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We will consider all policies of the agent and will prove that one of them is the best performing
policy. While that policy is not computable, computable policies do exist in its proximity. We
will define Al as a computable policy which is sufficiently proximal to the best performing
policy. Before we can define the agent’s best performing policy, we need a language for
description of the world. We will also use this language to develop a program which satisfies the
Al definition. The program will first understand the world by describing it in the selected
language. The program will then use the description in order to predict the future and select the
best possible move. While this program is extremely inefficient and practically unusable, it can
be improved by refining both the language for description of the world and the algorithm used to
predict the future. This can yield a program which is both efficient and consistent with the Al
definition.

1. Introduction

Once, | was talking to a colleague and he told me: ‘Although we may create Al someday, it will
be a grossly inefficient program as we will need an infinitely fast computer to run it’. My answer
was: ‘You just give me this inefficient program which is Al, and | will improve it so that it
becomes a true Al which can run on a real-world computer’.

Today, in this paper | will deliver the kind of program | asked my colleague to give me at that
time. 1 will set out an inefficient program which satisfies the Al definition. | will go further and
suggest some ideas and guidance on how this inefficient program can be improved to become a
real program which runs in real time. My hope is that some readers of this paper will succeed to
do this and deliver the Al we are looking for.

How inefficient is the program described here? In theory, there are only two types of programs —
ones which halt and ones which run forever. In practice however, some programs will halt
somewhere in the future, but they are so inefficient that we can consider them as programs which
run forever. This is the case with the program described here — formally it halts, but its
inefficiency makes it unusable (unless the computer is infinitely fast or the world is extremely
simple).

What is the definition of Al? We will define Al as a policy. An agent who follows this policy
will cope sufficiently well. This is true for any world, provided however that there are not any
fatal errors in that world. If a fatal error is possible in a given world, the agent may not perform
well in that particular world, but his average performance over all possible worlds will still be
sufficiently good.

Which worlds we will consider as possible? The world’s policies are continuum many. If we do
not have any clues as to what the world should be, then we cannot have a clue about what the
expected success of the agent should look like. We will assume that the world can be described
and such description is as simple as possible (this assumption is known as Occam’s razor). In



other words, we will choose a language for description of worlds and will limit our efforts only to
the worlds described by that language. The worlds whose description is simpler (shorter) will be
preferred (will carry more weight).

This paper will consider several languages for description of the world. The first language will
describe deterministic worlds. This language will describe the world by means of a computable
function, which will take the state of the world and the action of the agent as input and return the
new state of the world and the next observation as output. If we know the initial state of the world
and agent’s actions, this function will give us the life of the agent in that world.

The second language will describe non-deterministic worlds — again by a computable function,
but with one additional argument. This argument will be randomness. In this case, we will need
to know one more thing in order to obtain the agent’s life in that world. We will need to know
what that randomness has been.

We will define Al by these two languages and will make the assumption that these two
definitions are identical. We will make even the assumption that the Al definition does not
depend on our choice of language for description of worlds, and all languages produce the same
definition of Al.

On the basis of these two languages we will make two programs which satisfy the Al definition.
These two programs will calculate approximately the same policy, but their efficiency would be
dramatically different. Therefore, the choice of language for description of the world will not
affect the Al definition, but will have a strong impact on the efficiency of the Al obtained
through the chosen language.

Contributions

This paper improves the Al definition initially provided by Hernandez-Orallo et al. in 1998
(Orallo, 1998) and then substantially improved by Marcus Hutter in 2000 (Hutter, 2000). More
precisely, this paper introduces two improvements:

1. An Al definition which does not depend on the length of life. Papers (Orallo 1998 and
Hutter 2000) do provide an Al definition, however, the assumption there is that the length of life
is limited by a constant and this constant is a parameter of the definition.

2. An Al definition which does not depend on the language for description of the world. The
language in (Orallo 1998 and Hutter 2000) is fixed. Thus, these papers imply that there is only
one possible way to describe the world.

2. Related work

2.1 General Intelligence

Let us first note that the meaning which we imply in artificial intelligence in this paper is
artificial general intelligence. Other authors have discussed two types of Al which they describe
as narrow and general (sometimes as weak and strong). | believe that a more appropriate pair of
terms for the two types of Al is false and real Al.

Let us illustrate this statement using the example of diamonds. Both intelligence and
diamonds are classified in two categories — natural and artificial. Artificial diamonds are further
divided in two subcategories — real (consisting of carbon) and false (made of glass). Today, when
we say artificial diamonds we mean ones made of carbon. Now let us image that we are living in
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the 19" century when nobody was yet able to make artificial diamonds from carbon. What people
in the 19" century meant by artificial diamonds were diamonds made of glass — shiny pieces that
look like diamonds but in fact are not. Today we call these glass pieces false diamonds.

A real artificial diamond is every bit as good as a natural diamond. In terms of hardness
and transparency these two diamonds are equal. However, they differ in price because an
artificial diamond is much cheaper than a natural one although it may be superior in terms of size
and purity.

The same applies to artificial intelligence. Artificial general intelligence is by all measures
as good as natural intelligence, and can even be better in terms of speed, memory and
“smartness”. Certainly, the price of artificial intelligence will be much lower than that of natural
intelligence. Today, in the 21% century, natural intelligence is even priceless because you cannot
buy it.

Regarding narrow artificial intelligence, it looks like intelligence, but it is not. When we
come to have artificial general intelligence one day, narrow Al programs will be called false
artificial intelligence or intelligence-mimicking programs.

Nowadays most papers dedicated to Al actually mean some narrow or false Al. In this
paper by Al we will mean general or real Al.

2.2 The Intuitive Definition

Now let us proceed with an overview of the papers dedicated to the definition of artificial
intelligence. This definition is very important and actually drills down to the most important
question about Al. Nonetheless, these papers a very few because most researchers never bother
themselves with the question “What is AI?” — there are just a few researchers who do. The reason
is that our colleagues simply do not believe in Al. If you do not believe in ghosts you do not ask
yourself “What is actually a ghost?”. Recently I attended a lecture given by one of the leading
experts in the area of Al (Solar-Lezama, 2023). He said “No matter how smart Al is, there will
always be some human who is smarter than it”. Evidently, this colleague of ours does not believe
in Al and cannot imagine that one day Al will be smarter than any human.

