A Note About The Determination of Integer Coordinates of Elliptic Curves - Part II, v1 -

Abdelmajid Ben Hadj Salem*

November 11, 2022

Abstract

In this paper, we give an elliptic curve (E) given by the equation: $$
\begin{equation*} y^{2}=\varphi(x)=x^{3}+p x+q \tag{1} \end{equation*}
$$ with $p, q \in \mathbb{Z}$ not null simultaneous. We study the conditions verified by (p, q) so that $\exists(x, y) \in \mathbb{Z}^{2}$ the coordinates of a point of the elliptic curve (E) given by the equation (1).

Key words: elliptic curves, integer points, solutions of degree three polynomial equations, solutions of Diophantine equations.

Contents

1 Introduction 1
2 Proof 2
2.1 Case $\Delta=0$. 2
2.1.1 Case $u^{3}=v^{3}=p_{2}^{3}$. 3
2.1.2 Case $u^{3}=v^{3}=-p_{2}^{3}$. 3
2.2 Case $\Delta>0$. 4
2.2.1 We suppose that $3|p|$. 4
2.2.2 We suppose that $3 \nmid p$. 8

[^0]2.3 Case $\Delta<0$ 8
2.3.1 \quad We suppose $3 \mid p^{\prime}$: 8
2.3.2 We suppose $3 \nmid p^{\prime}$: 15

1 Introduction

Elliptic curves are related to number theory, geometry, cryptography, string theory, data transmission,... We consider an elliptic curve (E) given by the equation:

$$
\begin{equation*}
y^{2}=\varphi(x)=x^{3}+p x+q \tag{2}
\end{equation*}
$$

where p and q are two integers and we assume in this article that p, q are not simultaneous equal to zero. For our proof, we consider the equation :

$$
\begin{equation*}
\varphi(x)-y^{2}=x^{3}+p x+q-y^{2}=0 \tag{3}
\end{equation*}
$$

of the unknown the parameter x, and p, q, y given with the condition that $y \in \mathbb{Z}^{+}$. We resolve the equation (3) and we discuss so that x is an integer.

2 Proof

We suppose that $y>0$ is an integer, to resolve (3), let:

$$
\begin{equation*}
x=u+v \tag{4}
\end{equation*}
$$

where u, v are two complexes numbers. Equation (3) becomes:

$$
\begin{equation*}
u^{3}+v^{3}+q-y^{2}+(u+v)(3 u v+p)=0 \tag{5}
\end{equation*}
$$

With the choose of:

$$
\begin{equation*}
3 u v+p=0 \Longrightarrow u v=-\frac{p}{3} \tag{6}
\end{equation*}
$$

then, we obtain the two conditions:

$$
\begin{array}{r}
u v=-\frac{p}{3} \\
u^{3}+v^{3}=y^{2}-q \tag{8}
\end{array}
$$

Hence, u^{3}, v^{3} are solutions of the equation of second order:

$$
\begin{equation*}
X^{2}-\left(y^{2}-q\right) X-\frac{p^{3}}{27}=0 \tag{9}
\end{equation*}
$$

Let Δ the discriminant of (9) given by:

$$
\begin{equation*}
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27} \tag{10}
\end{equation*}
$$

2.1 Case $\Delta=0$

In this case, the (9) has one double root:

$$
\begin{equation*}
X_{1}=X_{2}=\frac{y^{2}-q}{2} \tag{11}
\end{equation*}
$$

As $\Delta=0 \Longrightarrow \frac{4 p^{3}}{27}=-\left(y^{2}-q\right)^{2} \Longrightarrow p<0 . y, q$ are integers then $3 \mid p \Longrightarrow p=$ $3 p_{1}$ and $4 p_{1}^{3}=-\left(y^{2}-q\right)^{2} \Longrightarrow p_{1}=-p_{2}^{2} \Longrightarrow y^{2}-q= \pm 2 p_{2}^{3}$ and $p=-3 p_{2}^{3}$. As $y^{2}=q \pm 2 p_{2}^{3}$, it exists solutions if:

$$
\begin{equation*}
q \pm 2 p_{2}^{3} \text { is a square } \tag{12}
\end{equation*}
$$

We suppose that $q \pm 2 p_{2}^{3}$ is a square. The solution $X=X_{1}=X_{2}= \pm p_{2}^{3}$. Using the unknowns u, v, we have two cases:

$$
\begin{aligned}
& 1-u^{3}=v^{3}=p_{2}^{3} ; \\
& 2-u^{3}=v^{3}=-p_{2}^{3} .
\end{aligned}
$$

2.1.1 \quad Case $u^{3}=v^{3}=p_{2}^{3}$

The solutions of $u^{3}=p_{2}^{3}$ are :
$\mathrm{a}-u_{1}=p_{2}$;
$\mathrm{b}-u_{2}=j . p_{2}$ with $j=\frac{-1+i \sqrt{3}}{2}$ is the unitary cubic complex root; c $-u_{3}=j^{2} . p_{2}$.

