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ABSTRACT

In this study we used an algebraic method that uses elementary
algebra and binomial theorem. To create finite binomial series
L,k g,u) = V,"(k g u) + S,(k g).This is a type of series that has several
properties in variables such as ifu=1 thenL,(k g 1) =S,(k,g Where
V,9(k g 1) = 0. We used these series to prove results in congruences
and primitive roots, Diophantine equation for example,we proved if
a" = 1(mod m) where m = ad — 1thend® = 1(modm) , a,d,n € N. And in
primitives to roots, such as , if m = da; — 1wherea,,ay,a; ... .. ....qjis a

primitive roots modulo m then (m“) ,(m+1) ,(m“) ......... <m+1) all
1 2 3 i

aq an as aj

other primitive roots modulo m wherej=iand1<j < M.We also
obtained several results in finite series.

Key words: binomial theorem, Diophantine equation , finite series , primitive roots ,
congruences

1.INTRODUCTION

In this paper, elementary algebra and binomial theorem, and difference of tow nth

power are used to created finite series in an algebraic method.to create a kind of
series with specific properties, then we used series to create congruence with specific
properties. Through this process, we reached the theorem. 1 theorem.2 in primitive
roots and several results in finite series.
The goal of this paper is to construct a kind of finite binomial series it is a binomial
and its application in the study of congruences, it was used to prove the theorem.1.
and in primitive roots it was used to prove theorem.2 in primitive according binomial
theorem and difference of tow nth power theorem if n a positive integer and x y real
numbers then [see K.H 22]

n

(x+y)" = Z (Z) xyn

k=0

And



xt—yt=(x—y) ) "Iy
2.
2.basic series
This section first we will create the basic series

Basic series. let k, g, u, real numbers and m constant then

Lo(k,g,u) =V,"(k,g,w) + Sp(k, g)

Where
L, (k,gu)=(u—-k+g"—m(1+g)"
And
3
V" (g, ) = Z( 7 (7) @ = m)k - g
And =

(k 9)1 n n n ny .
+1 _ 2
Sn(k,g) = mk E (—1)/ ]+1 1+9)" (0)+(1)g+(2)g (])gf
First dlmenS|0n Serles Let u k g real numbers and n positive integer where m constant then

An(k’ u’g) = Wn(k’u' g) + En(k’u' g)

Where
A,(uk,g)=Q+u—k+g)"—mQ@2+g)"
And
Walkwg)= ) ) (~/(k~g) ((?) (j) i - m))
And j=r=0r=j
k) =t SO0 (g () (e (1o

r=j=1r=j
Second dimension series. Let u k g real numbers where n positive integer m constant then

R,(w,k,g) = H,(uw,k,g) +Y,(k,u,g)
Where
R,(wk,g)=Q+u—-k+g)"—m@B+g)"
And
n

Hn<u,k,g>=sn<u,m>+i Z D () (4 n) k=9 =m)

=0r=j=hr=j
-2

+ zn: Zn:(;l)(; (k MW" —m)

0r=j=h+2r=j

S

=
Il

And



9
() (o= ()

Proof. let g k u, real numbers then according to difference of tow nth power theorem we have that

(k=" = (=" =k ) (k = gV} (=g)"
Then =

n
~(=g = —(k = g+ KD FI U g (=)
j=1
let g € R,n € N where m constant then by multiplying m and adding u9(k — g)" from both
sides

Wik = g)" = m(=g)" = ui(k = g)" = m(k = g +mk Y (k = gy~ (~g)"J
Then i

n
(1) Wik = g)" = m(=g)" = (u —m)(e = g)" +mk ) (k = g} (=)™
j=1
According binomial theorem
n

u—k+g)"=u"- (T{) u" 1(k—g)+ (2)u"‘2(k - g)?