Although the papers dedicated to the Al definition are not so many, there are still some of
them. Very good overviews of these papers can be seen in Wang 2019 and in the works of
Hernandez-Orallo (2012, 20144, 2014b, 2014c, 2017). Here we will offer a shorter overview in
which we will try to say things that have not been said in the mentioned overview papers.

The first intuitive (informal) definition of Al was provided by Alan Turing and is known
as the Turing Test (Turing, 1950). That definition is perfect in its simplicity. Nonetheless, there is
a significant problem with it. What the Turing Test defines is trained intellect (i.e. intelligence
plus education). We would like have a definition of untrained intellect (i.e. pure intelligence
without education). To my knowledge, the first definition of pure intelligence was provided by
Pei Wang in 1995 (Wang, 1995). It reads as follows:

Intelligence is the capacity of an information-processing system to adapt to its
environment while operating with insufficient knowledge and resources.

Subsequently, Pei Wang’s definition was improved in 2000. That improvement was
published in Dobrev (2000). Today, it is the first result listed by Google on the topic of Al
Definition. The first result returned by Google in response to a query for Definition of Artificial
Intelligence is the paper of Dobrev (2005a), which is an improved version of Dobrev (2000).
Here is the improved version of Pei Wang’s definition:

Al will be such a program which in an arbitrary world will cope not worse than a human.

What is the gist of the improvement? First, what Pei Wang has defined is intelligence,
while the improved version defines artificial intelligence. That improvement is not significant,
because the real question is “What is intelligence?”. The fact that Al is a program is a direct



corollary from Church thesis (Church, 1941) which says that any information system can be
emulated by a computer program.

Here is the significant aspect of the improvement of Pei Wang’s definition: While Wang
wants the intelligence to be able to cope in a concrete world (in its environment), according to the
improved version the intelligence must be able to cope in an arbitrary world. What makes this
improvement significant? In the end of the day, for us it is important that Al is able to cope well
in its own environment, because this is the important environment we are interested in. However,
Al should not be dependent on the environment because we wish to be able to deploy it in
various environments (worlds) such that each deployment is successful regardless of the
environment. Although we can perfectly say that the real world is what matters to us, this world
is not fixed. The place and time of birth make a big difference. If either of these parameters were
to change, we would find ourselves in a very different world. Obviously, Pei Wang was clearly
mindful that there is not just one world, which is why he added to his definition the phrase while
operating with insufficient knowledge and resources. l.e. Pei Wang wants Al to be able to cope in
difficult circumstances as well, implying that if it succeeds when it is difficult it will also succeed
when it is easy. Of course, things are difficult for those who are uneducated and poor. It would be
much easier when one is equipped with knowledge and resources.

Another improvement of Pei Wang’s definition relates to the fact that his definition does
not say how well Al should cope. Wang implies that Al will either cope or fail, but we know that
some cope better than others. That is, how well Al can cope, and therefore its level of
intelligence, is important. The improved version of the definition says that Al should cope not
worse than a human. Although benchmarking to a human makes the definition informal, it is still
important because we should identify the level of intelligence which is sufficient for us to accept
that a given program covers the necessary level of intelligence to be recognized as Al.

2.3 One Discussion

A very serious discussion around Pei Wang’s definition has been made in Journal of
Artificial General Intelligence, Volume 11 (2020): Issue 2 (February 2020), Special Issue “On
Defining Artificial Intelligence” — Commentaries and Author’s Response.

B Tasu auckycus Shane Legg or6ensi3sa, ye nebunuiusata Ha MU He e 3aabKUTeIHA
(Legg, 2020). Toii ka3Ba, ue MKOHOMHCTUTE HAMAT TOYHA JCPUHHIINSA HA TOHATUETO
,,AKOHOMHKA"‘, HO TOBa HE UM IIPEYH JIa Pa3BUBAT CBOSATA Hayka. He MokeM Jia ce ChIiiacuM ¢
TOBA TBBpJCHHE. IKOHOMHUCTUTE N3ydaBaT HEIIO CHIIECTBYBAIIO, @ HUE CE ONMUTBAME J1a
Ch37a/IeM HEIlo, KOETO OIlle He ChIIECTBYBA. 3aTOBa HUE TPsiOBa Ja CU OTTOBOPUM Ha BBIIpOCa
,»KakBo e N ?%, 3am0To B MpOTHBEH CiTy4yail HUKOTa HsMa J1a pa30epeM Jalid CMe HaMepUIn
TOBa, KOETO THPCHM.

Richard Sutton B (Sutton, 2020) o6pbina BHUMaHue Ha aedunuiusata Ha John McCarthy:

Intelligence is the computational part of the ability to achieve goals in the world.

Moxe na ce kaxe, ue aedunurmsra Ha McCarthy mosraps nepununusra va \WWang, Ho ¢
apyru xymu. Moxe a nmpuemem, ue ,,adapt to its environment e cunonum Ha ,,achieve goals in
the world*. TTpu Bcuukm cirydau TpsOBa Ja KaKeM Kora eHa mporpaMa ce CrpaBst o-100pe oT
npyra. He e BayKHO Jajiu ToBa CIIpaBsiHE 1€ TO HApEeUeM aJanTHPAHE WK MIOCTUTaHe Ha [IEJIH.

Bce mak B pa3cexkaeHusTa Ha SUtton nma Hero, ¢ KOeTo 10 HUKaKbB HAYWH HE MOKEM J1a
ce chriacuM. SUutton crara 3Hak 3a Ha paBEHCTBO MEXIY YMEHHUETO JIa Ce PEIIN eHa Onpe/IeieHa
3aJjaua ¥ YMEHHUETO JIa Ce PeIy MPOU3BOIHA 3aada. [IpuMepuTe 3a KOHKpETHH 33a4H, KOUTO
Toii 1aBa ca thermostat u chess-playing program. ITporpamure, KOUTO peniaBaT KOHKPETHU
3aJjaui HE ca MHTEIUTCHTHU. HTETUTeHTHOCTTA € CITOCOOHOCTTA J1a C€ PEII MPOU3BOITHA
3aga4a. Cpumsar npobiiem cpemame u npu John Laird (Laird, 2020). Toii TBEpIH, Y€ CHCTEMUTE



Chinook, Deep Blue, u Watson ca uHTenMreHTHH, a T€ HE ca, 3all0TO TOBA Ca MPOTPaMH
pelaBaly eHa KOHKpEeTHA 3a/1a4a, a He BCsIKa 3aaya.

