ETUDE ON NONTRIVIAL COLLATZ CYCLES

Savinov Sergey

Nontrivial Collatz cycles correspond to the expression (1.1) or (1.2):
$\frac{(3 a+1)(3 b+1)(3 c+1)}{a b c}=2^{h} \quad$ (1.1) $\quad \frac{(A+1)(B+1)(C+1)}{A B C}=\frac{2^{h}}{3^{m}} \quad$ (1.2)

The central part of transformation (2) from expression (1.2) corresponds to the sequence (3n+1) for negative numbers.

$$
\begin{equation*}
\frac{\left(A^{`}+1\right)\left(B^{`}+1\right)\left(C^{`}+1\right)}{A^{`} B^{`} C^{`}}=\frac{A B C}{(A-1)(B-1)(C-1)} \equiv \frac{3^{m}}{2^{h}} \tag{2}
\end{equation*}
$$

The sequence $(3 n+1)$ for negative numbers actually has nontrivial cycles, accordingly of the central part of expression (2) correlates with the series $\frac{3^{m}}{2^{h}}$. The left part of expression (2) correspond to the Collatz sequence for even numbers.

$$
\begin{equation*}
\frac{3^{m}}{2^{h}} \equiv \frac{\left(A^{`}+1\right)\left(B^{`}+1\right)\left(C^{`}+1\right)}{A^{`} B^{`} C^{`}} \not \equiv \frac{A B C}{(A+1)(B+1)(C+1)} \tag{3}
\end{equation*}
$$

Replacing the left-hand side of the expression (2) of even numbers with odd ones (Collatz sequence) leads to non performing of correlation with the series $\frac{3^{m}}{2^{h}}$ and the absence of non-trivial cycles (3).