Case a - $u_{1}=v_{1}=p_{2} \Longrightarrow x=2 p_{2}$. The condition $u_{1} \cdot v_{1}=-p / 3$ is verified. The integers coordinates of the elliptic curve (E) are :

$$
\begin{align*}
& \left(2 p_{2},+\alpha\right) \tag{13}\\
& \left(2 p_{2},-\alpha\right) \tag{14}\\
\alpha= & \sqrt{\varphi\left(2 p_{2}\right)} \tag{15}
\end{align*}
$$

Case b- $u_{2}=p_{2} \cdot j, v_{2}=p_{2} \cdot j^{2}=p_{2} \cdot \bar{j} \Longrightarrow x=u_{2}+v_{2}=p_{2}(j+\bar{j})=p_{2}$, in this case, the integers coordinates of the elliptic curve (E) are :

$$
\begin{array}{r}
\left(p_{2},+\alpha\right) \\
\left(p_{2},-\alpha\right) \\
\alpha=\sqrt{\varphi\left(p_{2}\right)} \tag{18}
\end{array}
$$

Case c - $u_{2}=p_{2} \cdot j, v_{2}=p_{2} \cdot j^{2}=p_{2} \cdot \bar{j}$, it is the same as case b above.

2.1.2 Case $u^{3}=v^{3}=-p_{2}^{3}$

The solutions of $u^{3}=-p_{2}^{3}$ are :

$$
\begin{aligned}
& \mathrm{d}-u_{1}=-p_{2} ; \\
& \mathrm{e}-u_{2}=-j \cdot p_{2} \\
& \mathrm{f}-u_{3}=-j^{2} \cdot p_{2}=-\bar{j} p_{2} .
\end{aligned}
$$

Case $\mathrm{d}-u_{1}=v_{1}=-p_{2} \Longrightarrow x=-2 p_{2}$. The condition $u_{1} \cdot v_{1}=-p / 3$ is verified. The integers coordinates of the elliptic curve (E) are :

$$
\begin{equation*}
\left(2 p_{2},+\alpha\right) \quad\left(2 p_{2},-\alpha\right) \quad \alpha=\varphi\left(2 p_{2}\right) \tag{19}
\end{equation*}
$$

Case e $-u_{2}=-p_{2} \cdot j, v_{2}=-p_{2} \cdot j^{2}=-p_{2} \cdot \bar{j} \Longrightarrow x=u_{2}+v_{2}=-p_{2}(j+\bar{j})=-p_{2}$, in this case, the integers coordinates of the elliptic curve (E) are :

$$
\begin{equation*}
\left(-p_{2},+\alpha\right) \quad\left(-p_{2},-\alpha\right) \quad \alpha=\varphi\left(p_{2}\right) \tag{20}
\end{equation*}
$$

Case $\mathrm{f}-u_{2}=-p_{2} \cdot j, v_{2}=-p_{2} \cdot j^{2}=p_{2} \cdot \bar{j}$ it is the same of case e above.

2.2 Case $\Delta>0$

We suppose that $\Delta>0$ and $\Delta=m^{2}$ where $m \in \mathbb{R}$ is a positive real number.

$$
\begin{array}{r}
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}=\frac{27\left(y^{2}-q\right)^{2}+4 p^{3}}{27}=m^{2} \\
27\left(y^{2}-q\right)^{2}+4 p^{3}=27 m^{2} \Longrightarrow 27\left(m^{2}-\left(y^{2}-q\right)^{2}\right)=4 p^{3} \tag{22}
\end{array}
$$

2.2.1 We suppose that $3 \mid p$

We suppose that $3 \mid p \Longrightarrow p=3 p_{1}$. We consider firstly that $\left|p_{1}\right|=1$.
Case $p_{1}=1$: the equation 22 is written as:

$$
\begin{equation*}
m^{2}-\left(y^{2}-q\right)^{2}=4 \Longrightarrow\left(m+y^{2}-q\right)\left(m-y^{2}+q\right)=2 \times 2 \tag{23}
\end{equation*}
$$

That gives the system of equations(with $m>0$) :

$$
\begin{align*}
& \left\{\begin{array}{l}
m+y^{2}-q=1 \\
m-y^{2}+q=4
\end{array} \Longrightarrow m=5 / 2\right. \text { not an integer } \tag{24}\\
& \left\{\begin{array}{l}
m+y^{2}-q=2 \\
m-y^{2}+q=2
\end{array} \Longrightarrow m=2 \text { and } y^{2}-q=0\right. \tag{25}\\
& \left\{\begin{array}{l}
m+y^{2}-q=4 \\
m-y^{2}+q=1
\end{array} \Longrightarrow m=5 / 2\right. \text { not an integer } \tag{26}
\end{align*}
$$

We obtain:

$$
\begin{array}{r}
X_{1}=u^{3}=1 \Longrightarrow u_{1}=1 ; u_{2}=j ; u_{3}=j^{2}=\bar{j} \\
X_{2}=v^{3}=-1 \Longrightarrow v_{1}=-1 ; v_{2}=-j ; v_{3}=-j^{2}=-\bar{j} \\
x_{1}=u_{1}+v_{1}=0 \\
x_{2}=u_{2}+v_{3}=j-j^{2}=i \sqrt{3} \text { not an integer } \\
x_{3}=u_{3}+v_{2}=j^{2}-j=-i \sqrt{3} \text { not an integer } \tag{31}
\end{array}
$$

As $y^{2}-q=0$, if $q=q^{\prime 2}$ with q^{\prime} a positive integer, we obtain the integer coordinates of the elliptic curve (E) :

$$
\begin{array}{r}
y^{2}=x^{3}+3 x+q^{\prime 2} \\
\quad\left(0, q^{\prime}\right) ;\left(0,-q^{\prime}\right) \tag{33}
\end{array}
$$