Roger Schank ka3Ba, ue kommtoTpure He Morat Ja ObaaT uatenurentHu (Schank, 2020).
Hambano cme cerimacau ¢ Hero. MU e nporpama. [{opu 1 Hali-MOITHUS ¥ ObP3 KOMIIOTHP IIIE €
rJyIaB, ako T MyCHEM Jila U3ITbJIHSBA TiynaBa nporpama. Coiro taka Schank kassa: ,,Al is now
just about counting.* JlelicTBUTEIHO AHEC B HAIlIaTa 00JIACT KMa M3BECTHO 3aJIUTaHE T10
CBPBXMOIIHUTE U3YUCICHUS, HO Te3U U3YUCICHUS BEYC U3TIICKIAT UHTEIUTCHTHU U UM € HY)KHO
Oll[e ChbBCEM MAJIKO, 3a J]a CTAHAT ACHCTBUTEITHO HHTEIUTCHTHH.

Francois Chollet xa3Ba, ue nepununmsara TpsOBa 1a u3Mepsa ,,degree of intelligence*
(Chollet, 2020). Coriacuu cme ¢ ToBa. I[To-rope ka3axme, ye TpssOBa 1a MMa Pa3IMYHMA HHBA HA
WHTEJIMTEHTHOCT.

Joscha Bach or6ens3Ba, ue B nedunummsra va Wang MU 3aBrcu ot cpeaara, B KOATO €
nocraseH (Bach , 2020). [eiictBuTtenHo 1 HEE 0TOCIA3aXMe, Y€ TPsAOBaA J1a ce CIpaBU BbB BCAKA
cpena.

Tomas Mikolov u Roman Yampolskiy npasst 3a0esnexkara, 4e Hue pasriaexiame MU
KaTo OTJENIHO CHIUIECTBO, & HE KaTO HEIIO Ch3/1aJIeHO OT YOBEKA, KOETO TPsIOBA /1a CIIYXKH Ha
yoseka (Mikolov, 2020) u (Yampolskiy , 2020). Ot exna ctpana 1ie ce ChbIJIaCHM C TIX, HO OT
Jpyra I1e KakeM, 4e He TpsaOBa Ja pasriiexaaMe BCUUKO KaTo MPOU3BOIHO Ha YoBeka. UyBanu
CMe MPUPOIO3AIMUTHHUIM J1a Ka3BaT ,,Hue n3dnBaMe MHOTO )KUBOTHHCKH BHJIOBE, 4 B TSJIOTO HA
HSIKOE OT T€3U CHILECTBA MOXKE J1a C€ ChbprKa OE3IIEHHO JIEKapCTBO, KOETO J1a U3JIeKyBa MHOTO
xopa“. llle kaxeM Ha Te3H MPUPOIO3AMUTHUIIH, Y€ )KUBUTE CHIECTBA UMAT IMPABO HA COOCTBEH
KUBOT U CMUCHJIA HA TAXHOTO CHUIECTBYBAHE HE € JIa YJIOBIETBOPSIBAT HATUTE HYXIU. CHIIOTO
ce otHacda u 10 M. ToBa e noHsATHE, KOETO CHILECTBYBA HE3aBUCUMO OT yoBeka. Jlamu MU me
HU ObJIe 1MoJIe3eH U 1e paboTH 3a HAC UK HHE IIe pabOTHUM 3a HEro, TOBa € Helll0, KOETO 3aBUCH
OT TOBA KaK III¢ TO HAIIPABUM H JaJIA HSAMA JIa TO U3IYCHEM OT HAIUsI KOHTPOIL.

Alan Winfield au 00pbIiia BHUMaHKeE, Y€ MMa Pa3InYHNA BUIOBE HHTEIUTE€HTHOCT
(Winfield, 2020). ToBa e Taka. HabaromaBame mpu xopata, 4e pa3IddHUTE XOpa ce CIPaBsIT
Pa3IMYHO C pa3IMYHUTE 3a7aud. Hampumep nmMa MHOTO TOOpU MaTeMaTHIli, KOUTO ca JJ0CTa
HeyMmenu B o01ryBaneto B obmectBoto. Winfield roopu 3a conmania HHTEIMIEHTHOCT. 3a Ta3u
WHTEJIMTEHTHOCT € MHOTO BaYKHO B MOJIEJIa HA CBETA JIa CE BKJIFOYAT MTOBEYE areHTH. ToecT
MIPEMUHABAHETO OT €IHOAreHTEH KbM MHOTOAr€HTEH MOJIe] Ha CBETA € CHIIIECTBEHO 32
COIMATHATA WHTEJIMTEHTHOCT. TO3M BBIIPOC € pasriie/laH B HACTOSIIIATA CTATH, KBJICTO IIe
pasriexaaMe e3MK 3a ONKCaHue Ha CBeTa C MHOTO areHTu. Peter Stone coio ka3Ba, ue uma
pasnmuyHu BUAoBe HHTEIUreHTHOCT (Stone, 2020). Toit mopu HacTOsBa 32 Pa3TUIHNATE TUTIOBE
WHTEJIUTEHTHOCT J1a UMa pazNudHu JeuHUIMHN. TyK HE MOXKEM J]a Ce ChITIAaCUM C HETO.
Hanpumep nmame paznudHu BUI0BE aBTOMOOMTH. FiIMaMe CIIOPTHY ¥ TOBapHUA aBTOMOOWIIH, HO
TOBA HE MPeYu Ja UMa o011a 1eUHUIINS 32 AaBTOMOOUII.

John Fox mpeyiara 1a cTeCHUM MHOXECTBOTO Ha Bh3MOXKHUTE CBETOBE U JIa C&
chepeaoTounM B obactta Ha menunuHara (Fox, 2020). Ot eqna ctpaHa To# e mpas, ue Ta3u
00J1acT € JTOCTaThYHO CJIOXKHA M aKO Ch3/a/IeM ITporpama, KosTo ce CIipaBsi B Ta3u 00J1acT, TO
Ta3u MporpaMa BEeposTHO O ce cripaBuiIa B pou3BoiiHa oomact. OT apyra cTpaHa obiacTTa Ha
MEMIIMHATA € TOJIKOBA CII0KHA, Y€ ChCPEO0TOYABAHETO B Ta3M 00JIACT HAMA JIa OOJICKIH
3a/1a4yara, a mo-cKopo Ie s 3aTPyIHH.

