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ABSTRACT 
 

 In this study we used an algebraic method that uses elementary 

algebra and binomial theorem. To create finite binomial series  
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 (     )    (   ).This is a type of series that has several 

properties in variables such as if      then   (     )    (   )  where 

  
 (     )     We used these series to prove results in congruences 

and primitive roots, Diophantine equation for example,we proved if 
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other primitive roots modulo  m where             
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.We also 

obtained several results in finite series. 
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1.INTRODUCTION 

 

In this paper, elementary algebra and binomial theorem, and difference of tow nth 

power are used to created  finite series in an algebraic method,to create a kind of 

series with specific properties, then we used series to create congruence with specific 

properties. Through this process, we reached the theorem. 1  theorem.2 in primitive 

roots and several results in finite series. 

The goal of this paper is to construct a kind of finite binomial series it is a binomial 

and its application in the study of congruences, it was used to prove the theorem .1.  

and in primitive roots it was used to prove  theorem.2 in primitive according binomial 

theorem and difference of tow nth power theorem if  n  a positive integer  and x y real 

numbers  then ,           -  
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2.basic series 
This section first we will create the basic  series  

Basic series. let        real numbers and m constant then 
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 First dimension series. Let u k g real numbers and n positive integer where m constant then 
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 Second dimension series. Let u k g real numbers where n positive integer  m constant then  
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Proof. let         real numbers then  according to difference of tow nth power theorem we have that 
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 let           where m constant then by multiplying m and  adding     (   )  from both 

sides 
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By subtracting  (   )       (     )   then 
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By extracting the common factor .
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So we note in (2) limit (1) equal      and limit (2) equal .
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From (3) and  limit (1) in  equation (2) 
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From equation (3) and Limit (2) in equation (2) 
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So from (1) and (3) equations  
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We note from the equation (4) 
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we find in    (   ) tow signs (  ) (  )    (  )  if r j even or odd so they can by combined 

in (  )  then we have 
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In   (   ) a all compound terms have been dismantled note if we add for every first term in the 

complex term we find that  (.
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/       *) if the method is equal all the terms can be added 

         until we reach the last terms (   )    then 
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Using the binomial theorem it is possible to abbreviate all the terms that include, (   )      
(   )  and (   ) until we reach the last term (   )   , we notice that  
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Proof first dimension series. from binomial theorem we find then 
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By subtracting  (   )       (       )  we have that 
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So we note in equation (10)  first term equal (   ) and term (2) equal .
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Then we find that 

 

 From Term (1) in equation (10) and series  
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 from equation (8) and (9) we have that 
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By compensation equations (8) and (9) in equation (11) we find that 
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In this step, we arrange the boundaries between which there is a common relationship and bring 

them together  then we have that 
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By adding all terms include                  (   )  
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We note that we can add all the terms that include       together and then include     together 

until we reach the final term        when 
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So the final equation is equal to after the order of the terms  then we find that  
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We note that we can add all the terms that include  
 

 
  together and then include   
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we reach the final term when   
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Proof second dimension series. from binomial theorem we find then 
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From equation (15) we have  
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   (   )  .
 
 
/.  ∑(  ) .

 
 
/
 

 
((   )   )

 

   

   ∑(  ) .
 
 
/
(   )

  
((   )    .

 
 
/)

 

   

 .
 
 
/
(   ) 

  
((   )    .

 
 
/  .

 
 
/)/ 

So last term when       we have  
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We note that we can add all the terms that include                 (   )            together 

and then include              
 (   )                      together until we reach the final 
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According equation(15)  
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3.proof theorem.1 
In this section we will use the basic series   (     )   

 
 (     )    (   ) in prove 

the theorem.1 then according basic infinite series if     in   
 (     ) we have that  
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We have that 
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Now we have  that 
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Note the negative sign in the equation 
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Then we note (        )  (         )    then we find that if     (     ) 

where        then     (     ) 
 

Lemma.1 if     (     ) and        where n x a positive integers then 

    (       ) 
Proof let in theorem.1                

Remark. We call the number primes  the form     
    mersenne number discovered in 2005 

by Martin nowak the largest prime number of mersenne            and 42 in the list 

