowns u, v, we have two cases:

2.1.1 Case u® =% =pj

The solutions of u? = p3 are :

a - Uy = Pa;
—1+iV3 .
2

b - uy = j.py with j = is the unitary cubic complex root;

¢ - ug = j>.po.

Case a - u3 = v; = pp = x = 2p,. The condition u;.v; = —p/3 is verified.
The integers coordinates of the elliptic curve (E) are :

(2p2, +a) (13)
(2p2, —) (14)
a = /¢(2p7) (15)

Case b - uy = p.j,v2 = p2.j? = p2.j = & = uz +v2 = pa(j +j) = p2, in
this case, the integers coordinates of the elliptic curve (E) are :

(p2, +) (16)
(p2, —v) (17)
a = /¢(p2) (18)

Case C - Uy = Pa.J, Vs = Pa.j> = pa.j , it is the same as case b above.
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2.1.2 Case u® =v* = —p3

The solutions of u® = —p3 are :
d - uy = —py;
€ - Uy = —j.pa;

f-us= —j2-]?2 = —jpz-

Case d - uy = v1 = —py = © = —2py. The condition u;.v; = —p/3 is
verified. The integers coordinates of the elliptic curve (E) are :
(2p2, +a)  (2p2; —@) o =p(2ps) (19)

Casee-uy = —po.j, Vg = —po.j° = —po.j = & = Us+vy = —pa(j+j) = —po,
in this case, the integers coordinates of the elliptic curve (£) are :

(=p2,+0) (—p2,—a) a=@(p2) (20)

Case f - uy = —ps.j, V3 = —pa.j2 = ps.j it is the same of case e above.

2.2 Case A >0

We suppose that A > 0 and A = m? where m € R is a positive real number.

4p*  27(y* — q)* + 4p°
A=(y?—q)P+ o7 = 97 = m? (21)

27(y* — q)* +4p° = 2Tm®* = 27(m” — (y* — q)*) = 4p° (22)

2.2.1 We suppose that 3|p
We suppose that 3|p = p = 3p;. We consider firstly that [p;| = 1.
Case p; = 1: the equation is written as:
m?— (P — ¢ =4= (m+y’—q)m—-y’ +q)=2x2 (23

That gives the system of equations(with m > 0) :

2— =
{Zt52+g_i —> m = 5/2 not an integer (24)
m+y*—q=2 B :
{m—y2+q=2 = m=2andy —q=0 (25)
m+yz—q:4 = m = 5/2 not an integer (26)
m-y +q=1



We obtain:

Xi=w’=1=u =liuy=jiuz =35> =] (27)
Xo=v=-1=uv=-Lun=—ju=—5=-j (28)
Ty =u +v; =0 (29)

Ty = us + U3 = j — j2 = iv/3not an integer (30)

T3 = ug+ vy = j> — j = —iv/3not an integer (31)

As y? —q = 0, if ¢ = ¢* with ¢’ a positive integer, we obtain the integer
coordinates of the elliptic curve (E):

y* =2’ + 31 + ¢* (32)
(0,4'); (0, —¢") (33)
Case p; = —1: using the same method as above, we arrive to the acceptable

value m = 0, then y? = ¢£2 = ¢+ 2 must be a square to obtain the integer
coordinates of the elliptic curve (E).

Ify?> = q+2,asquare = (X —1)? =0=u®> =03 =1, then z; = 2,25 = 1.
The integer coordinates of the elliptic curve (F) are:

2= —3x+¢q (34)

(LvVa+2)i (L —va+2); (2, Vg +2); (2, Vg +2) (35)

If y*» = ¢ — 2, asquare = (X +1)* = 0 = v’ = v* = —1, then 2, =
—2, x5 = —1. The integer coordinates of the elliptic curve (E) are:

vy =2 —3x+q (36)

(=1,vVa=2); (=1, —vq = 2); (=2,va = 2); (=2, —/q — 2) (37)

For the trivial case ¢ = 2 = y? = 23 — 3z + 2 and ¢ — 2, ¢ + 2 are squares,
the integer coordinates of the elliptic curve are:

y? =123 — 3z +2 (38)
(17 0); (_27 O); (27 2); (27 _2); (_17 2); (_17 _2) (39)

For ¢ > 2, ¢ — 2 and ¢ + 2 can not be simultaneous square numbers.