- (’3‘) W3k = @)% e (k= )T
And
m(l+g)"=m+m (rll)g +m (121) gi+m (g) [/ RS ¥ Lo

By subtracting m(k — g)™ from (u — k + g)™ then

(u—k+g)”—m(1+g)nn , , .
=w=m= (k=) =m(7) g + () w k- 9? - m(3) o7
n n
— (3) u™3(k :lg)3 -m (3) g2 i (k=g —mg"
By extracting the common factor ( j) between the terms
(2) (u—k+g)" - Zl(l +9)" .
=u" —m~ () @k ~ ) + mg) + () @2 (k ~ 9)* ~ mg?)

- (g) (un_3(k - 9)3 + mg3) — g)n — mgn)



So we note in (2) limit (1) equal u™ —m and limit (2) equal (111) W (k — g) + mg) and limit 2
equal (121) w" 2%k — g)* —mg?) and 3 equal (g) w"3(k — g)® + mg3) and last limit (k —
g)™ —mg™ then

According equation (1)

Wik = )" = m(=g)" = (wt = m)(k = g + mke ) (k = gV} (~g)""J

=1
let ]
3) wa,(k,g,u) =ullk —g)" —m(—g)"
(4) z9,(k,g,u) = (gq -m)(k — g)"
5) nk,g) = mk ) (k = g)I ™ (~g)")
So =
4) W, (k, g,w) = Z,(k, g,u) + C,(k, g)

From (3) and limit (1) in equation (2)
(2) ) = () o™t g0

From equation (3) and Limit (2) in equation (2)

() =k - ) + mg) = () wy" " (ks g, w)
Limit (3)

Limit (4) in equation (2)

Last limit
n

AR (AT

(%) (k= gy = mg™ = (
So from (1) and (3) equations
(—k+ g —m(l+g)" = Z)(—l)f (7)wr it g0
=
Let

L,(k,guw=w—-k+g)"—m@A+g)"
Then

n
.M i
LaCeg,w) = ) (=1 () wn Ik, g,w
j=0
From equation(4) w,,(k, g,u) = z,9(k, g, u) + c,(k, g) then we have that
n n
e » v
(5) Lok, g, 1) = ZO(_1)1 (D™ kg, + Z}(—n/ (D et 9
J= =

We note from the equation (4)
Z 'k gw) = @i -m)(k —g)"



And

Culk,g) = m kZ(k —g) (=g
=1

Then
LuCe,gow) = ) (=17 () (unT = m) e - g)f+meZ< 7 (5) k= =gy
et j=0 j=1r=1
Vil gw = ) (<17 (7) (@ = m) Gk - gV
And =

Sl g)—meZ( 1/ (}) k= gyt (=gy

j=1r=
Then we have that

(6) Ly(k,g,u) = V," (k, g,w) + S, (k,g)

we find in S,,(k, g) tow signs (—1)/(=1)/~" = (=1)" if r j even or odd so they can by combined
in (—1)" then we have

Sl 9)—mk22< o (}) k= grigi

j=1r=
Where

sn(k, 9) =mk<z (=17 )(k 9 gt r+Z( 1)r (k g) g

+Z( D () G- g-1gh .. Z( b (%) G- g1 )

In s,(k, g) a all compound terms have been dismantled note if we add for every first term in the

complex term we find that—((’ll) +(3)g () gn—1> then we adding the terms to include that (« -

g) finding that (k — g) <(721)+(731)g.......(2)g”_2> then the term that include (k—g)? we find

that(k — g)? <— ((:) + (Z)g (Z) g"_j_1>) if the method is equal all the terms can be added

1 < j < n— 1until we reach the last terms (k — g)™~* then

su0t9) = k(= (1) + (3 + (5) 8o (1))
r 0= ((3)+B)a+ (o + (B v () 9™)
~te-97((6) + G)9+ (§)* + () - (™). () )

Using the binomial theorem it is possible to abbreviate all the terms that include, (k — g) and
(k — g)? and (k — g)3until we reach the last term (k — g)" 1, we notice that

w



1+9)" - (n)