Case $p_{1}=-1$: using the same method as above, we arrive to the acceptable value $m=0$, then $y^{2}=q \pm 2 \Longrightarrow q \pm 2$ must be a square to obtain the integer coordinates of the elliptic curve (E).
If $y^{2}=q+2$, a square $\Longrightarrow(X-1)^{2}=0 \Longrightarrow u^{3}=v^{3}=1$, then $x_{1}=2, x_{2}=1$. The integer coordinates of the elliptic curve (E) are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+q \tag{34}\\
(1, \sqrt{q+2}) ;(1,-\sqrt{q+2}) ;(2, \sqrt{q+2}) ;(2,-\sqrt{q+2}) \tag{35}
\end{gather*}
$$

If $y^{2}=q-2$, a square $\Longrightarrow(X+1)^{2}=0 \Longrightarrow u^{3}=v^{3}=-1$, then $x_{1}=$ $-2, x_{2}=-1$. The integer coordinates of the elliptic curve (E) are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+q \tag{36}\\
(-1, \sqrt{q-2}) ;(-1,-\sqrt{q-2}) ;(-2, \sqrt{q-2}) ;(-2,-\sqrt{q-2}) \tag{37}
\end{gather*}
$$

For the trivial case $q=2 \Longrightarrow y^{2}=x^{3}-3 x+2$ and $q-2, q+2$ are squares, the integer coordinates of the elliptic curve are:

$$
\begin{gather*}
y^{2}=x^{3}-3 x+2 \tag{38}\\
(1,0) ;(-2,0) ;(2,2) ;(2,-2) ;(-1,2) ;(-1,-2) \tag{39}
\end{gather*}
$$

For $q>2, q-2$ and $q+2$ can not be simultaneous square numbers.
Now, we consider that $\left|p_{1}\right|>1$.

We suppose that $p_{1}>1$ The equation (22) is written as:

$$
\begin{equation*}
m^{2}-\left(y^{2}-q\right)^{2}=4 p_{1}^{3} \Longrightarrow m^{2}-\left(y^{2}-q\right)^{2}=4 p_{1}^{3} \tag{40}
\end{equation*}
$$

From the last equation (40), $\left(m, y^{2}-q\right)$ (respectively in the case $y^{2}-q \leq$ $\left.0,\left(m, q-y^{2}\right)\right)$ are solutions of the Diophantine equation :

$$
\begin{equation*}
X^{2}-Y^{2}=N \quad X>0, Y>0 \tag{41}
\end{equation*}
$$

where N is a positive integer equal to $4 p_{1}^{3}$.
For the general solutions of the equation (41), let $Q(N)$ the number of solutions of (41) and $\tau(N)$ the number of factorization of N, then we give the following result concerning the solutions of (41) (see theorem 27.3 of [1]):

- if $N \equiv 2(\bmod 4)$, then $Q(N)=0$;
- if $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$;
- if $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]^{1}$.

As $N=4 p_{1}^{3} \Longrightarrow N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]=\left[\tau\left(p_{1}^{3}\right) / 2\right]>1$. A solution $\left(X^{\prime}, Y^{\prime}\right)$ of (41) is used if $Y^{\prime}=y^{2}-q \Longrightarrow q+Y^{\prime}$ is a square (respectively if $Y^{\prime}=q-y^{2} \Longrightarrow q-Y^{\prime}$ is a square), then $X^{\prime}=m>0$ and $\pm y= \pm \sqrt{q+Y^{\prime}}$ (respectively $\pm y= \pm \sqrt{q-Y^{\prime}}$. The roots of (9) are :

$$
\begin{align*}
& X_{1}=\frac{y^{2}-q+m}{2}=\frac{Y^{\prime}+m}{2}>0 \tag{42}\\
& X_{2}=\frac{y^{2}+q-m}{2}=\frac{Y^{\prime}-m}{2}<0 \tag{43}
\end{align*}
$$

(Respectively, the roots of (9) are :

$$
\begin{align*}
& X_{1}=\frac{y^{2}-q+m}{2}=\frac{-Y^{\prime}+m}{2}>0 \tag{44}\\
& X_{2}=\frac{y^{2}+q-m}{2}=\frac{-Y^{\prime}-m}{2}<0 \tag{45}
\end{align*}
$$

). From $X^{\prime 2}-Y^{\prime 2}=4 p_{1}^{3}=N, 2 \mid\left(Y^{\prime}-m\right)$ and $2 \mid\left(Y^{\prime}-m+2 m\right) \Longrightarrow$ $2 \mid\left(Y^{\prime}+m\right) \Longrightarrow X_{1}, X_{2} \in \mathbb{Z}$, and we obtain the equations:

$$
\begin{gather*}
u^{3}=X_{1} \Longrightarrow u_{1}=\sqrt[3]{X_{1}} ; u_{2}=j \sqrt[3]{X_{1}} ; u_{3}=j^{2} \sqrt[3]{X_{1}} \tag{46}\\
v^{3}=X_{2} \Longrightarrow v_{1}=\sqrt[3]{X_{2}} ; v_{2}=j \sqrt[3]{X_{2}} ; v_{3}=j^{2} \sqrt[3]{X_{2}} \tag{47}
\end{gather*}
$$

[^1]A real x is obtained if $x=u_{1}+v_{1}=\sqrt[3]{X_{1}}+\sqrt[3]{X_{2}}$. If X_{1}, X_{2} are cubic integers : $X_{1}=t_{1}^{3}, X_{2}=t_{2}^{3}$, then we obtain an integer solution :

$$
\begin{equation*}
x=t_{1}+t_{2}, \quad \pm y= \pm \sqrt{Y^{\prime}+q} \quad \text { respectively } \quad \pm y= \pm \sqrt{q-Y^{\prime}} \tag{48}
\end{equation*}
$$

If not, there are no integer coordinates of the elliptic curve (E).

