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Abstract

We discuss the experimentally accessible Kochen-Specker theorem on the basis of binary logic in
terms of a finite precision measurement, that is, the first result is 1 − ǫ1 and the second result is
−1 + ǫ2. Here, ǫj , j = 1, 2 represents a noise for the jth outcome. Further we violate a Kochen-
Specker inequality by using a finite precision measurement. We hope gently our discussions could
contribute for formulating the Kochen-Specker theorem into an experimentally accessible theory in
terms of a finite precision measurement.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen propose the incomplete-
ness argument [1]. A hidden-variable interpretation of
the quantum theory is a topic of research [2, 3]. The
no-hidden-variable theorem of Kochen and Specker (the
KS theorem) is famous [4]. It is begun to research the
KS theorem by using inequalities (see Refs. [5—10]). Such
inequalities for testing the KS theorem are useful for ex-
perimental investigations [11].

However, an experimental violation of such an inequal-
ity does not always imply that the experiment is per-
formed by a finite precision measurement. In fact, we vio-
late such an inequality by using a finite/infinite precision
measurement. Thus, we need more discussion concerning
the experimental accessible of the Kochen-Specker theo-
rem in terms of a finite precision measurement.

Meyer discusses that a finite precision measurement
nullifies the KS theorem [12]. Cabello discusses that a
finite precision measurement does not nullify the KS the-
orem [7]. Barrett and Kent give an opinion for the de-
bate [13]. Commutativity, comeasurability, and contex-
tuality in the Kochen-Specker arguments are discussed
by Hofer-Szabó [14]. Experimental approach to demon-
strating contextuality for qudits is discussed by Sohbi,
Ohana, Zaquine, Diamanti, and Markham [15]. Nagata
and Nakamura propose [16] the measurement theory, in
qubits handling, based on the truth values, i.e., the truth
T (1) for true and the falsity F (0) for false. The results
of measurements are either 0 or 1 in an ideal case. The
Kochen-Specker theorem is certified by binary logic using
the measurement theory based on the truth values in an
ideal case [10].

In this paper, we discuss the experimentally accessi-
ble Kochen-Specker theorem on the basis of binary logic
in terms of a finite precision measurement, that is, the
first result is 1 − ǫ1 and the second result is −1 + ǫ2.

Here, ǫj , j = 1, 2 represents a noise for the jth outcome.
Further we violate a Kochen-Specker inequality by us-
ing a finite precision measurement. We hope gently our
discussions could contribute for formulating the Kochen-
Specker theorem into an experimentally accessible theory
in terms of a finite precision measurement.

II. KOCHEN-SPECKER THEOREM IS

CERTIFIED BY BINARY LOGIC IN A FINITE

PRECISION MEASUREMENT

First, we want to certify the Kochen-Specker theorem
by binary logic using the measurement theory based on
the truth values in an ideal case. Therefore, we consider
the measurement theory, in qubits handling, based on the
truth values, i.e., the truth T (1) for true and the falsity
F (0) for false. The results of measurements are either 0
or 1 in an ideal case.

We consider a value V which is the sum of two noisy
data in a finite precision measurement experiment. Let
us consider the problem in a noisy environment. We in-
troduce the map f(x) = (−1 + ǫ2)

x − (1 − x)ǫ1 from
{0, 1} to {1− ǫ1,−1 + ǫ2}, where ǫj , j = 1, 2 represents a
noise and O(ǫj) ≪ 1, j = 1, 2. Then the possible values
of the measured results are mapped into either 1− ǫ1 or
−1 + ǫ2 from either 1 or 0. Then, we apply the usual
hidden-variable theoretical analysis in a finite precision
measurement.

In what follows, we derive a quantum mechanical con-
dition. We assume the number of 1 − ǫ1 is equal to the
number of −1 + ǫ2. If the number of trials is 2, then we
have

V = (1− ǫ1) + (−1 + ǫ2) = ǫ2 − ǫ1, (1)

where the value V is under an assumption that we do not
assign a definite value into each of experimental data.
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This is a quantum mechanical case. In this quantum
mechanical case, we have

V × V = (ǫ2 − ǫ1)
2. (2)

On the other hand, we derive a hidden valuable the-
oretical condition. We assign a definite value into each
of experimental data. In this case, we can consider all
observables commute simultaneously [17]. And the sum
rule is equivalent to the product rule.