(@) @+ Qe () -2
k=9 ((5)+(3) g (3) ") = k= 9) <<1 t9r _g(z(’) - (1)9>
e ()4 ()9 o () 7) = e g (“ 2 =(5)- (s (’2‘)92>

Then

Sp(k,g) = me( 1)J+1 (k ,ﬁ)] ((1 + )" — <(g) + (Tll)g + (721) g% e, (7) gf))

we have that

(7) Ly(k,gw) = (u—k+g"-—m(1+g)"

®) Vil g0 = ) (<1 () (@) —m)(k ~ g
Jj=0

© Su(k,9)

1 n n n 2 n .
= me( 1)/* g ((1 +g)" — <(O) + (1) g+ (2) G2 s (])gj)>
Proof first dlmenSIOn series. from binomial theorem we find then

A+u—k+g)"—-m@A+1+9)"
=1—m+(q)(u—k+g)—m(1+g)(rll)+(rzl)(u—k+g)2
—m(5) 1+ 97+ (5) w—k+g)?

m (3n3) (T4 9% e e e e e e, (Z) (u—k+g)"—-m (Z) (1+g)"
And

n n
ml+1+g"=m+ (’11) (1+g) + (2)(1+g)2 + (3)(1+g)3 e (L4 )"
By subtracting m(2 + g)™ from (1 + u — k + g)™ we have that

(10) A4+u—-k+g)"—m(2+g)"

- 1n—m+(Tll)((u—k+g)—m(1+g))+(g)((u—nk+g)2—m(1+g)2)
+ (3) (= + )% =ML+ 9)®) oo o (n) ((w—k+g)"
—-m(1+g)")

So we note in equation (10) first term equal (1 — m) and term (2) equal (711) ((u —k+g)—

m(1 + g)) and term (3) equal (121) (u—k+g)? —m(@ + g)?) and (4) equal (731) ((u—k+

g)3 —m(1+ g)3) and last term equal (Z) (u—k+g)"—m( + g)™) we have

according series



Ly(k,gu)=(u—k+g)"—m(1+g)"
And

Vil g,w) = Z( 7 (7) @ = m)e— g/
And
5,0k 9) = mk z< &) (u cor=((3)+ o+ (g v () gf))
Then we find that
From Term (1) in equation (10) and series

1-m=1Lyk, g,u)
From term (2) in equation (10) and series

()((u—k+g) m(1+9g)) = ()Ll(k g

From term (3) in equation (10) and series

(5) =k + @2 =m1+ ) = (3) Lok, g,

Last term in equation (10) and series

(Z) (u—k+g)"—m@1+g)™) = (Z) L,(k,u, g)

So
A4+u—-k+g"—-mQ2+g)"=1- m+z Li(u, k, g)
j=1
Let
A,(uk,g)=Q+u—k+g)"—mQ2+g)"
Then

Ak g)=1— m+z L;(uk, g)

According series
Lo(u k,g) = V" (wk, g) + Sn(k, g)
Then

(11) (ug,k)—l—m+2 )vr (ukg)+z Si(k,g)

from equation (8) and (9) we have that

n

Vil g = Y (~1 (7) @ = m) Gk - g
And =

Sa(k,g) = me( 1)J+1 (k ]g)] ((1 + )" — ((8) + (rlz)g + (721) g% e (7) gf>>

By compensation equatlons (8) and (9) in equation (11) we find that



A,(u,9,k)=1— m+ZZ( 1)T (uj T—m)(k—g)"

. mkijg e (“‘ )@+~ ()~ (o ()o)
Let
Wa(u k,g) =1~ m+ZZ< v (5) (1) Wt =m)k - g7
And )
n(ukg)-kmfz( o 80 (14 g1 (5) = () () )
Then
(12) An(u,k, g) + Wo(u k, g) + En(u, k, g)
So