We suppose that $p<0 \Longrightarrow p_{1}<-1$: in this case, $\left(y^{2}-q, m\right)$ (respectively $\left.\left(q-y^{2}, m\right)\right)$ is a solution of the Diophantine equation :

$$
\begin{equation*}
X^{2}-Y^{2}=N^{\prime} \quad X>0, Y>0 \tag{49}
\end{equation*}
$$

and N^{\prime} is a positive integer equal to $-4 p_{1}^{3}>0$. As seen above, a solution (X^{\prime}, Y^{\prime}) of (49) is used if $X^{\prime}=y^{2}-q \Longrightarrow q+X^{\prime}$ is a square (respectively $X^{\prime}=q-y^{2} \Rightarrow q-X^{\prime}$ is a square), then $\pm y^{\prime}= \pm \sqrt{q+X^{\prime}}$ (respectively $\left.\pm y^{\prime}= \pm \sqrt{q-X^{\prime}}\right)$ and $Y^{\prime}=m>0$. The roots of (9) are :

$$
\begin{align*}
& X_{1}^{\prime}=\frac{y^{2}-q+m}{2}=\frac{X^{\prime}+m}{2}>0 \tag{50}\\
& X_{2}^{\prime}=\frac{y^{2}+q-m}{2}=\frac{X^{\prime}-m}{2}>0 \tag{51}
\end{align*}
$$

(Respectively the roots of (9) are :

$$
\begin{align*}
& X_{1}^{\prime}=\frac{y^{2}-q+m}{2}=\frac{-X^{\prime}+m}{2}>0 \tag{52}\\
& X_{2}^{\prime}=\frac{y^{2}+q-m}{2}=\frac{-X^{\prime}-m}{2}<0 \tag{53}
\end{align*}
$$

) From $X^{\prime 2}-Y^{\prime 2}=-4 p_{1}^{3}=N^{\prime}, 2 \mid\left(X^{\prime}-m\right)$ and $2 \mid\left(X^{\prime}+m\right) \Longrightarrow X_{1}^{\prime}, X_{2}^{\prime} \in \mathbb{Z}$, and we obtain the equations:

$$
\begin{gather*}
u^{\prime 3}=X_{1}^{\prime} \Longrightarrow u_{1}^{\prime}=\sqrt[3]{X_{1}^{\prime}} ; u_{2}^{\prime}=j \sqrt[3]{X_{1}^{\prime}} ; u_{3}^{\prime}=j^{2} \sqrt[3]{X_{1}^{\prime}} \tag{54}\\
v^{\prime 3}=X_{2}^{\prime} \Longrightarrow v_{1}^{\prime}=\sqrt[3]{X_{2}^{\prime}} ; v_{2}^{\prime}=j \sqrt[3]{X_{2}^{\prime}} ; v_{3}^{\prime}=j^{2} \sqrt[3]{X_{2}^{\prime}} \tag{55}
\end{gather*}
$$

A real x^{\prime} is obtained if $x^{\prime}=u_{1}^{\prime}+v_{1}^{\prime}=\sqrt[3]{X_{1}^{\prime}}+\sqrt[3]{X_{2}^{\prime}}$. If $X_{1}^{\prime}, X_{2}^{\prime}$ are cubic integers : $X_{1}^{\prime}=t_{1}^{\prime 3}, X_{2}^{\prime}=t_{2}^{\prime 3}$ then we obtain an integer solution :

$$
\begin{equation*}
x^{\prime}=t_{1}^{\prime}+t_{2}^{\prime}, \quad \pm y^{\prime}= \pm \sqrt{X^{\prime}+q} \quad\left(\text { respectively } \quad \pm y^{\prime}= \pm \sqrt{q-X^{\prime}}\right) \tag{56}
\end{equation*}
$$

If not, there are no integer coordinates of the elliptic curve (E).

2.2.2 We suppose that $3 \nmid p$

We rewrite the equations (9) and (22):

$$
\begin{array}{r}
X^{2}-\left(y^{2}-q\right) X-\frac{p^{3}}{27}=0 \\
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}=\frac{27\left(y^{2}-q\right)^{2}+4 p^{3}}{27}=m^{2}
\end{array}
$$

with $m>0$ a real scalar. As seen above, we find the same results, there are no integer coordinates of the elliptic curve (E).

2.3 Case $\Delta<0$

The expression of Δ is given by (84) :

$$
\Delta=\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}
$$

We suppose that $\Delta<0 \Longrightarrow\left(y^{2}-q\right)^{2}+\frac{4 p^{3}}{27}<0 \Longrightarrow\left(y^{2}-q\right)^{2}<-\frac{4 p^{3}}{27}$, then $p<0$. Let $p^{\prime}=-p>0 \Longrightarrow \Delta=\left(y^{2}-q\right)^{2}-\frac{4 p^{\prime 3}}{27}$.

