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Abstract. Using the methods of multivariate circles of partition, we prove

that for any additive base A of order h ≥ 2 the upper bound

#

{
(x1, x2, . . . , xh) ∈ Ah |

h∑
i=1

xi = k

}
�h log k

holds for sufficiently large values of k provided the counting function

#

{
(x1, x2, . . . , xh) ∈ Ah |

h∑
i=1

xi = k

}
is an increasing function for all k sufficiently large.

1. Introduction

Let A ⊂ N then we say A is an additive base of order h if the counting function

rA,h(k) := #

{
(x1, x2, . . . , xh) ∈ Ah |

h∑
i=1

xi = k

}
> 0

for all sufficiently large values of k. In [2], Erdős proved that there exists an additive
base A of order 2 and some constant c1, c2 > 0 such that the inequalities

c1 log k ≤ rA(n) ≤ c2 log k

and conjectured that

lim sup
k−→∞

rA(k)

log k
> 0

if A is an additive base of order h ≥ 2.
In [1] we have developed a method for studying a large class of additive number
theory problems. The method of circles of partition is very vast and rich and has
yet unexplored applications. This method is easy to use given its combinatorial
affinity. It is very elementary in nature and has parallels with configurations of
points on the geometric circle.
It works in the following intuitive sense: Let us suppose that for any n ∈ N we can
write n = u + v where u, v ∈ M ⊂ N then the new method associate each of this
summands to points on the circle generated in a certain manner by n > 2 and a
line joining any such associated points on the circle. This geometric correspondence
turns out to useful in our development, as the results obtained in this setting are
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then transformed back to results concerning the partition of integers. We explore
this method in the paper by introducing new notions to obtain the result

Theorem 1.1. Let A ⊂ N and h ≥ 2 fixed. If

#

{
L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
> 0

and #
{
L[x1],[x2],...,[xh] ∈̂ C(k,

⊗h
i=1 A)

}
is an increasing function for all sufficiently

large values of k, then

#

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
�h log k

for all k sufficiently large.

This result is equivalent to the statement that

rA,h(k)�h log k

for all sufficiently large values of k under the assumption that the counting function
rA,h(k) is increasing for sufficiently large values of k.

In this paper we study a multivariate version of the method, where we allow our base
regulators to be the direct product

⊗
of subsets of the natural numbers N. With

the goal of studying a general version of the Erdős-Turán additive base conjecture,
we introduce and study the notion of the axial potential of the multivariate circle
of partition.
Notations. We denote by Nn = {m ∈ N | m ≤ n} the sequence of the first n
natural numbers

2. Multivariate circles of partition

In this section we introduce and study the notion of multivariate circles of
partitions. We launch the following language.

Definition 2.1. Let A ⊆ N. Then we denote with

C(n,
h⊗

i=1

Ai) =

{
[x1], [x2], . . . , [xh]| xi ∈ Ai, n =

h∑
i=1

xi

}
a multivariate circle of partition generated by n ∈ N with base regulators⊗h

i=1 Ai. We call members of the multivariate CoP multivariate points.

Definition 2.2. We denote the line L[x1],[x2],...,[xh] joining the points [x1], [x2], . . . , [xh]

as a axis of the multivariate CoP C(n,
⊗h

i=1 Ai) if and only if xi ∈ Ai for each

1 ≤ i ≤ h and n =
h∑

i=1

xi. We say the axis points [xi] for each 1 ≤ i ≤ h

are axis residents. We do not view the axis as any different among other axis
L[x1],[x2],...,[xh] up to the rearrangements of its residents points. In special cases

where the points [xk] ∈ C(n,
⊗h

i=1 Ai) such that hxk = n then we call [xi] the cen-
ter of the multivariate CoP. If it exists, then we call it as a degenerated axis L[xk]
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in comparison to the real axes L[x1],[x2],...,[xh], where not all of the weights xi can
be equal. We denote the assignment of an axis L[x1],[x2],...,[xh] to the multivariate

CoP C(n,
⊗h

i=1 Ai) as

L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗

i=1

Ai) which means [x1], [x2], . . . , [xh] ∈ C(n,
h⊗

i=1

Ai)

with

n =

h∑
i=1

xi

for a fixed n ∈ N with xi ∈ Ai for each 1 ≤ i ≤ h or vice versa and the number
of real axes of the generalized CoP as

ν(C(n,
h⊗

i=1

Ai) := #{L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗

i=1

Ai) | xi 6= xj}.

for all 1 < i < j ≤ h. The lines L[x1],[x2],...,[xh] joining any h arbitrary points

[x1], [x2], . . . , [xh] ∈ C(n,
⊗h

i=1 Ai) which are not resident points in the multivariate
CoP will be referred to as a graph induced by the multivariate CoP.