1
Wow k) = 1=m+ > (<07 (1) (1) ' = my(k - g
2 - 3
() A -me -+ o (3) () @ —md- g
r=0 r=0

+ Z(—nr ) (‘r‘) i ) LI ...Z(—nr (%)
r=0

r=0
-m)(k—g)"
In this step, we arrange the boundaries between which there is a common relationship and bring
them together then we have that

Collect all limits that include r = 0
n

(711) (u—m)+ (721) W?—m) ... (z) W —m) = Z (Z) " —m)

r=1
By adding all terms include r = 1 and factor (k — g)
then

-(Da-mu-9-G) () @-mn-g
_(" 3 (uz_m)(k—g) = (Y () @t = m) (ke — g)
3 n/\1

= (k- g)Z Dart-

By adding all terms include r = 2 and factor (k — g)?



R a-m-g2+(3) () @-mk- g
+ (Z) (;L) W? —m)(k — )% o e e e (:Ll) (121) ("2 —m)(k — g)?

= =97 ) (1) () = =m)

r=2

By adding all terms include r = 3 and factor (k — g)3 then

-(3) Q) a-m-g°-(})(5) @-mk- gy
“ (M)W =m) = )% e () (F) @3 = m) (ke = g)?
5)\3 3

n
k-0 Y ()G -m

r=3
We note that we can add all the terms that include r = 0 together and then include » = 1 together
until we reach the final term r = n when

last term equal
n

= gra-m=e—g" > () (7) @ —m)

r=n
So the final equation is equal to after the order of the terms then we find that

W, (k,u, g) = 2 i(—l)f(k —g) ((?) (j) i - m))

j=r=0r=j
According equation (12) we have that
n ] 1 - . .
Eawkg)=km) ) (- pron & m (N(a+9/-()-()a-()g* () g7)
j=17r=0
Then

E,(u, kg)—ka( prea k=9 ;‘gl)r( )(a+g) - (0)—<1)g ...... (i)g)
Y 8 (01407 - ()~ Ba- (o)
+ka( 1)”1( :;gl)r ((1+g)3 ((5;)

g () km2< o M (@ o - (f)

et

By adding terms include é we find that



—km(n) (1+9)-1)- km() (1+g9)?—-1)— km() (1+g)2-1) ...

—km() (@ +g)" - 1)_—kmz ((1+g)r—1)

By adding terms i 7
i (3) 2 (49 ()= () o) +1em (5) 2 (@ + 9= () - () )

s (1) 2 (@ + 9 - ()

(k - g) i
- (4 ).k () —D(a+e-(5)-(}))
“emy ()2 (a0 - ()= ()o)
By adding terms include ( gg) we find that

e () (@40 - () - () - ()
(L (@0t () - (Do - (B)e?)
() (v 9= (5)- ()
-Q)9?) b ()L (@ g = (5) - () g -
- Z N (o - () - (- ()e?)

We note that we can add aII the terms that include 5 together and then include g—12 together until

(2)9°)

we reach the final term when gin and So the final equation is equal to after the order of the terms

kg =im Y Y- DI () (v - () (e (i 21) )

Then S
Ay (uk, g) + Wo(u, k, g) + En(u, k, g)
Where
ks = 31 5 -0 () e -m)
And e
g =i > Y M gy - () - (s ()0 )

r=j=1r=j

Proof second dimension series. from binomial theorem we find then



A+14+u—k+g"—mA+2+9)"
=1-m+(})Q+u—k+g)-m(}) @+ +(3) A +u—k+g)?
—m(rzl)(2+g)2+(g)(1+u—k+g)3

_7n(§)(2+£D3"n""n""“"(Z)(1+1L_k_kgy1_7n(z)(2+£ﬂn
And

m@G3+g)" =m+ (711) 2+g9)+ (121) 2+9)?*+ (;l) Q2+g)3.a.. 2+
By subtracting m(3 + g)™ from (2 + u — k + g)™ we have that