Now, we consider that |p| > 1.



We suppose that p; > 1 The equation is written as:

m? = (y* = q)° = 4p} = m* — (y* — ¢)* = 4p] (40)
From the last equation , (m,y? — q) (respectively in the case y? — ¢ <
0, (m,q — y?*)) are solutions of the Diophantine equation :

X?—Y?’=N X>0Y>0 (41)
where N is a positive integer equal to 4p3.

For the general solutions of the equation (41]), let Q(NN) the number of solu-
tions of and 7(N) the number of factorization of N, then we give the
following result concerning the solutions of (see theorem 27.3 of [1]):

- if N=2(mod 4), then Q(N) = 0;

- if N=1 or N=3(mod 4), then Q(N) = [7(N)/2];

- if N=0(mod 4), then Q(N) = [r(N/4)/2]]

As N = 4p} = N=0(mod4), then Q(N) = [r(N/4)/2] = [r(p})/2] > 1.
A solution (X', Y”) of is used if Y’ = 3> — ¢ = ¢ + Y’ is a square
(respectively if Y/ = ¢ — y*> = ¢ — Y’ is a square), then X’ = m > 0 and
+y = +/q + Y (respectively +y = +1/q — Y’. The roots of @ are :

_y2—q—|—m_Y’—|—m

X — 42

! 2 5 Y (42)
2 . Y/_

X2:y+g et (43)

(Respectively, the roots of @ are :

Y —q+m  —Y'+m

X _ 44

! 2 ;! (44)
24, _y

X2:y+;1 s ! (45)

). From X? —Y”? = 4p? = N, 2|/(Y' — m) and 2|(Y — m + 2m) =
2|(Y'+m) = X1, Xy € Z, and we obtain the equations:

U32X1:>U1=\3/X1;U2:j3X1;U3:j23X1 (46)
03:X2:>U1:\3/X2;U2IJ3X2;U3ZJ23X2 (47)

Hz] is the largest integer less or equal to x.



A real x is obtained if x = u; +v; = /X1 + v/ Xo. If X, X5 are cubic integers
: X1 =13, Xy = t3, then we obtain an integer solution :

xr =1t +1ty, *y==£\Y'+q respectively +y= i\/ﬁ (48)

If not, there are no integer coordinates of the elliptic curve (E).

We suppose that p < 0 = p; < —1 : in this case, (y* — ¢, m) (respec-
tively (¢ — y?,m)) is a solution of the Diophantine equation :

X2—Y* =N X>0Y>0 (49)

and N’ is a positive integer equal to —4p; > 0. As seen above, a solution
(X", Y’) of is used if X’ = y? — ¢ = ¢ + X' is a square (respectively
X' =q—y* = q— X' is a square), then +y = +/¢+ X' (respectively
+y' = +v¢— X') and Y/ = m > 0. The roots of @ are :

y¥—q+m X' +m

X! = - >0 50
2 _ X/_
X;=y+;1 mo_ 2m>0 (51)

(Respectively the roots of @ are :

v —q+m —X'+m

X! = - >0 52

S : (52)
2 X —

Xg:y+;’ oo ; T <o (53)

) From X? —Y"? = —4p? = N’ 2|(X' —m) and 2|(X' +m) = X|, X}, € Z,
and we obtain the equations:

u? = X = uh = X b = 5 X uh = 57X (54)
VP =Xy = vy = X vy = i X vy = 52X (55)