Throughout this paper we will denote for simplicity the multivariate circle of
partition in simple wording as m-CoP. The notion of a multivariate axis is not
technically convenient to work with; nonetheless, it is fairly manageable if we confine
ourselves to a certain class of axis of a typical CoP. As it will prove very useful in
the sequel and will feature very greatly in our results in the sequel, we find it more
prudent exploiting the notion of representative axis.

Definition 2.3. Let C(n,
⊗h

i=1 Ai) be a multivariate CoP and let [x1] ∈ C(n,
⊗h

i=1 Ai)

be a fixed point. Then we say the axis L[x1],[x2],...,[xh] ∈̂ C(n,
⊗h

i=1 Ai) belongs to
the class m axis of the multivariate CoP if

x2 + · · ·+ xh = m.

Proposition 2.4. Let C(n,
⊗h

i=1 N) be a multivariate CoP. Then there are⌊
n− 1

h

⌋
axis-classes of the multivariate CoP.

Throughout this paper we will work within the axis-classes and use their repre-

sentatives. For any s axis-class of a multivariate CoP C(n,
⊗h

i=1 Ai)

Cs := {Ls
[x1],[x2],...,[xh]

∈̂ C(n,
h⊗

i=1

Ai)}

we denote the representative axis of the class as <(Cs). Henceforth in counting the
number of axis of a typical CoP we will only count the number of representative
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axis or simply the number of axis-classes. We denote more generally the set of all
representative axis of the axis-classes as

{<L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗

i=1

Ai)}

and the number of all representative axis in the m-CoP as

#{<L[x1],[x2],...,[xh] ∈̂ C(n,
h⊗

i=1

Ai)}.

It has been observed that for a CoP with a natural number
⊗h

i=1 N base regulator
the number of representative axis is basically the quantity⌊

n− 1

h

⌋
.

3. Axial potential of multivariate circles of partition

In this section we introduce and study the notion of the axial potential of an
m-CoP. We launch the following language.

Definition 3.1. Let C(n,
⊗h

i=1 Ai) be an m-CoP. Then by the lth axial potential

denoted, bC(∞,
⊗h

i=1 Ai)cl, we mean the infinite sum

bC(∞,
h⊗

i=1

Ai)cl =

∞∑
n=h+1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai)

}l

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai ∪

⊗h
i=1 N)

}l
.

We say the lth axial potential is finite if the series converges; otherwise, we say it
diverges.

Theorem 3.2 (Main theorem). Let A ⊂ N and h ≥ 2 fixed. If

#

{
L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
> 0

and #
{
L[x1],[x2],...,[xh] ∈̂ C(k,

⊗h
i=1 A)

}
is an increasing function for all sufficiently

large values of k, then

#

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
�h log k

for all k sufficiently large.

Proof. Under the requirement A ⊂ N with #
{
L[x1],[x2],...,[xh] ∈̂ C(k,

⊗h
i=1 A)

}
> 0

for all sufficiently large values of k, then it implies that

#

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
> 0
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for all sufficiently large values of k so that under the assumption

#

{
L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}

is an increasing function for all sufficiently large values of k the inequality

k∑
n=h+1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 A)

}
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

} ≤ #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}

×
k∑

n=h+1

1

bn−1h c

�h #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}

×
k∑

n=h+1

1

n

�h #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
× log k

holds for all sufficiently large k for a fixed h ≥ 2, since

#

{
<L[x1],[x2],...,[xh] ∈̂ C(n,

h⊗
i=1

N)

}
= bn− 1

h
c.

On the other hand, we choose a constant l := l(k) ≥ 2 such that

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai)

}
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

} >
#
{
<L[x1],[x2],...,[xh] ∈̂ C(k,

⊗h
i=1 Ai)

}2

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}l



6 T. AGAMA

for all n ≥ h+1, then the lower bound for the truncated 1st axial potential satisfies

bC(k,
h⊗

i=1

Ai)c =

k∑
n=h+1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 Ai)

}
#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}
≥ #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

Ai)

}2

×
k∑

n=h+1

1

#
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}l

= #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

Ai)

}2

×
k∑

n=h+1

1

bn−1h cl

= #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

Ai)

}2

×
b k−1

h c∑
m=1

1

ml

�h #

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

Ai)

}2

×
k∑

m=1

1

ml

since #
{
<L[x1],[x2],...,[xh] ∈̂ C(n,

⊗h
i=1 N)

}
= bn−1h c. By combining the upper

bound for the truncated 1st axial potential with the lower bound and using the

requirement that A ⊂ N with #
{
L[x1],[x2],...,[xh] ∈̂ C(k,

⊗h
i=1 A)

}
> 0 for all suffi-

ciently large values of k, we obtain (by cancellation)

#

{
<L[x1],[x2],...,[xh] ∈̂ C(k,

h⊗
i=1

A)

}
�h (

k∑
m=1

1

ml
)−1 log k �h log k

since
k∑

m=1

1

ml
> 1

and
∞∑

m=1

1

ml
<∞

for l ≥ 2. �
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