(13) QQ+u—-k+g)"*—m@B+g)"
= 1—m+(711)((1+u—k+g)—m(2+g))
+(;)((1+u—k+g)2—m(2+g)2)
+ (g‘) (A+u—k+9)3—m2+9)%) oo (Z) ((A+u—k+g)"
-m(Z+g)")
So we note in equation (13) first term equal 1 — m and term (2) equal (711) ((1 +u—k+g)—
m(2 + g)) and term (3) equal (721) (1+u—k+g)>—m(2+ g)?) and term (4) equal

(3) (A +u—k+g)° —m(2 + g)) and last term equal () (1 +u — k + g)" = m(2 + g)")
then
According series (2) we find that

An(wk, 9) + Wo(u, k, 9) + En(u, k, g)

where
A,(uk,g)=Q+u—k+g)"—mQR2+g)"
And o
Wawkg) = ) Y (-1(k-g) ((Z) (7) - m)>
j=r=07=j
And o |
btk g) =l ' Y 1/ D () (4.0 = () = (o (1))

r=j=1r=j
From term (1) in equation (13) and equation series

n
1-m= (O)Ao(u, k,g)
From term (2) in equation (13) and equation series

(D@ +u—k+g)-m2+9)=(})Awg b

Term (3) in equation (13) and equation series

(5) @ +u=k+ g2 —m@+g)) = (3) Aalh . 9)
From term (4) in equation (13) and equation



(3) (@ +u—k+g)* —m2+g)*) = (3) As(k,u,9)
Last term in equation (13) and equation

() +u—k+gr—m@+g™ = (}) Anleu,9)

Then
(2+u—k+g)"—m(3+g)”—1—m+2 Ai(u,k, g)
j=1
Let
R,(wk,g)=Q+u—-k+g)"—m@B+g)"
Then

R,(uk,g)=1—m+ Z (2) An(u,k,g)

But from first dimension series we find that

A,(wk,g) = W,(w, k,9) + E,(w k, g)

Where
Wawhkg)= > ) (-1 —g) ((Z) (7) (i - m))
And e
Ealu k, g) = fom Z z< =D M (@) - (e 1 1)o)
Then S
R,(wk,g)=1—m+ z (Z) Wn(u, k, g) + z (Z) En(u,k, g)
h=1 h=1
Then

(14) R,(w,k 9)
= 1-m
h

Zi( 1k - g)f( )(u“f—nz)))

Hh»
o

+

+

- 1D

h h
> Y ()EL ey - (p)
=j=

1r=j

>
]
[

r=

(D (i 1)9’”))

Let



And

So

(15)
Then

Let

And

Then

(16)
Where

2 2
T%(u,k,g):(’z‘)(ZO(f) =Y (A) () k- Dt —m) + (e — 9?1 - m)>

H,(wk,g)=1-

+

)<1 m+ Zz: (u —m)

Mr EM: 3

+

n h h
Yn<k,u,g)=2(ﬁ)<km > N () _g)] E9 (avor-(j)
h=1

r:]:l r:j

(1) 1))

Rn(u; k:g) = Hn(ul kl g) + Yn(kl u;g)

H,(u,k,g)=1—-m

n

h
+ ” 1— " —m)
2, h)< m Z u"—m
h h

)
+ Z Z( 1)/ (k - g)’( (u” m)))

j=r=0r=j
n h
S;,(um)=(1-m)2"—-1) + (u" —m)
22,006
Tk 9) = (Z PASUCE g)f( )(ur-f—m)>>
j=r=0r=j

Ha(ut k, ) = S, (um) + ) T (uk, )

h=1

T wk.g) = (7) (2 ()@ —m - tk-ga- m))

r=1



r=0

3
+ZGXD@—W@”—M—W—mm—m>

3 3
T3"<u.k,g)=(’;)(Z(i)(ur—m) Z D k== =m)

r=2

And

1wk, g) = () (Z B -—m=> () (D) t-pe—m

r=0 r=1

Z(‘: (k = 9?2 —m) - Z 3) k= gy —m)

r=3

+(k—g9)"(1- m))

