
  

 

 

 

    

 

OPPOSITE OF EULER'S THEOREM 
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ABSTRACT 
 

the work of José María Grau and  Antonio M. Oller-marcén if  

  ( )    
    then   

 
 (  ) (      ( )) has been generalized to if 

   (  )    and  ( )     where  ( )  is Eulere function then 

(       )
 
 (  ) (     ) . Two proofs are presented to prove the 

generalization. The first is based on the binomial theorem and 

elementary algebra, and the second is based on the difference theorem 

and properties of congruence in particular. 
 

 

 

 

1.INTRODUCTION 
 

Historically the notion of congruence was first introduced and used systematicalIy 

in Gauss' Disquisitiones Arithmeticae. The notion of congruence is a wonderful 

example of the usefulness of employing the" right" discussion of congruences see 

Shafarevich [9]; shows how the theory of congruences is useful in determining 

whether equations can be solved in integers also see Davenport[22] H. Rosen[164] J. 

Tattersall[92] Among the questions that naturally emerged in congruence, how do we 

find solutions of congruence     (      )  Is there an infinite number of 

solutions, if any, what are the properties of those solutions  . in 1610 Fermat wrote in a 

letter to Frenicle, that whenever p is prime p divides        for all integers    not 

divisible     result now known as Fremat’s little  theorem, As equivalent formulation 

is the assertion that p divides      for all integers a, whenever p is prime . the 

question naturally arose as to whether the prime are the only integer exceeding  that 

satisfy this criterion , but Carmichael pointed out in 1910 that 561=17×11×3 divides 

       Now we know that there is an infinite number of this kind of number that 

achieves the solution been He studied  William Robert Alford, Andrew Granville, 

Carl Pomerance this kind of number. Euler proved and generalized the result to what 

is known as Euler's theorem. In 2011, José María Grau and  Antonio M. Oller-marcén 

proved the following result: If       
    is a generalized cullen number, then 

  
 
 (  ) (      ( )) also explained the result. A strong test for choline numbers, 

as it contains very few false verbs and has a lower computational cost 

. The main objective of the paper in particular is to find solutions of congruence 

    (      ) where          and      and to determine the properties of 



  

those solutions. More precisely, we are looking for the values of      that achieve the 

solution of congruence. 
 

2. BASIC RESULTS  
 
 

In this section in particular we study the test of generalized Collin numbers and answer some 

questions about the test, why are there wrong verbs in the test, is there a relationship between 

the test and Fermat's Litter Theorem We will answer these questions after proving LEMMA 

(1) in two ways: Method One It depends on the properties and rules of congruence, and the 

second method depends on the binomial theorem. The result shows us the deep relationship 

between the test and Fermat's Lesser Theorem. 

LEMMA 1. If        and           then 

 

   (  ) (     )     (     ) 
 

Proof 1.  if                   
(  )  (  ) (      )          ( ) 

See proof in Kenneth H. Rosen ,     - to discuss this topic and the properties of 

congruence in detail . Now from ( ) we find that 

        (  ) (      ( ))      ( ) 
Congruence multiplication properties To learn more about multiplication and 

addition properties for a related discussion see Kenneth H. Rosen [94,93]  and 

Kenneth Ireland Michael Rosen ,     -  from ( ) we have that 
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Proof 2. If          From binomial theorem we have  
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From the difference of tow nth power theorem we have  
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Substituting equation ( ) into equation ( ) we get 
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Subtracting 
(   )

   
(    )  from both sides of the equation we get 
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Note the right-hand side of equation ( )  is divisible by m for all values of n 

(   )∑    (∑.
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From equation ( ) and ( ) then we have  
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Remark. Proof 1 depends on the properties of congruence in multiplication and division 

Proof 2 is more complicated than the other and depends on the binomial theorem. We note 

that equation (┤)  has been replaced by (┤)  , then arrange the new terms and then deduce the 

congruence from the equation. The arrangement process is the most important step in proof 2 

 

LEMMA 2 . if    {  
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Let x,u    Substituted          
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               into the lemma 1       where  when 

we congruence (   )
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    (     ) we get   ( )   (     )and from Euler's theorem then 
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   were chosen from group      ,where      according to the group's conditions, now 

substituted        in LEMMA 1  then  (   )
 ( )

    (     )    ( )   (     ) from Euler's 

theorem then we have that 
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3. GENERALIZING EULER'S THEOREM 
 

In this section, we generalize the test of Collin's generalized numbers. The 

components of the proof are result 6, which shows the equivalence relationship 

between the congruents, Euler's theorem and Fermat's Lesser Theorem. It is also 

worth noting that we will use the same test to prove the generalization. 

THEOREM 1. If         and    
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From lemma 1 we get 
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We note in the equation ( ) a proof of all the elements of the set   , and this means 

that we have worked to determine the values of the exponent n to congruence    

 (     )  that which achieves the solution    
 ( )

  
 
 ( )

  
 
 ( )

  
    

 ( )

     ( ( ))
, and 

it is known about the base 

 Equals       
       We notice values that       have not changed By 

definition       . We just change the values of the exponent        by choosing 

all the elements of the set         ( ( )) 
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Proof .  All 
 

 From congruence theorem we find  if     (     )         (     ) we have      
 (     ) if            ( ( ( ))  )         let  
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We note  from group of numbers          ( ( ( ))  )      
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