2.3.1 We suppose $3 \mid p^{\prime}$:

We suppose that $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p_{1}$. Δ becomes:

$$
\begin{equation*}
\Delta=\left(y^{2}-q\right)^{2}-4 p_{1}^{3} \tag{57}
\end{equation*}
$$

Case $p_{1}=1$. We obtain $\Delta=\left(y^{2}-q\right)^{2}-4 . \Delta=-m^{2}$ with m integer, then $m^{2}=4-\left(y^{2}-q\right)^{2} \Rightarrow m^{2}+\left(y^{2}-q\right)^{2}=2^{2}$, the solutions are:
** $m^{2}=4, y^{2}-q=0 \Rightarrow y^{2}=q$. If q is a square, let $q=q_{1}^{2}$, then $y= \pm q_{1}$. We have also $x^{3}-3 x=0$. The only integer coordinates of the elliptic curve are:

$$
\begin{equation*}
\left(0, q_{1}\right), \quad\left(0,-q_{1}\right) \tag{58}
\end{equation*}
$$

** $m^{2}=1, \quad y^{2}-q=\sqrt{3}$ or $y^{2}-q=-\sqrt{3}$
${ }^{* *}-1-y^{2}-q=\sqrt{3}$, If $q=\sqrt{3}$, we have the equation $y^{2}=x^{3}-3 x+\sqrt{3}$ and $X^{2}-\sqrt{3} X+1=0$ and :

$$
\begin{align*}
& X_{1}=\frac{\sqrt{3}+i}{2}=e^{\frac{i \pi}{6}} \tag{59}\\
& X_{2}=\frac{\sqrt{3}-i}{2}=e^{-\frac{i \pi}{6}} \tag{60}
\end{align*}
$$

u, v verify $u^{3}=e^{\frac{i \pi}{6}} ; v^{3}=e^{-\frac{i \pi}{6}} \Longrightarrow\left|u_{i}\right|=1$ and $\left|v_{j}\right|=1,\left|x_{k}\right|=\left|u_{i}+v_{k}\right|=$ $\left|2 \cos \frac{\pi}{18}\right|<2 \Longrightarrow$ no integer coordinates if $q=\sqrt{3}$.
**-2- $y^{2}-q=-\sqrt{3}$, we suppose that $q=-\sqrt{3}$ then $X^{2}+\sqrt{3} X+1=0$. We obtain:

$$
\begin{align*}
& X_{1}=\frac{-\sqrt{3}+i}{2}=e^{\frac{i 5 \pi}{6}} \tag{61}\\
& X_{2}=\frac{-\sqrt{3}-i}{2}=e^{-\frac{i 5 \pi}{6}} \tag{62}
\end{align*}
$$

Using the same remark as above, we arrive to $\left|x_{k}\right|<2$, with $\left|x_{k}\right| \neq 1$, then there are no integer coordinates when $q=-\sqrt{3}$.

Case $p_{1}>1$. We obtain $m^{2}=4 p_{1}^{3}-\left(y^{2}-q\right)^{2} \Longrightarrow m^{2}+\left(y^{2}-q\right)^{2}=4 p_{1}^{3}$, then $\pm m, \pm\left(y^{2}-q\right)$ are solutions of the Diophantine equation :

$$
\begin{equation*}
A^{2}+B^{2}=N \tag{63}
\end{equation*}
$$

with $N=4 p_{1}^{3}$. The following theorem (theorem 36.3,[2]) gives the conditions to be verified by N :

Theorem 2.1. The Diophantine equation:

$$
\begin{equation*}
A^{2}+B^{2}=N \tag{64}
\end{equation*}
$$

has a solution if and only if:

$$
\begin{equation*}
N=2^{\alpha} p_{1}^{\prime h_{1}} \ldots p_{k}^{\prime h_{k}} \cdot q_{1}^{2 \beta_{1}} \ldots q_{n}^{2 \beta_{n}} \tag{65}
\end{equation*}
$$

where the p_{i}^{\prime} are primes congruent to 1 modulo 4, and the q_{j} are prime congruent to 3 modulo 4. When N is of this form, equation (64) has:

$$
\begin{equation*}
N_{S}=\left[\frac{\left(h_{1}+1\right) \cdots\left(h_{k}+1\right)+1}{2}\right] \tag{66}
\end{equation*}
$$

inequivalent solution $\2.

[^2]From the conditions given by the theorem above, $2 \nmid p_{1}$ and p_{1} must be written as:

$$
\begin{equation*}
p_{1}=p_{1}^{\prime 3 h_{1}} \ldots p_{k}^{\prime 3 h_{k}} \cdot q_{1}^{6 \beta_{1}} \ldots q_{n}^{6 \beta_{n}} \tag{67}
\end{equation*}
$$

and $p_{1} \equiv 1(\bmod 4)$.
We suppose in the following, that equation (67) is true. We obtain:

$$
\left\{\begin{array}{l}
X_{1}=\frac{y_{l}^{2}-q+i m_{l}}{2} \tag{68}\\
X_{2}=\frac{y_{l}^{2}-q-i m_{l}}{2}
\end{array} l=1,2, . ., N_{S}\right.
$$