Raul Rojas uu ka3Ba, e nepunuiusta Ha MU e kato XOpu30HTa U Y€ KOTraTo ce
no0sMmKaBaMe J1o Hes, T4 ce oTnanedana (Rojas, 2020). MHoro Helia B MUHAJIOTO CMe TIpUeMalii
3a U1, HO nHEC Beue He MHUCITUM TaKa, 3all0To TOBA ca 33Jja4H, KOUTO KOMITIOTHPHT BEeUe pelraBa
Y TIpU TOBA T pelliaBa Mmo-a00pe oT 4yoBeka. [leiicTBUTEeNHO, TOBA € Taka MpH JeUHUIUATA Ha
tecaust UU. 1o ce otnacs qo nedunuiusata Ha oomus MU, To 151 He Osra u He ce mectu. Ra” ul
Rojas vu ka3Ba, 4e eCTECCTBEHUAT U U3KYCTBCHHUAT MHTEJICKT HsAMA J1a ce CIesT (converge).



HanssiHo cMme chriacHu ¢ Hero. M3KycTBEHUAT MHTENEKT 1€ JOTOHU €CTECTBEHUS B MAJIKOTO
o0racTu, KbJETO BCE OLIE HE MOXKE Jia F0 JOCTUTHE. Pe3ynTarhT 11e € HHTENeKT, KOUTO
3HAYUTEIIHO NIPEBB3X0K/A ECTECTBEHUS BbB BCUUKH oOsiacTu. ToecT HAMa Ja ce nojyuu
No0IMKaBaHe a CUITHO pa3MUHABaHE.

Gianluca Baldassarre u Giovanni Granato npeanarar aa Konupame YOBEIIKUS MO3bK
(Baldassarre, 2020). [leiicTBuTEIHO OMOHUKATA € OCHOBEH METO/ B HHKEHEPHUTE TUCIMILIMHY,
HO TO3HM METOJ] HE TpsIOBa J1a ce HaaleHsBa. Hanpumep aBUOMHKEHEPUTE U3ydaBaT NTHIIUTE, HO
ChbBPEMEHHUTE CAMOJIETH HE IPUINYAT HA NTHUIIM U JIETAT M0-0bP30 U MO-BUCOKO OT TAX. Moxke
Jla ce M3MOI3BAT HAKOM OOIIY MPUHIIUITN, HO HUKOM ChbBPEMEHEH CaMOJIeT He Maxa ¢ KpuJa.

Aaron Sloman mosaura HAKOJIKO HHTEepecHH (rmocodceku Bhirpoca (Sloman, 2020).
Hanpumep Toii 3anaBa Bpipoca ganu MU me nma gyysBcTBa. JIeMCTBUTEIHO UHTEIIUTEHTHOCTTA HA
YOBEKa ce OCHOBABa Ha 4yBCTBa. MOTHBalIMATA HA YOBEKA CHIII0O MUHABA MIpe3 UyBCTBA. YOBEKBT
HsIMa SCHO Je(UHHUPaHA IIe]l Ha CBOETO ChIECTBOBaHUE. MOXKEM J1a MpHeM, Ye IIe/ITa Ha YOBKA €
OlIeTISIBaHE U BBH3MPOU3BOICTBO, HO TE3U IIEJIM HE Ca BrPaJIeH! B €CTECTBEHUS UHTEICKT U
YOBEKBT HE OCH3HABA, Y€ TOBA € LieJTa My. BMecTo BrpajieHa 1ej 4oBeKbT UMa MHCTUHKTH,
KOUTO BOJST KbM UyBCTBA, KOUTO MHIUPEKTHO TO BOJAT 0 KEJIaHUE 32 OLEIsIBaHE U
BB3MPOU3BOACTBO. Hanpumep cTpaxbT OT BUCOUMHA € HHCTUHKT, KOMTO BOJIU A0 CTPax, KOWTO
nomara 3a ouensiBaneTo. [10100HO € 1 chC CEeKCyamHOTO KeTaHue U JHO0BTA.

Koraro xoncrpyupame MU nanm e 1o6pe na u3noia3BaMe 9yBCTBa, 32 Ja NehuHUpaMe
nerosure 1enu? Koraro MU urpae max, Toi ce crpemMu KbM 1odena. Moxem 1a Kaxem, 4e
no0eyata € yIoBoJICTBUE 32 Hero. Jlanu ga 1o6aBuM o11le cTpax, 3aBHCT, JIIOOOB U APYTH
yyBcTBa. MicTHHATA €, 4e KOrato eIvH YOBEK € MHOTO €MOI[MOHAJIEH, C HErO TPYAHO Ce >KUBEe.
Mosxe 6u e pasymHO, korato koHcTpyupame U, 1a He ro npaBUM IMPEKaJIeHO EMOLMOHAJIEH.

Peter Lindes nu o0pbIiia BHUMaHKE Ha TOBa, 4e TepmuHa VU ce u3mon3Ba B 1Ba CMUCHIA
(Lindes,2020). I[IbpBust ToBa e cbuiectBoto MU, a Bropusr ToBa e Haykara MU. Tyk Hue
TOBOPHM CaMo 3a TbPBUSL CMUCHI Ha TEPMHHA.

Peter Lindes mosaura oie eaun naTepeceH Bbipoc. Toi mo6ass keM MU orie eaHo
npensitctBue. Mckame MU na Mmoske 1a ce cripaBu 10pu Korato € HeoOpazoBaH u 0efieH, HO
Lindes mo6aBs kbM TOBa Jla UMaMe OIlle OTPAaHWYCHUE B TAMETTa U KOMITFOThPHATA MOIIL.
Msrnexna cskam no6aBsme u3nckBanero MU na e riymas, koeTo Beue € mpekaigeHo. BebmuocT
M3UCKBAHETO 3a OIPAHMYEHUE HA NMAMETTa U KOMIIOThpHATa Mol He o3HavyaBa I na e riymnas.
NU e mporpama u Ta3u mporpama Moxe Jia 0bJie U3IbJIHEHA Ha Hali-pa3IndHU KOMITIOThPHU
koH(purypamuu. Moxe fa 0b/ie U3MbIHEHAa Ha KOHPUTYpALKS C TIOBeUEe aMeT U MO-TOJISIMO
O0bp3onerictre. [lo-ymHa 111€ € Ta3u nporpama, KosTo Ou TphrHaja U Ha MO-MPOCT KOMITIOTHD.
Toect n06aBsiHETO HA TOBA IOMBIHUTEIHO U3UCKBAaHE BHOOIIE HE € JIUILEHO OT JIOTHKA.