We note that we can add all the terms that include = 0inT";(u,k, g) together and then include
r=1inT"(uk, g) together until we reach the final term r =n in T,"(u,k, g) when

By adding all term include r = 0 and (1 — m) we have that

1-m)(2"-1)
By adding all terms include r = 1 and (u —m) we have that

wm (OGO DO () =S

j=1
And adding all terms include r = 2 and (2) (w/ —m) then

PACIHES

j=r=2r=j

By adding all terms include (k — g) and (1 — m) we have that

@-91-m () GG (D)= 2= 00a-m (7))
Adding all terms include (k — g) and (u — m) we have that =

t=ow-m( O+ QO+ Q)
=Y k-a-m ()(3) ()

By adding all terms include r = 3 (k — g) and (w/~* — m) we have that

BIE16)



z Z (k W —m)

j=r=3r=j
By adding all terms include (1 — m) and (k — g)2 we have that

a-mie-o7((3)(3) @)+ DOC) Q)G

= (1 -m)(k — g)? (Z) (Z) (;)
And -~

w-a-m (D DO OO

n

= (u—m)(k — g)? z (7) (é) (2)

j=3

> Y ()Gt o m

j=r=4r=j

Then

Then
So the final equation is equal to after the order of the terms

S 3 SO0 @

And 7
2. 2. E-ga-m
r=j=0r=j
And
r;uz:; (n) C) (] _ 1) (k— g)/~1(u —m)
Then

i zn: (:}) C) (jhj_ h) (k—g) """ —m)

So we have that

an > Twkg)

PN YO0 ()6 9t - m)

But from equation (5)

HE))



n
H,(u,k, g) = S,(u,m) + z T (u, k, g)

So from equation (17) we find that

Hn(u,k,g)=5n(u,m)+i i i (]h h) (k —g) """ —m)
h=0r=j=hr=j
33 OO -0 -m
h=0 =j=h+2r=j

From equation (15) we hav

Let
hooh N |
ene=G)( 3 S eor (2 o) - Qan (o)
r=j=1r=j
Then

n
Valk,,9) = km ) Q" (k. 9)
h=1
When h =1 we have

o™ (k,g) = (n) em <_ (1) ((g+1)- 1))
. 1

g
When h = 2 we have that

0" kg) = (3) ka( (%)= (a+9-1)

+om <<M> (a+gr-1- @))))

When h = 3 we have



3

Q" (k. 9) = (3) (ka(—l)r (i)é((l +9)-1)

r=1

So last term when h = n we have

0" e9) = () ((7) e - o)

We note that we can add all the terms that include r = 0 in all Q”j (k,g)j =1,2,3......n together

and then include 7 = 1inQ"(k,g) all j =123 ......n together until we reach the final
tTe::nwhen r=ninQ," (k,g)
Ztha« 9 -km;l;( /() () =2 (a0 - (9)

(), 1)g1 )
+kthZrZh; ( - 1(k " 2((1+9)h—(g)
(Do (hﬁz)gh-z)

Then

s =i 31 3 1) (YEA 00 ()=o)
EIPINGIHES e (PR
h

Then
According equation(15)
Ry(wk, g) = Hy(u, k, g) + Yn(k,u, g)
Where
R,(wk,g)=Q+u—-k+g)"—m@B+g)"
And

H(ukg)-S(umHZii V() (i p) e = 7 = my

1
h=0r=j=hr
-2

+ zn: zn:( )C (k— "W/ ™" —m)

0r=j=h+2r=j

S

=
Il

And



r=j=1r=j

~(on( 21)e)

I h—1 h—2
2 Q)= (o=

g =k Y S (1)) 2 (40— ()
J

+’<mZi

B h=2r=j=hr= ]h
- (1) g o (h - 2) gh‘z)
3.proof theorem.1

In this section we will use the basic series L, (k, g, w) = V", (k,g,u) + S, (k, g) in prove
the theorem.1 then according basic infinite series if u = 1 in V,,"(k, g,u) we have that