We have to resolve:

$$
\left\{\begin{array}{l}
u^{3}=X_{1}=\frac{y_{l}^{2}-q+i m_{l}}{2} \tag{69}\\
v^{3}=X_{2}=\bar{X}_{1}=\frac{y_{l}^{2}-q-i m_{l}}{2}
\end{array}\right.
$$

We write X_{1} as $X_{1}=\rho e^{i \theta}$ with:
$\rho=\frac{\sqrt{\left(y^{2}-q\right)^{2}+m^{2}}}{4}=p_{1} \sqrt{p_{1}} ; \quad \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}=\frac{m_{l}}{2 \rho}>0 ; \quad \cos \theta=\frac{y^{2}-q}{2 \rho}$
If $y^{2}-q>0 \Longrightarrow \cos \theta>0 \Longrightarrow 0<\theta<\frac{\pi}{2}[2 \pi] \Longrightarrow \frac{1}{4}<\cos ^{2} \frac{\theta}{3}<1$.
If $y^{2}-q<0 \Longrightarrow \cos \theta<0$, then :

$$
\begin{equation*}
\frac{\pi}{2}<\theta<\pi[2 \pi] \Longrightarrow \frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{70}
\end{equation*}
$$

A. We suppose that $y^{2}-q>0 \Longrightarrow 0<\frac{\theta}{3}<\frac{\pi}{6}[2 \pi] \Longrightarrow \frac{1}{4}<\cos ^{2} \frac{\theta}{3}<1$. Then the expression of $X_{2}: X_{2}=\rho e^{-i \theta}$. Let :

$$
u=r e^{i \psi} ; \quad \text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{2 \pi}{3}}
$$

The parameters u and v are:

$$
\left\{\begin{array}{l}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{i \pi}{3}} e^{+i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+4 \pi}{3}}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{i \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{i \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{2 \pi-\theta}{3}}
\end{array}\right.
$$

We choose u_{k} and v_{h} so that $u_{k}+v_{h}$ is real. In this case, we have necessary :

$$
v_{1}=\overline{u_{1}} ; \quad v_{2}=\overline{u_{2}} ; \quad v_{3}=\overline{u_{3}}
$$

Then, the real solutions of the equation (3):

$$
\left\{\begin{array}{l}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{71}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

The discussion of the integrity of x_{1}, x_{2}, x_{3} : We suppose that x_{1} is an integer, then x_{1}^{2} is an integer. We obtain:

$$
\begin{equation*}
x_{1}^{2}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 p_{1} \cos ^{2} \frac{\theta}{3} \tag{72}
\end{equation*}
$$

We write $\cos ^{2} \frac{\theta}{3}$ as :

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{a} \quad \text { or } \quad \frac{a}{b} \tag{73}
\end{equation*}
$$

where a, b are relatively coprime integers.
** $\cos ^{2} \frac{\theta}{3}=\frac{1}{a}$. In this case, $\frac{1}{4}<\frac{1}{a}<1 \Longrightarrow 1<a<4 \Longrightarrow a=2$ or $a=3$.

Case $a=2$, we obtain $\left.x_{1}^{2}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=2 p_{1} \Longrightarrow 2 \right\rvert\, p_{1}$, but $2 \nmid p_{1}$, then the contradiction. We verify easily that x_{2} and x_{3} are irrationals.
Case $a=4$, we obtain $x_{1}^{2}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 p_{1} \cdot \frac{1}{3}$. If $3 \nmid p_{1} \Longrightarrow x_{1}^{2}$ is a rational. We suppose that $3 \mid p_{1}$, then p_{1} must be written as $p_{1}=3 \omega^{2}$. From the equation (67), $p_{1} \equiv 1(\bmod 4)$. We deduce that $\omega^{2} \equiv 3(\bmod 4)$, as ω^{2} is a square, $\omega^{2} \equiv 0(\bmod 4)$ or $\omega^{2} \equiv 1(\bmod 4)$, Then x_{1} can not be an integer. We verify easily that x_{2}, x_{3} are also not integers.
** $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}, a, b$ coprime with $a>1$. We obtain :

$$
x_{1}^{2}=4 p_{1} \cos ^{2} \frac{\theta}{3}=\frac{4 p_{1} a}{b}
$$

where b verifies the condition:

$$
\begin{equation*}
b \mid 4 p_{1} \tag{74}
\end{equation*}
$$

and using the (70), we obtain a second condition:

$$
\begin{equation*}
b<4 a<3 b \tag{75}
\end{equation*}
$$

A-1- $b=2 \Longrightarrow a=1 \Longrightarrow x_{1}^{2}=2 p_{1} \Longrightarrow 2 \mid p_{1}$, then case to reject.
A-2- $b=4 \Longrightarrow a=2, a, b$ no coprime. Case to reject.
A-3- $b=2 b^{\prime}$ avec $2 \nmid b^{\prime}$, then we obtain:

$$
\begin{equation*}
\left.x_{1}^{2}=\frac{4 p_{1} a}{b}=\frac{2 p_{1} a}{b^{\prime}} \Rightarrow b^{\prime} \right\rvert\, p_{1} \tag{76}
\end{equation*}
$$

then $p_{1}=b^{\prime \alpha} p_{2}$ with $\alpha \geq 1$ and $b^{\prime} \nmid p_{2}$, we obtain $x_{1}^{2}=2 b^{\prime \alpha-1} \cdot p_{2} \cdot a \Rightarrow 2 \mid\left(p_{2} \cdot a\right)$, but from (67) $2 \nmid p_{1} \Rightarrow 2 \nmid p_{2}$ and $2 \nmid a$, if not a, b are not coprime. Then x_{1}^{2} cannot be an square integer, the case $b=2 b^{\prime}$ is to reject.