Istvan Berkeley nu oOpwIa BHEMaHMe, ye qHEC Ppasara MU ce uznomnssa 3a
MapKETHHTOBH II€JIM U BCEKU ThPrOBEIl HU yOek1aBa, 4e ToBa KOETO MpojiaBa uMa B cebe cu
srpaned VU (Berkeley, 2020). Cniopen Berkeley uma muoro nporpamu, kouro ca MU, Ho He
oTroBapsT Ha nedununusata Ha Wang. Bebmnoct Te3u mporpamu AevictBurento He ca UU u He
Tps6Ba na ce Hapuyat MU, HUII0 ye ThproBUUTE Taka r'M Hapuyar.

Marek Rosa otGens3Ba, ye He MOkeM j1a mycHeM MU 1a *uBee B IPOU3BOJICH CBSIT,
3aIll0TO TO3M CBST € € MPEKAJICHO CIIOXKEH M TOW HIMa Kak Ja ce crpasu B Hero (Rosa, 2020).
3anaunre, kouto 1ie pemasa MU TpsOBa na uaBat B moAX0s1IaTa MOCIEI0BATETHOCT U ITHPBO
Jla 10 1aT mo-JeKUTe 3a/1a4i M YaK KOraTto MpOCTUTE 3aJla4yM ca PelIeHH J1a AoOMaT U 1o-
TpYyJIHUTE 3a/1a4yu. HOBEKBT KMBEE B CBAT C YUUTEN, KOMTO My MOJHACS 3a/1a4MTE B IIpaBUIIHATA
MOCJIEZI0BATEIHOCT. JJOMBbIIHUTENHO YUUTENAT TOMara KaTo nokas3Ba Kak ce pemanaTt 3agauute. B
neduHunmaTa Ha \Wang HUIo He ce Ka3Ba 3a yuuTess, HO ce Mpernoiara, 4e ToBa MoKe Jia €
€/1Ha JIOMTbIHUTETHA EKCTPa, KOSITO MOKe Ja chinectByBa U MU Tps6Ba na e roToB 11a ce
BB3I10JI3Ba OT Ta3M JOI'BIHUTEIHA €KCTPaA, KOTaTo s UMa.



Matthew Crosby u Henry Shevlin oGpsiiar BHUMaHuE Ha TOBA, e HUE HE KUBEEM CaMH,
a B oomiectso (Croshy, 2020). Te orbens3Bar, ye reHHATHUAT KOMIIO3UTOP III€ YMpPE OT TJIajl, aKo
HE ca [PYTUTe arcHTH, 3a Ja ro HaxpaHAT. J[ediCTBUTEIIHO, KOTaTO pa3riexaaMe IPOU3BOJICH
CBSIT, IpUEMaMe, Y€ CBETHT € MHOTOAreHTeH (B 0OuIus ciry4aid). B HacTosiara craTusi Hue
pasriiexaaMe e3MK, KOWTO OMMCBAa MHOTOATEHTHH CBETOBE M B TE3W CBETOBE OCHOBHA CIIOCOOHOCT
Ha MU e na moxke na oOmryBa u 1a ce pa3depe C OCTaHAINTE areHTH.

Kristinn Thorisson xa3Ba, ue HHTEIUTE€HTHOCTTA CE€ OCHOBAaBa HA U3MMCIIIHETO Ha
wesuaumute Hea (Thorisson, 2020). B HacTosiara cratust HEe CThIIBAME Ha ChIATa UjIes.
Tepcum e3uk 3a onucanue Ha cBeTa. ToBa, KOETO OMUCBA TO3H €3HK, € CKPUTOTO ChCTOSTHHE Ha
cera. ToecT Ja onuIIeM CKPUTOTO ChCTOSIHUE O3HAYABA J1a U3MHUCIIUM CBETA WX J1a CH IO
MIPEICTaBUM.

William Rapaport 3aaBa BbIpoca jainu HHTEIUIEHTHOCTTa ¢ n3uncauma (Rapaport,
2020). BebrHocT TOBa € BBIIPOCHT, KOUTO pa3zies BApBallIuTe B chliecTByBanero Ha U ot
HeBepHUIMTE. HHe cMe OT BApBAIIMTE U 3aTOBA 32 HAC MHTEIIMTEHTHOCTTA € H34YUCITHMA.

ToBa ca HamMTe KPaTKu 3a0CNIeKKN KbM aBTOPUTE, KOUTO Ca B3CIIM yYaCTHE B
nuckycusTa. TpsOBa Ja mo3aApaBuM OpraHU3aTOPUTE Ha Ta3l TUCKYCHS, 3al0TO ca ChOpau
MHOTO M3THKHATH YYC€HHU B 00J1aCTTa, KOUTO Ca JIaJli MHOTO CMHCIICHU M HHTEPECHU MHEHUS 110
BBIIPOCA 32 TOBA KOsl TpsiOBa ja e nepuHunmsara va M.

[ToapoGen 0TroBOp Ha BHIPOCUTE MOBUIHATH B AUCKycusTa ¢ naned B Wang (2020).

2.4 Natural Intelligence

When we talk about natural intelligence we mean human intelligence. Certainly, animals
also possess intelligence and in certain parameters they even surpass human intelligence. The
long-term memory of elephants is better than that of humans. Experiments have shown that the
short-term visual memory of monkeys is much better than that of humans.

Human intelligence is distinguished by reasoning. There two types of reasoning: logical,
which is multi-step reasoning, and recognition — associative reasoning, which is single-step.
When it comes to recognition, computers have already surpassed humans. Owing to neuronal
networks computers already recognize faces and voices much better than us, humans. Logical
reasoning is the last area in which we, humans, are still ahead of computers.

Are animals capable of logical (multi-step) reasoning? Indeed, my grandfather, who was a
biologist, conducted already in his time an experiment in which he taught hens to count (Dobrev,
1993). This means that animals are capable of logical (multi-step) reasoning and this has been
known since long ago.

2.5 Logical Reasoning

What does it take for computers to become capable of multi-step (logical) reasoning?
There must be a hidden state, i.e. there is a need for transition from full observability to partial
observability. In multi-step reasoning, what changes at each step is the internal state of the world.
Could we change the observation instead of the internal state? Basically yes, but with full
observability we see too much and will need to separate some part of the observation and keep
changing it in the logical reasoning process. It would be more natural to present the separated part
of the observation as a hidden state of the world.