A real 2’ is obtained if 2’ = v} +v] = JX] + J X5 If X, X} are cubic
integers : X| = t/3, X} = t5 then we obtain an integer solution :

= t/1 4 t’z, +y = j:\/m (respectively =+ y = i\/ﬁ) (56)

If not, there are no integer coordinates of the elliptic curve (E).
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2.2.2 We suppose that 3tp
We rewrite the equations @ and :

X2 (=) X —==0
(y° —q) 5
4p3 27 yQ—q2+4p3
A=l —gpa i < TUSIEER

with m > 0 a real scalar. As seen above, we find the same results, there are
no integer coordinates of the elliptic curve (E).

2.3 Case A<O0
The expression of A is given by :

4p3
A = 2 )\2
(v —a)+
2 2 4p? 2 2 4p?
We suppose that A < 0 = (y* —q)° + o7 <0= (y"—q) <——27,then
493
p<0 Letp=—p>0= A= (y2—q)?— 57'

2.3.1 We suppose 3|p’:
We suppose that 3|p’ = p’ = 3p;. A becomes:

A= (" —q)—4p; (57)

Case p; = 1. We obtain A = (y?> — ¢)> —4. A = —m? with m integer, then
m? =4 — (y*> — q)* = m? + (y* — ¢)* = 22, the solutions are:

M m? =49 —q=0=y>=q If ¢is a square, let ¢ = ¢?, then y = +¢q;.
We have also 22 — 3z = 0. The only integer coordinates of the elliptic curve
are:

(07%)7 (07 —Ch) (58)
“mP=1 P —q=V3ory'—q=-V3
**_1- 4% — ¢ = /3, If ¢ = /3, we have the equation y? = 2° — 3z 4+ /3 and
X2—-3X+1=0and:

17T
340 —
X, = \/_2“ —c6 (59)
s
3—i -
X2:\/_2 L—e 6 (60)
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i v
u,v verify u? =e 6 ;03 =e 6 = |u;| =1 and |v;| =1, |2g| = |u; + vk| =
|200817T—8| < 2 = no integer coordinates if ¢ = /3.

#*_9- 92 — ¢ = —/3, we suppose that ¢ = —v/3 then X2 +v/3X +1=10. We
obtain :

. 19T

X, = _‘/gﬂ —¢ 6 (61)
15T

Xz_—@—@_ 6 (62)

Using the same remark as above, we arrive to |zx| < 2, with |xy| # 1, then
there are no integer coordinates when ¢ = —/3.

Case p; > 1. We obtain m? = 4p} — (y* — q)*> = m? + (y* — q)* = 4p3,
then +m, (y? — q) are solutions of the Diophantine equation :

A>+ B*=N (63)

with N = 4p3. The following theorem (theorem 36.3,[2]) gives the conditions
to be verified by N:

Theorem 2.1. The Diophantine equation:
A’ +B*=N (64)
has a solution if and only if :
N = 20p!h _ pite 281 q20n (65)

where the p} are primes congruent to 1 modulo 4, and the q; are prime con-
gruent to 3 modulo 4. When N 1is of this form, equation has :

N — (h1+1)---2(hk+1)+1 (66)

inequivalent solutiond?)

2[z] is the largest integer less or equal to .



From the conditions given by the theorem above, 2 { p; and p; must be

written as:

3h 3h 6 65n
p = pP g g

and p; = 1(mod4).