A-4- $b=4 b^{\prime}$ avec $4 \nmid b^{\prime}$, then we obtain:

$$
\begin{equation*}
\left.x_{1}^{2}=\frac{4 p_{1} a}{b}=\frac{p_{1} a}{b^{\prime}} \Rightarrow b^{\prime} \right\rvert\, p_{1} \tag{77}
\end{equation*}
$$

then $p_{1}=b^{\prime \alpha} p_{2}$ with $\alpha \geq 1$ and $b^{\prime} \nmid p_{2}$, we obtain $x_{1}^{2}=b^{\prime \alpha-1} \cdot p_{2} . a$.

* if $b^{\prime \alpha-1} \cdot p_{2} \cdot a=f^{2}$ a square then $x_{1}= \pm f$, if not x_{1} is not an integer. We consider that $x_{1}=\epsilon f$ is an integer with $\epsilon= \pm 1$. As $x_{1}+x_{2}+x_{3}=0 \Longrightarrow$ $x_{2}+x_{3}=-x_{1}$. The product $x_{2} \cdot x_{3}=f^{2}-3 p_{1}$, then x_{2}, x_{3} are solutions of the equation:

$$
\begin{equation*}
\lambda^{2}-\epsilon f \lambda+f^{2}-3 p_{1}=0 \tag{78}
\end{equation*}
$$

The discriminant of 78) is:

$$
\delta=f^{2}-4\left(f^{2}-3 p_{1}\right)=12 p_{1}-3 f^{2}=3\left(4 p_{1}-f^{2}\right)=3 p_{2} b^{\alpha-1}(b-a)>0
$$

If δ is not a square, then x_{2}, x_{3} are not integers. We suppose that $\delta=g^{2}$ a square. The real roots of (78) are:

$$
\begin{align*}
& \lambda_{1}=\frac{\epsilon f+g}{2} \tag{79}\\
& \lambda_{2}=\frac{\epsilon f-g}{2} \tag{80}
\end{align*}
$$

From the expressions of f and g, we deduce that $2 \mid f$ and $2 \mid g$, then λ_{1}, λ_{2} are integers.

We recall that $y^{2}-q$ is supposed >0 and are determined by the equations 63 64 66), we obtain the integer coordinates \in to the elliptic curve (E) :

$$
\begin{array}{r}
\text { For } l=1,2, \ldots, N_{S} \\
\left(f, y_{l}\right),\left(-f, y_{l}\right),\left(f,-y_{l}\right),\left(-f,-y_{l}\right), \\
\left(\lambda_{1}, y_{l}\right),\left(\lambda_{2}, y_{l}\right),\left(\lambda_{1},-y_{l}\right),\left(\lambda_{2},-y_{l}\right), \\
\left(-\lambda_{1}, y_{l}\right),\left(-\lambda_{2}, y_{l}\right),\left(-\lambda_{1},-y_{l}\right),\left(-\lambda_{2},-y_{l}\right) \tag{81}
\end{array}
$$

B. We suppose that $y^{2}-q<0 \Longrightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3}[2 \pi]$ that gives :

$$
\frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \Longrightarrow \frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4}
$$

$\cos ^{2} \frac{\theta}{3}=\frac{1}{a}$. In this case, $\frac{3}{4}<\frac{1}{a}<1 \Longrightarrow 3 a<4$ which is impossible case to reject.
$\cos ^{2} \frac{\theta}{3}=\frac{a}{b}$. In this case, $\frac{3}{4}<\frac{a}{b}<1 \Longrightarrow 3 b<4 a$. Then we obtain:

$$
\begin{equation*}
\left.x_{1}^{2}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 p_{1} \cos ^{2} \frac{\theta}{3}=\frac{4 p_{1} a}{b} \Rightarrow b \right\rvert\,\left(4 p_{1}\right) \tag{82}
\end{equation*}
$$

B-1- $b=2 \Longrightarrow a=1 \Longrightarrow 8<4$ case to reject.
B-2- $b=4 \Longrightarrow 3<a<4$ case to reject.
B-3- $b=2 b^{\prime}$ avec $2 \nmid b^{\prime}$, then we obtain:

$$
\begin{equation*}
\left.x_{1}^{2}=\frac{4 p_{1} a}{b}=\frac{2 p_{1} a}{b^{\prime}} \Rightarrow b^{\prime} \right\rvert\, p_{1} \tag{83}
\end{equation*}
$$

then $p_{1}=b^{\prime \alpha} p_{2}$ with $\alpha \geq 1$ and $b^{\prime} \nmid p_{2}$, we obtain $x_{1}^{2}=2 b^{\alpha-1} . p_{2} \cdot a$.