,                          - . we know about  Mersenne’s number if    it is not prime then 

there is a prime number         where       example      of a non-prime. Also there is a 

relationship between Mersenne prime and the perfect numbers. The number n  is called a perfect 

number if       (  ) where Mersenne prime number ,                  - 

 Lemma.2 if p primer number and         where      morsesen number then 

,
(    )   (      )            (       )

(    )   (      )          √                        
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Proof according mersenne number if    non-prime then we find          where      then 

according lemma.1 if     (     ) and        then     (     ) then let     and 

        then        then if    non-prime then (    )   (     )   and if (   

 )   (     ) all   √   then    prime number according mersenne number  

Lemma.3 let n a d a positive integers then  
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Proof from last equation in proof theorem.1 
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Proof let in lemma.3               

 

4.Diophantine equation and proof theorem.2 

 

In this section we will prove theorem.2 using theorem.1 but before that we mention 

according to Euler’s theorem   ( )   (     )  where (   )    and  ( )  is Euler 

function see proof Euler theorem in ,       - 

 

Theorem.2 if         and  ( ) Euler function where   
 ( )

 
  and       where 

      then 
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 ( )
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Proof according Euler theorem if (   )    then   ( )   (     )  and according 

theorem.1 if     (     ) where        then     (      )  
Then let  ( )                 where        and          then we find 

according Euler theorem 

                                                                 ((  )
 ( )
   (     ))                                       

Then according theorem.1   
   

  
         then we have that  
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 ( )
   (      ) 

Lemma.1 let           where         and   ( )  Euler function where               

   ( ) then  

 
 ( )
   (     ) 

Proof let in theorem.2          then (     )
 ( )

   (      )  then we have that 

 
 ( )

   (      ) 

In this  we will explain the relationship of the solutions of the Diophantine equation 

to the solutions of some types of congruences , and before that we mention  

fermat and Euler,s equation lesson diophantine in the form of            
,                            - it is called the bell’s equation lagrange studied the 

solutions , as well as the equation         which is shaped like  mordel’s equation 

which has infinite solutions depends on the value of  k ,                     -. 



  

 
Theorem.3 if   (   )  of solutions equation             and  (  )  Euler function where 

     (  ) and    (  )  then 

 

 
 (  )
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Proof let                                   then           in theorem.1 

 

Theorem.4 Let q p m n  k a positive integers  where and    where           then 

 
 (  )
   (      ) 

Proof let in theorem.3 let       

 

Lemma.4 let  p prime number and x m a positive integer if           and       then 

 
   
   (      ) 

Proof let                in lemma.1 

 

5.Primitive roots  

 

Theorem.2 in primitive roots let         all    and     
 ( ( ))

 
 where  ( ) 

Euler function and        where {                   } is a primitive roots modulo m then  

,.
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/
 
        .

   

  
 /
 
- is a primitive roots modulo m 

 

Proof  theorem.2 in primitive roots. to prove the second theorem, first, we will 

mention the theorem that determines the number of possible primitive roots for each 

number that has roots. See proof in ,                 - Theorem.4 if  the positive integer 

m has a primitive root, then it has a total of  ( ( )) incongruent primitive roots n , 

then 

 According definition of primitive roots ,           -  if r and are relatively 

prime integers with     and if          ( )  , then r is called a primitive root 

modulo n  .  

Then 
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 According theorem.1 if     (     )  where        then     (     ) 

then  

let    ( )  then if   ( )   (     )  where        then   
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 ( )

  (     ) according theorem.1  

so we find if according theorem.1 if        ( )          
   

 
  ( ) 
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then if         all   and      
 ( ( ))

 
 where all                  is a primitive 

root modulo m  then if         ( )           
   

  

  ( ) all     
 ( ( ))
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+ is a primitive roots modulo m 

  
generalization of Artin’s conjecture in proportion to a according Artin,s conjecture that given an 

integer a that is not a square there are infinitely many primes for which a is a primitive root 

*                +  then according theorem.2 in primitive roots if a primitive root p then 
   

 
 

primitive root p then there are an infinite number of primes                         where 

0  
    

 
1 there are primitive roots for them. 
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