We suppose in the following, that equation (67)) is true. We obtain:

x, = W atim

2

l=1,2,..,Ng

ngy?_q_iml

2

We have to resolve:

2 .

w =X, Y —q -+
2

S yP—q—amy

v3:X2:X1:f

We write X; as X; = pe? with:

=g m?

vV —A . my

p= 1 = p1/D1; sin0:7—5>0; cosf) =
5 T 1 50
Ify —q>0=>cos@>0=>0<0<5[2#]:>1<003§<1.
If > — ¢ < 0 = cosf < 0, then :
1 0 3
g<0<7r[27r]=>1<0082§<1
™ 1

0
A. We suppose that yQ—q>O:>O<§<

6 4

Then the expression of Xs: Xy = pe*ie. Let :

—1+iV3 e

u=re¥; and j= 5 e'’s

The parameters u and v are:

. 0
uyp = ret = Ype's

it - 8 3= i 02
uy = re"? = Ypje's = Jpe' 3

, 2 40 AT 40 ; O+4n
U3 = re¥s — \3/5]2613 = \3/56Z 3 et = \?’/ﬁeZ 3

10

(67)

(68)

(70)

0
271] = - < COS2§ < 1.



; _i8
vy =re W = ¥pe s
. 5 0 A .6 An—0
Vg = re W2 — \3/5]26 '3 — \3/56Z 3e '3 = W@Z 3
i . ;8 j2m—0
V3 = re Ws — \Tyﬁ]e '3 = \3/,562 3

We choose u and vy, so that u, + vy, is real. In this case, we have necessary :

U = Up; U2 = Ug; U3 = Us

Then, the real solutions of the equation (3)):

0

rTi=u +v = 2\3/50055
0+ 2 0 0

Ty = Uy + Vo = 2/ pcos —; T —/p <0053 + \/55@'713) (71)
0+ 4 0 0

r3 = ug + v3 = 2/pcos —; T Jp (—0053 + \/gsin3>

The discussion of the integrity of xi,z9,x3: We suppose that x; is an
integer, then 27 is an integer. We obtain:

0 0
7= 4{/}00325 = 4p10052§ (72)

)
We write 00525 as :
20 1 a
cos°— =— or —
3 a b
where a, b are relatively coprime integers.

(73)

0 1 1 1
**003252—. Inthiscase,1<—<1:>1<a<4:>a:20r
a a

, 0
Case a = 2, we obtain z? = 4\5/p20032§ = 2p; = 2|p1, but 2 ¢ py, then the
contradiction. We verify easily that x5 and x3 are irrationals.

0 1
Case a = 4, we obtain 2% = 4\?/;0082§ = 4p1.§. If34p = 2?isa

rational. We suppose that 3|p;, then p; must be written as p; = 3w?. From
the equation (67), p1=1(mod4). We deduce that w?=3(mod4), as w? is a
square, w*=0(mod4) or w?*=1(mod4), Then z; can not be an integer. We

verify easily that x,, x3 are also not integers.
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20 a

** cos 3= b coprime with a > 1. We obtain :
4]?1@
2 2
= 4 —_ =
x] picos” o 2
where b verifies the condition:

b|4p1 (74)

and using the ([70]), we obtain a second condition:
b < 4da < 3b (75)

A-1-b=2= a=1= 27 = 2p; = 2|p;, then case to reject.
A-2-b=4= a =2, a,bno coprime. Case to reject.

A-3- b =2 avec 210V, then we obtain:
x% _ 4pra _ 2p1a

b b
then p; = b'¥py with a > 1 and V' { py, we obtain 22 = 20'*"L.py.a = 2|(p2.a),
but from 21p; = 21 ps and 2 1 a, if not a,b are not coprime. Then x3
cannot be an square integer, the case b = 2l is to reject.

= U|p: (76)

A-4- b =4V avec 4 1V, then we obtain:
2 _ dpra __ Dhia
oy oy
then p; = b'*py with @ > 1 and b’ { po, we obtain 2% = '~ 1.p,.a.

T

= U'|ps (77)

*if Bl py.a = f? a square then z; = &£, if not x; is not an integer.
We consider that 1 = €f is an integer with e = +1. Asz; 423+ 23 =0 =
Ty + 23 = —x1. The product z9.275 = f? — 3p;, then x5, r5 are solutions of
the equation:

N —efA+fP=3p =0 (78)
The discriminant of is:
§=f2—4(f*—3p1) = 12p; — 3% =3(4p; — f?) = 3p2b* '(b—a) >0

If 0 is not a square, then x5, z3 are not integers. We suppose that § = g% a
square. The real roots of are:

_ef+yg
M= (79)

Vi - g (80)

12



From the expressions of f and g, we deduce that 2|f and 2|g,then \;, Ay are
integers.