We can depict the predetermined “hidden” results r1
and r2 as follows: r1 = 1 − ǫ1 and r2 = −1 + ǫ2. Let us
write V as follows:

V = r1 + r2. (3)

In the following, we evaluate a value (V ×V ) and derive
a specific necessary condition under an assumption that
we assign a definite value into each of experimental data.

We introduce an assumption that the sum rule and the
product rule commute with each other [18, 19]. A suppo-
sition that the sum rule and the product rule commute
with each other means a supposition that the two oper-
ations Addition and Multiplication commute with each
other (see [20]). In other words, the operation Addition
is equivalent to the operation Multiplication. We have

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= r21 + (r1 + r2) + (r2 + r1) + r22
= r21 + (r1 + r1) + (r2 + r2) + r22
= r21 + (r1 × r1) + (r2 × r2) + r22
= 2((r1)

2 + (r2)
2)

= 2((1− ǫ1)
2 + (−1 + ǫ2)

2). (4)

Thus, we have the following assumption concerning the
hidden-variable theoretic realism:

V × V = 2((1− ǫ1)
2 + (−1 + ǫ2)

2). (5)

We cannot assign simultaneously the truth value “1”
for the two assumptions (2) and (5). We derive the
Kochen-Specker theorem in a finite precision measure-
ment. Thus, we cannot assign a definite value into each of
experimental data in a noisy environment. The Kochen-
Specker theorem is certified by binary logic in terms of a
finite precision measurement.

Generally Multiplication (the product rule) is com-
pleted by Addition (the sum rule). Therefore, we think
that Addition (the sum rule) of the starting point may
be superior to any other case.

III. USING INEQUALITIES AS TESTS FOR

THE KS THEOREM FOR THREE-PARTICLE

STATES IN A FINITE PRECISION

MEASUREMENT

In this section, we give a violation of a KS inequal-
ity proposed in Ref. [9, 10] by using a finite precision

measurement. We consider a three-particle uncorrelated
state.

|+ ++�. (6)

The KS inequality [9, 10] is as follows:

−2 ≤ 	III�+ 	IXX�+ 	XIX�+ 	XXI� ≤ 2, (7)

where I is the identity observable and X is the x-
component of Pauli observables. As a matter of fact,
all results are plus one in an ideal case. Hence we have,
in an ideal case,

	III� = 1,

	IXX� = 1,

	XIX� = 1,

	XXI� = 1. (8)

Thus, the KS inequality is violated

4 < 2. (9)

Thus, we violate the KS inequality when using an infinite
precision measurement.

On the other hand, we introduce a finite precision mea-
surement in a noisy case. To simplify the argumenta-
tions, all results are 1− ǫ, where ǫ represents a noise and
O(ǫ) ≪ 1.

	III� = 1− ǫ,

	IXX� = 1− ǫ,

	XIX� = 1− ǫ,

	XXI� = 1− ǫ. (10)

Thus, the KS inequality is as follows:

−2 ≤ 4− 4ǫ ≤ 2. (11)

Hence, we have a violation of the KS inequality when
0 < ǫ < 1/2. Thus, we violate the KS inequality when
using a finite precision measurement.

IV. CONCLUSIONS

In conclusions, we have shown non-classicality of noisy
data on the basis of binary logic in a finite precision
measurement. We have used the measurement theory, in
qubits handling, based on the binary logic, i.e., the truth
T (1) for true and the falsity F (0) for false. The results
of measurements have been either 1 or 0 in an ideal case.
We have considered whether we can assign the predeter-
mined “hidden” results to numbers 1 − ǫ1 and −1 + ǫ2
as in results of measurements in a thought experiment.
We have discussed the Kochen-Specker theorem on the
basis of binary logic in a finite precision measurement,
that is, the first result is 1 − ǫ1 and the second result is
−1 + ǫ2. Here, ǫj , j = 1, 2 has represented a noise for the
jth outcome. Further we have violated a Kochen-Specker
inequality by using a finite precision measurement.
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We have hoped gently our discussions could contribute
for formulating the Kochen-Specker theorem into an ex-
perimentally accessible theory in terms of a finite preci-
sion measurement.

Generally Multiplication (the product rule) is com-
pleted by Addition (the sum rule). Therefore, we think
that Addition (the sum rule) of the starting point may
be superior to any other case.
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