* if $2 b^{\prime \alpha-1} \cdot p_{2} \cdot a=f^{2}$ a square then $x_{1}= \pm f$, if not x_{1} is not an integer. We consider that $x_{1}=\epsilon f$ is an integer with $\epsilon= \pm 1$. As $x_{1}+x_{2}+x_{3}=0 \Longrightarrow$ $x_{2}+x_{3}=-x_{1}$. The product $x_{2} \cdot x_{3}=f^{2}-3 p_{1}$, then x_{2}, x_{3} are solutions of the equation:

$$
\begin{equation*}
\lambda^{2}-\epsilon f \lambda+f^{2}-3 p_{1}=0 \tag{84}
\end{equation*}
$$

The discriminant of 84 is:

$$
\delta=f^{2}-4\left(f^{2}-3 p_{1}\right)=12 p_{1}-3 f^{2}=3\left(4 p_{1}-f^{2}\right)=2 p_{2} b^{\prime \alpha-1}(b-a)>0
$$

If δ is not a square, then x_{2}, x_{3} are not integers. We suppose that $\delta=g^{2}$ a square. The real roots of (84) are:

$$
\begin{align*}
& \lambda_{1}=\frac{\epsilon f+g}{2} \tag{85}\\
& \lambda_{2}=\frac{\epsilon f-g}{2} \tag{86}
\end{align*}
$$

From the expressions of f and g, we deduce that $2 \mid f$ and $2 \mid g$, then λ_{1}, λ_{2} are integers.

B-4- $b=4 b^{\prime}$ avec $4 \nmid b^{\prime}$, then we obtain:

$$
\begin{equation*}
\left.x_{1}^{2}=\frac{4 p_{1} a}{b}=\frac{p_{1} a}{b^{\prime}} \Rightarrow b^{\prime} \right\rvert\, p_{1} \tag{87}
\end{equation*}
$$

then $p_{1}=b^{\prime \alpha} p_{2}$ with $\alpha \geq 1$ and $b^{\prime} \nmid p_{2}$, we obtain $x_{1}^{2}=b^{\prime \alpha-1} \cdot p_{2} \cdot a$.

* if $b^{\prime \alpha-1} \cdot p_{2} \cdot a=f^{2}$ a square then $x_{1}= \pm f$, if not x_{1} is not an integer.

We consider that $x_{1}=\epsilon f$ is an integer with $\epsilon= \pm 1$. As $x_{1}+x_{2}+x_{3}=0 \Longrightarrow$ $x_{2}+x_{3}=-x_{1}$. The product $x_{2} \cdot x_{3}=f^{2}-3 p_{1}$, then x_{2}, x_{3} are solutions of the equation:

$$
\begin{equation*}
\lambda^{2}-\epsilon f \lambda+f^{2}-3 p_{1}=0 \tag{88}
\end{equation*}
$$

The discriminant of (88) is:

$$
\delta=f^{2}-4\left(f^{2}-3 p_{1}\right)=12 p_{1}-3 f^{2}=3\left(4 p_{1}-f^{2}\right)=2 p_{2} b^{\alpha-1}(b-a)>0
$$

If δ is not a square, then x_{2}, x_{3} are not integers. We suppose that $\delta=g^{2}$ a square. The real roots of 88 are:

$$
\begin{align*}
& \lambda_{1}=\frac{\epsilon f+g}{2} \tag{89}\\
& \lambda_{2}=\frac{\epsilon f-g}{2} \tag{90}
\end{align*}
$$

From the expressions of f and g, we deduce that $2 \mid f$ and $2 \mid g$, then λ_{1}, λ_{2} are integers.

We recall that $y^{2}-q$ is supposed <0 and are determined by the equations (6364-66), we obtain the integer coordinates \in to the elliptic curve (E) :

$$
\begin{array}{r}
\text { For } l=1,2, \ldots, N_{S} \\
\left(f, y_{l}\right),\left(-f, y_{l}\right),\left(f,-y_{l}\right),\left(-f,-y_{l}\right), \\
\left(\lambda_{1}, y_{l}\right),\left(\lambda_{2}, y_{l}\right),\left(\lambda_{1},-y_{l}\right),\left(\lambda_{2},-y_{l}\right), \\
\left(-\lambda_{1}, y_{l}\right),\left(-\lambda_{2}, y_{l}\right),\left(-\lambda_{1},-y_{l}\right),\left(-\lambda_{2},-y_{l}\right) \tag{91}
\end{array}
$$

2.3.2 We suppose $3 \nmid p^{\prime}$:

Then $\Delta=\left(y^{2}-q\right)^{2}-\frac{4 p^{\prime 3}}{27}=-m^{2}$ where $m>0$ is a real. As in paragraph 2.2 .2 above, we find the same results there are no integers coordinates of the elliptic curve (E).

References

[1] B.M. Stewart : Theory of numbers. 2sd ed. The Macmillan Company, New-York (1964).
[2] E.D. Bolker : Elementary number theory: an algebraic approach. W.A. Benjamin, Inc., New-York (1970).
[3] J. Silverman: Rational Points on Elliptic Curves, Springer-Verlag, New York. (1992) 1-6.
[4] J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, New York. Graduate Texts in Mathematics $n^{\circ} 106,400$ pages. (1986)
[5] J. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York. Graduate Texts in Mathematics $n^{\circ} 151,536$ pages. (1994)

[^0]: *Résidence Bousten 8, Bloc B, Mosquée Raoudha, 1181 Soukra Raoudha, Tunisia. ; Email:abenhadjsalem@gmail.com

[^1]: ${ }^{1}[x]$ is the largest integer less or equal to x.

[^2]: ${ }^{2}[x]$ is the largest integer less or equal to x.