We recall that y* —q is supposed > 0 and are determined by the equations
(63H64H66)), we obtain the integer coordinates € to the elliptic curve (F) :

Forl=1,2,...,Ng
(fsw), (=fom), (f, —w), (=, —w),
(A1, 91)s A2y w)s (A1 =), (A2, =),
(A 90)s (=22, 30), (= A1, —w1), (A2, — 1) (81)

0
B. We suppose that 3> — ¢ < 0 = % < 3 < %[27?] that gives :

1 0 3 1 0 3
2<COSS<\2_:>4<60823<4
29 1 . 3 1 . .. .
cos” = —. In this case, § < o <1 = 3a < 4 which is impossible

a
case to reject.

0
cos2§ = %. In this case, % < ¢ < 1= 3b < 4a. Then we obtain:

r] = 4{3/}00322 = 4p10032§ = 41;” = b|(4p1) (82)
B-1- b=2 = a =1 = 8 < 4 case to reject.
B-2- b =4 = 3 < a < 4 case to reject.
B-3- b =2V avec 21V, then we obtain:
7= Oy, (83)

b
then p; = b'*py with @ > 1 and b’ { po, we obtain 22 = 26/ !.p,.a.

*if 2009 Lpy.a = f? a square then x; = £ f, if not x; is not an integer.
We consider that 1 = €f is an integer with e = £1. Asz; 429+ 23 =0 =
Ty + 23 = —x1. The product z9.275 = f? — 3p;, then x5, x5 are solutions of
the equation:

N —efA+f2=3p=0 (84)
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The discriminant of is:
5= f2—A(f>—3p1) = 12p1 — 3f> = 3(dpy — f) = 2peb* (b —a) > 0

If 0 is not a square, then x,, z3 are not integers. We suppose that § = ¢* a
square. The real roots of are:

i 2+ g (85)
Vi - g (86)

From the expressions of f and g, we deduce that 2|f and 2|g,then \;, Ay are
integers.
B-4- b = 4b" avec 41 V', then we obtain:

2 dp1a __ Dhia
2 = £

x = = |y (87)

then p; = b'*py with @ > 1 and b’ { po, we obtain 22 = '~ 1.p,.a.

*if B2l py.a = f? a square then x; = &£, if not x; is not an integer.
We consider that 1 = €f is an integer with e = £1. Asz;+ 29+ 23 =0 =
Ty + 23 = —x1. The product z9.275 = f? — 3p;, then x5, x5 are solutions of
the equation:

M —efA+fP=3p =0 (88)
The discriminant of is:

0= f2—A(f*—3p1) = 12py — 3f% = 3(dp; — f*) = 2pb"* ' (b—a) > 0

If § is not a square, then x5, z3 are not integers. We suppose that § = ¢* a
square. The real roots of are:

y=f e (89)
Vi - J (90)

From the expressions of f and g, we deduce that 2|f and 2|g,then A\, Ao are
integers.

14



We recall that y? —q is supposed < 0 and are determined by the equations
(63H64H66]), we obtain the integer coordinates € to the elliptic curve (E) :

Forl=1,2,...,Ng

(fsw), (=Fom), (f, —w), (=, —w),

(A, un), A2, m), (A, =wn), (A2, =),
(A y0)s (A2, 30), (= A1, —w1), (A2, — 1) (91)

2.3.2 We suppose 31p'":

4 /3
Then A = (y* — q)* — D _m? where m > 0 is a real. As in paragraph

above, we find the same results there are no integers coordinates of the
elliptic curve (E).
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