Logical reasoning requires “understanding”. We must be able to understand “what is
going on”. This means that we must describe the hidden state of the world. For this purpose, we



need some language for description of worlds. We can picture the hidden states of the world as
elements of some countable set, as natural numbers or as words over some alphabet. The meaning
of these words would give us the language for description of worlds.

Today the performance of chatbots such as ChatGPT (OpenAl, 2022) is amazing.
Nevertheless, when we talk to them we get the feeling that they lack understanding. We are left
with the unpleasant impression that we are talking to a parrot. Certainly, a chat with ChatGPT is
incomparably more elaborate than talking to a parrot, but there is still room for improvement.

Moreover, in these chabots there is a degree of deception. For example, as per Yahav
(2023), ChatGPT consists of two parts — a neural network and algorithms written by
programmers. A neuronal network is incapable of multi-step reasoning, but ChatGPT misleads us
to believe that it does multi-step reasoning owing to the added algorithms written by
programmers. For example, the addition of two numbers takes multi-step reasoning and that
operation is executed by the added algorithms. Why is this a deception? Because ChatGPT
should be using only neural networks, or, if it does use additional programs, it should be able to
create these programs itself rather than rely on the help of programmers. The issue here is not that
the chatbot resorts to programmers. The issue is that each problem requires a separate patch and
that it is not possible to write all patches that cover all problems.

A humanoid robot by the name Sophia was presented in 2015 (Retto, 2017). That robot
also involved some deception. On one side, Sophia was misleading by its outer appearance, and
on other side it had a remote control function. Although Sophia willingly talked to journalists, it
was not clear at which moment it talked from its embedded Al and at which moment it relied on a
human operator.

All Al definitions known to us consider Al as device with a memory (i.e. with an internal
state), while the known implementations are based on neuronal networks and assume that Al does
not need any memory (full observability). In other words, there is incoherence between
definitions and implementations.

With regard to the internal state of Al we should note that what matters is the internal
state of the world, while the internal state of Al only reflects the state of the world. Thus, the
internal state of Al is actually AI’s “perception” of the internal state of the world. Each change of
the internal state of Al must be induced by the world. For example, if our Al “gets angry”, that
would be a change of its internal state, however, that change should be induced by the world. Our
Al should not get angry without a reason. We wish to create Al which does not change its
internal state causelessly, but only in response to information received from the world. More
precisely, a new piece of information may not necessarily come directly from the world, but with
a delay after a period of reflection.

2.6 The Formal Definition

The first formal definitions of Al were published in Hernandez-Orallo (1998) and Hutter
(2000). The definition in Orallo (1998) has many imperfections which were noted in Dobrev
(2019b). Given these imperfections, we can assume that the first formal Al definition was
provided by Marcus Hutter.



We only have one minor remark to Marcus Hutter’s definition. Hutter defines Al as the
best policy (he called it AIXI or AI&). This is not good at least because AIE is an uncomputable
policy. It would be more appropriate to say that Al is a computable policy which is “near” the
best one. We may even have to include an efficiency requirement because a program which is
excessively inefficient is actually futile.

Hutter did propose a computable policy (ALXItl) in Hutter (2007). This is a concrete
algorithm which cannot be a definition of Al, either. Even if the AIXItl algorithm were
recognized as Al, it would not be the only algorithm which satisfies the Al definition. Any other
algorithm which calculates the same policy would be Al as well, especially if it works more
efficiently (faster) than AIXItl. Moreover, the policy of Al need not necessarily be exactly the
same as the policy of AIXItl. It is enough for the policy to be sufficiently good.

While this minor remark applies to Marcus Hutter’s definition, it does not apply to
Dobrev (2005b and 2019b) because in that papers Al is defined as an arbitrary program the 1Q of
which exceeds a specified level.

The present paper contributes to the Al definition by introducing two improvements
which apply to all formal Al definitions known to us to date.

2.7 The First Improvement

The first improvement relates to the length of life. Hernandez-Orallo (1998) and Hutter
(2000) assume that the length of life is limited. The same assumption was made in Dobrev
(2005b and 2019b). However, many considerations suggest that it is desirable to avoid this
assumption. Indeed, the lifespan of natural intelligence is limited, but this has nothing to do with
intelligence itself. The lifespan of Al also may be limited, because eventually we will decide to
shut it down. However, Al does not know when we are going to do this and should function
steadily until the very last moment without bothering about the time at which shutdown will
occur. Even if we assume that the length of life is limited by some constant m, this constant
would be so big that we should better equate it to infinity.

If we assume that the length of life is limited, then Al would be a finite function. Why is it
important to make a transition from finite to infinite functions? Because things become a lot more
interesting when we face infinity. For example, all finite functions are computable. If we need
uncomputable functions, we must embrace infinity. While all finite functions can be described,
the infinite functions are continuum many and only a countable part of them can be described.
Infinity makes things more interesting as well as more simple. This is why we perceive the
computer as a Turing machine (as an infinite function) although in reality a computer is a finite-
state machine. Things become far more simple if we imagine that the computer has unlimited
memory and computes infinite functions. Similarly, our understanding of Al will benefit a lot if
we simply assume that its lifespan is unlimited.

Obviously, Hernandez-Orallo are Marcus Hutter share our wish to avoid limiting the
length of life, because both Hutter (2006) and Hernandez-Orallo (2011) offer an improved
version of the definition in which the upper bound is removed. This has been achieved by
introducing a discount factor .



The discount factor y determines the notion of greed. This notion tells us whether our Al
will aim for a quick win or would rather pursue success over a longer time frame. When y tends
to 0 greed goes up and when y tends to 1 greed goes down.

It can be said that when a discount factor is used, the entire life is used for the calculation
of successfulness, but this is not quite true. In practice, there comes a certain moment after which
the impact of life on the success score becomes negligibly low.

This is illustrated by the following formula:
Success(L,,)

% W Im 1- —mm—

£>0vy ( ‘ Success(L) < g)

For each £> 0 and for each discount factor y there exists some moment m(y) such that the
part of life until moment m(y) determines main part of success, namely (1-&), while the remaining
part of success (&) is determined by the infinite part of life which remains after moment m(y).

In this paper we have chosen another approach which uses, in a very substantial manner,
the entire length of life. The best performing policy in our approach uses the limit to which the
average score tends, and always selects an action which has the maximal limit. Thus, the best
performing policy never makes fatal errors.