"(kgl)—Z( v (7) (@ = 1)k - gV =0

Then according equations
Ln(k,g,1) = V" (k, g, 1) + Sp(k, g)

Ln(k,g,1) = S,(k,g)

Then according to the equations, (2,7, 2.8,2.9) we find that
Ly(k,g,1) = Sp(k, g)

(1= k+ g —(1+g)" = kz< L (<1+9>”— ((3) +(1)g (7)9’))

Letad a positive integers Where

Then

g=a-—-1
k=-ad+a
Then
14+ad—-a+a-1)"—-A+a-1)"
n-1 .
4, (Cad+a—a+1) n
= (—ad +a) ;(—1)1 S ((1 ta-1)
n n h ,
_<(0)+(1)<a_1)........(j)(a_1)1))
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We have that

(ad)™ — a™

- Cad 0 z< e g;))( (W@ () m))

Then

av1l(d"-1) =
a

+1

n

-1
— (@ - 1)



sa=n ) D o () (- (o))

Now we have that

d—1
ani(d"—1) = —= (@ - 1)

+d—1) Z tad _1)1,):1 ( - ((3) +(De@-10.(})@- 1)1’))

Note the negative S|gn in the equation

3.1 a™(d" - 1)
b 1>z<“d‘1)1}+’1< N (G- (;%)m_l)f))
Then

a(d" 1) = z — (@ - 1)

+(ad—D| (d=1 z (‘ld_—ll))];l(an - (g) + (’I) @=1) .. (7) (a— 1)1)

Then we note (d —1,ad — 1) = (@™ %, ad — 1) = 1 then we find that if a® = 1(mod m)
where m = ad — 1 then d™ = 1(mod m)

Lemma.l if 2™ = 1(mod m) and m = 2x — 1 where n X a positive integers then

= 1(mod m)
Proof let intheorem.1a =2 and d = x
Remark. We call the number primes the form M,, = 2P — 1 mersenne number discovered in 2005
by Martin nowak the largest prime number of mersenne Mycgga957 and 42 in the list
[see James ] Tattersall 143] . we know about Mersenne’s number if M, it is not prime then

there is a prime number g = 2pr + 1 where q \ Mp example M,, of a non-prime. Also there is a
relationship between Mersenne prime and the perfect numbers. The number n is called a perfect

number if n = 2P~1(M, ) where Mersenne prime number [see K. H Rosen 159]
Lemma.2 if p primer number and g = 2pr + 1 where M,, morsesen number then
(pr+ 1P =1(mod q ) if 27’ = 1(mod q)
{(pr + 1)P #1(mod q) all g < \/_p if M, prime number
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Proof according mersenne number if M,, non-prime then we find g = 2pr + 1 where g \ M,, then
according lemma.l if 22 = 1(mod m) and m = 2x — 1 then x™ = 1(mod m) then let n = p and
m = 2px + 1 then x = pr + 1 then if Mp non-prime then (pr + 1) = 1(mod q) and if (pr +
1)? # 1(mod q) all ¢ < \/M,, then M,, prime number according mersenne number
Lemma.3 let n a d a positive integers then



1
(a” -1

+(d- 1>z e () [V TR

Proof from last equation in proof theorem 1

d—
an—l(dn _ 1) —

Lemma.4 let M,, moresen number and n prefect number then

p-1
=+ (2 () ()
j=1

Proof letinlemma.3a=d =2andn=p

()

4.Diophantine equation and proof theorem.2

In this section we will prove theorem.2 using theorem.1 but before that we mention
according to Eulers theorem a®®™ = 1(modn) where (a,n) =1 and ¢(n) is Euler
function see proof Euler theorem in [K. M. 244]

¢n)

Theorem.2 if n = yx* — 1 and ¢ (n) Euler function where ” ™ and 1 <i<jwhere

1 <u<kthen
)
(yx¥"*)Yu = 1(mod n)