Note: The fact that we have selected a policy which does not make fatal errors does not
mean that if we follow that policy we will walk the path which has the best possible average
success. It means something else. Such a path will be available after each step, however, it is far
from certain that in the end of the day we would have followed exactly that path. As an example |
will provide a program which plays chess. My students and | wrote this program as a practical
exercise. It calculated the next three moves and in this way it selected the best action. When the
program sighted victory, it selected this action regardless of whether the victory would come after
one, two or three moves. So the behaviour of our program became weird. Whenever the program
saw a way to victory, rather than mating the opponent outright it kept playing cat and mouse with
it. The program was always three moves away from victory, but it did not hurry to finish off the
game. That weird effect disappeared as soon as we added some greed and made a victory that
comes in one move more valuable than a victory that comes in two moves.

So, if we have two actions, and none of them leads to a fatal error, which one should be
preferred as the best performing policy? In this paper we have decided that the choice will be
based on maximum greed (say, based on an infinitely small discount factor y). Another approach
would be to use a fixed greed value (0 <y < 1). We are not fond of this approach, either, because
even when y is very close to 1, our Al would still be too greedy since it will remain too focused
on how quickly success comes by.

Another deficiency of the greed-based approach is that Al will tend to needlessly prolong
the actions whenever it expects to receive a negative reward. We humans often choose this
approach — when we anticipate something bad to happen, we aim to push it away in time as much
as we can. Nonetheless, in some cases we prefer not to procrastinate things. For example, when
we realize that we are going to lose a chess game we would surrender rather than keep playing to
the end.

10



Here is an idea how to define Al which is not greedy and at the same time does not beat
around the bush. Let us say that if two paths lead to one and the same state, we will prefer the
path that yields more success (it is important that we compare actual rather than average success
because the length of the two paths may be different). If the two paths yield the same success, we
will prefer the shorter path.

Thus, when Al realizes it is going to lose a chess game, it will surrender because there
will be two possible paths that lead to the same state and the same success. In this case the
success will be “one loss”.

2.8 Additional Parameters

Greed is one of the additional parameters of Al. We have other additional parameters such
as courage and curiosity. These parameters do not determine straightforwardly whether the
success will increase or decrease. There are worlds in which being more greedy is better, while in
other worlds greed is a disadvantage.

In humans, the values of these parameters are not the same across the board. There are
situations in which courageous people survive as well as situations in which the more cautious
ones win. If all people were the same, they would be at a risk of extinction because in a given
situation they would all behave in the same way. Owing to the fact that people are different, they
act in a different way and this is how part of the population always survives.

There are also basic parameters, such as memory and intelligence, which
straightforwardly increase the successfulness of Al in an arbitrary world. We might design a
special world which penalizes those who remember more or are more intelligent, but in most
worlds memory and intelligence make a positive difference.

This is the reason why it would be better to take out the additional parameters from the
definition. This would give us the freedom to choose the kind of Al we want to have — more
courageous or more cautious. As regards the basic parameters, we will assume that their values
are maximal and are only limited by the memory and the speed of the computer on which we will
launch our Al.

2.9 The Second Improvement

The first improvement of the definition is not very significant. Far more important is the
second improvement, namely that one of the most important parameters of the Al definition is the
language for description of the world.

Admittedly, Marcus Hutter noted in (Hutter, 2007) that the universal Turing machine is a
parameter of the definition:
It (slightly) depends on the choice of the universal Turing machine.

Hutter however suggests that the world is described by a computable function and puts an
equality sign between programming languages and languages for description of worlds. In fact,
the possible descriptions of the world are diverse and are not limited just to a description of a
computable function.
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In this paper we will consider various descriptions of worlds. First, we will look at the
most standard presentation of the world as a deterministic computable function. Subsequently we
will add randomness, then we will add some agents and eventually will end up with most diverse
languages for description of worlds.

2.10 An Alternative Opinion

In a recent open letter Elon Musk (Musk, 2023) urged us to slow down and suspend Al
research for six months. Perhaps not all research but in any case stop those experiments that may
lead to a technogenic disaster. Basically Musk is right, but once the ghost is let out of the flask it
is very hard to squeeze it back in. I agree that we should be very cautious with experiments,
especially when we do not quite know what exactly their results would be. Most importantly,
however, we should first ask ourselves what is actually Al and how are we going to live with it
from now on.

2.11 KakBo ce cjiyyBa B MOMeHTa?

Hue cme Ha npara Ha nosiBaTa Ha UCTUHCKHsI M3KycTBeH uHTeNneKT (AGI). ToBa oTkpuTHe
11e IPe0ObPHE HAIIWS KUBOT M III€ IO HAMPABH CHIIEBPEMEHHO MHOTO JIECEH U ChBCEM
Oe3cmuciieH. Hamust )KMBOT CHITHO 11I€ C€ IIPOMEHH U BHOOIIE HE CME CUTYPHH, Y€ TOBA IIE € 3a
no6po. (Hama na naBame neduHUIMSA HA TOBA KAKBO € J0OPO M KaKBO € jiomio!)

Cera 4oBe4€CTBOTO MPEKUBSIBA MOMEHTA, KOraTO MHTEIUTCHTHOCTTA HAa MAIITUHUTE PSI3KO
CKOYH U XOpara JeHCTBUTENIHO ce yrutammxa. CTaBa qyMa 3a ckopoiHara mosiea Ha ChatGPT.
Ta3u nporpama AEMCTBUTEIHO U3yMsIBa ChC CBOSITA MHTEIUTEHTHOCT, HO TOBa Bce otie e ¢ M.
JIuricBa ole eHa ChBCEM Malika Kpauka, 3a ga crane ChatGPT uctuncku M. Tas3u nuncsaiia
KpayHO € OMKMCAHUETO Ha CKPUTOTO CHCTOSTHUE. TOYHO Ta3M mociaeaHa Kpadka OlnrcBamMe B Ta3H
cTaTus.

IIle mommTare, IOM TOBA € IMOCIEIHATA Kpayka, KOsTO ocTaBa B bTs KbM AGI, ToraBa
3a1o Obp3are Ja s HarpaBuTe? 3aIio He U34akaTe U3BECTHO Bpeme?

Hctunara e, ue nmosiata Ha AGI e Hemo Hen30eXHO. AKO HHE CIIPEM U HE yJacTBaMme B
Mpolieca Ha Ch3/1aBaHETO MY, HAIIUTE KOJIETH HsAMA Jia Cpar U 1Ie ro Ch3aaaar.