Proof according Euler theorem if (a,n) =1 then a*™ = 1(modn) and according
theorem.1 if a® = 1(mod m) where m = ad — 1 then d™ = 1(mod m)

Then let ¢(n) Eulere function where 1<u<k and n=yx*-1 then we find
according Euler theorem

e
<(x”) u = 1(mod n))
Then according theorem.1 d = 222 = yxk= then we have that

om)
(yxk‘”)T = 1(mod n)
Lemma.l let xyk eN where n=yx™ -1 and ¢(n) Euler function where

m\g(n) then

e
y m = 1(modn)

. (n)
Proof let in theorem.2 m =u; = k then (yxk‘k)(pT = 1(mod n) then we have that

y$ = 1(mod n)

In this we will explain the relationship of the solutions of the Diophantine equation
to the solutions of some types of congruences , and before that we mention

fermat and Euler,s equation lesson diophantine in the form of x? —dy? = +1
[see James ] Tattersall 247] it is called the bell 5 equation lagrange studied the
solutions , as well as the equation y? = x® — k which is shaped like mordel 5 equation
which has infinite solutions depends on the value of K [see K. M. Rosen 289].



Theorem.3 if (g,x) of solutions equation g™ — da™ = —1 and ¢@(g™) Euler function where
1<k<e@p(@™)andn\ ¢(g™) then

m

@™
d n =1(mod g™)

Proof letn = g™ and x = a"and d = y where k = n then g" —da™ = —1 in theorem.1

Theorem.4 Let g p m n k a positive integers where and where g — dp? = —1 then
»(a®)
d 2 =1(mod q?)
Proof let in theorem.3 letm =n = 2

Lemma.4 let p prime number and x m a positive integer if p = dx™ —1 andm \ p — 1 then
p—1
dm = 1(mod p)

Proof letn =p and y =d inlemma.l

5.Primitive roots

Theorem.2 in primitive roots let m=da;—1 all gj and 1 <j < M where ¢(m)
Euler functionand 1 < i <j where {al,a2 o P .....aj} is a primitive roots modulo m then

m+1 m+1 m+1 m+1 m+1 . S
) (), (220), (), e (222 L primitive rocts modto m
a1 /4 a2 /2 a3 /3 Qs /4 ai /;j

Proof theorem.2 in primitive roots. to prove the second theorem, first, we will
mention the theorem that determines the number of possible primitive roots for each
number that has roots. See proof in [see K. H. Rosen, 244] Theorem.4 If the positive integer
m has a primitive root, then it has a total of ¢(¢(n)) incongruent primitive roots n ,
then

According definition of primitive roots [see k. H, 245] if r and are relatively
prime integers with n > 0 and if ord,r = ¢(n) , then r is called a primitive root
modulo n.
Then

10

According theorem.l if a" = 1(mod m) where m = ad — 1 then d™ = 1(mod m)
then
m+1

let n=¢@m) then if a?™ =1(modm) where m=ad—-1 then d= —

m+1 @(m) .
0 (T) = 1(mod m) according theorem.1
so we find if according theorem.1 if ord,,a = ¢(m) then oralm"‘T+1 = p(m)
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then if m=da;—1allgjand 1<; < M where all a;, ay,as, ........a; is a primitive
m+1
i = — . plom)
root modulo m then if ord, a, = o (m) then ord, — = o(m)all1<j< %then let
]
. . m+1 m+1 m+1 . W ey
j=1i then [al, a,, as, ... aj( ) ( ) ......... ( )] IS a primitive roots modulo m
aq 1 an 2 a]- i

generalization of Artin % conjecture in proportion to a according Artin,s conjecture that given an

integer a that is not a square there are infinitely many primes for which a is a primitive root
{see K.M.Rosen 47} then according theorem.2 in primitive roots if a primitive root p then p7+1
primitive root p then there are an infinite number of primes p;, j=1,2,3........ where
[a, p’Tﬂ] there are primitive roots for them.
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