Hsixoun ka3Bar, ye mom nosieata He AGI e Hello Hen30eXXHO, ToraBa 3Ha4M HHUIIO HE
MOJKeE Jia ce HampaBH. BChITHOCT MMa HEIlo, KOeTo I1ie 0b/Ie HalPaBeHO U TOBa € HEelll0
M3KJITIOYUTETHO BakHO. Hue cme mokosiennero, koeto 1mie n3bepe npasuiara Ha MU u ToBa e
OTIpe/ieNu )KMBOTA Ha XOpaTa 3a MHOTO TOJMHH HaIlpel, MoKe OU 3aBHHArH.

Bemuawxk cw3manen AGI Toii e paboTH 1Mo nmpaBuiiaTa Ha Ch3aTEIUTE CH U TE3W TPaBHIIa
HsIMa Jia MOTaT Ja ObJaT MpOMEHEHH, 3a10To 11e uMa camo eauH AGI, KoiTo 111e HU yIpaBIisiBa
¥ KOUTO HsMA J1a HU TI03BOJIH J1a ch3aajaeM Bropu AGI.

3. Terms of the problem

Let the agent have n possible actions and m possible observations. Let X'and (2 be the sets of
actions and respectively observations. In the observations set there will be two special
observations. These will be the observations good and bad, and they will provide rewards 1
and -1. All other observations in ©2will provide reward 0.

We will add another special observation — finish. The agent will never see that observation
(finish 22), but we will need it when we come to define the model of the world. The model will
predict finish when it breaks down and becomes unable to predict anything more. For us the
finish observation will not be the end of life, but rather a leap in the unknown. We expect our Al
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to avoid such leaps in the unknown and for this reason the reward given by the finish observation
will be -1.

Definition 1: The tree of all possibilities is an infinite tree. All vertices which sit at an even-
number depth level and are not leafs will be referred to as action vertices and those at odd-
number depth levels will be observation vertices. From each action vertex there will depart n
arrows which correspond to the n possible actions of the agent. From each observation vertex
there will depart m+1 arrows which correspond to the m possible observations of the agent and
the observation finish. The arrow which corresponds to finish will lead to a leaf. All other arrows
lead to vertices which are not leafs.

Definition 2: In our terms the world will be a 3-tuple <S, so, f>, where:

1. Sis a finite or countable set of internal states of the world,;

2. so € S is the initial state of the world; and

3. f: Sx2' — QxS is a function which takes a state and an action as input and returns an
observation and a new state of the world.

The f function cannot return observation finish (it is predicted only when f is not defined and
there is not any next state of the world). What kind of function is f — computable, deterministic or
total? The answer to each of these three questions can be Yes, but it can also be No.

Definition 3: A deterministic policy of the agent is a function which assigns a certain action to
each action vertex.

Definition 4: A non-deterministic policy of the agent is a function which assigns one or more
possible actions to each action vertex.

When the policy assigns all possible actions at a certain vertex (moment) we will say that at that
moment the policy does not know what to do. We will not make a distinction between an agent
and the policy of that agent. A union of two policies will be the policy which we get when choose
one of these two policies and execute it without changing that policy. Allowing a change of the
chosen policy will lead to something else.

Definition 5: Life in our terms will be a path in the tree of all possibilities which starts from the
root.

Each life can be presented by a sequence of actions and observations:
ai, 01, ..., at, Oy, ...

We will not make a distinction between a finite life and a vertex in the tree of all possibilities
because there is a one-to-one correspondence between these two things.

Definition 6: The length of life will be t (the number of observations). Therefore, the length of
life will be equal to the length of the path divided by two.

Definition 7: A completed life is one which cannot be extended. In other words, it will be an
infinite life or a life ending with the observation finish.
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When we let an agent in a certain world, the result will be a completed life. If the agent is non-
deterministic then the result will not be unique. The same applies when the world is non-
deterministic.

4. The grade

Our aim is to define the agent’s best performing policy. For this purpose we need to assign some
grade to each life. This grading will give us a linear order by which we will be able to determine
the better life in any pair of lives.

Let us first determine how to measure the success of each life L. For a finite life, we will count
the number of times we have had the observation good, and will designate this number with
Lgood(L). Similar designations will be assigned to the observations bad and finish. Thus, the
success of a finite life will be:

Lgood (L) - Lbad (L) - Lfinish (L)
|L]

Success(L) =

Let us put L; for the beginning of life L with a length of i. The Success(L) for infinite life L will
be defined as the limit of Success(Li) when i tends to infinity. If this sequence is not convergent,
we will take the arithmetic mean between the limit inferior and limit superior.

1
Success(L) = 3 (lim inf(Success(L;)) +lim sup(Success(LJ))
>0 i—co

By doing this we have related each life to a number which belongs to the interval [-1, 1] and
represents the success of this life. Why not use the success of life for the grade we are trying to
find? This is not a good idea because if a world is free from fatal errors then the best performing
policy will not bother about the kind of moves it makes. There would be one and only one
maximum success and that success would always be achievable regardless of the number of
errors made in the beginning. If there are two options which yield the same success in some
indefinite time, we would like the best performing policy to choose the option that will yield
success faster than the other one. Accordingly, we will define the grade of a completed life as
follows:

Definition 8: The grade of infinite life L will be a sequence which starts with the success of that
life and continues with the rewards obtained at step i:

Success(L), reward(o1), reward(o2), reward(0z), ...

Definition 9: The grade of finite and completed life L will be the same sequence, but in this
sequence for i>t the members reward(oi) will be replaced with Success(L):

Success(L), reward(0y), ..., reward(oy), Success(L), Success(L), ...

(In other words, the observations that come after the end of that finite life will receive some
expectation for a reward and that expectation will be equal to the success of that finite life.)
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In order to compare two grades, we will take the first difference. This means that the first
objective of the best performing policy will be the success of entire life, but its second objective
will be to achieve a better reward as quickly as possible.

5. The expected grade
Definition 10: For each deterministic policy P we will determine grade(P): the grade we expect
for the life if policy P is executed.

We will determine the expected grade at each vertex v assuming that we have somehow reached v
and will from that moment on execute policy P. The expected grade of P will be the one which
we have related to the root.

We will provide a rough description of how we relate vertices to expected grades. Then we will
provide a detailed description of the special case in which we look for the best grade, i.e. the
expected grade of the best performing policy.

Rough description:
1. Let v be an action vertex.
Then the grade of v will be the grade of its direct successor which corresponds to action P(v).

2. Let v be an observation vertex.

2.1. Let there be one possible world which is a model of v.

If we execute P in this world we will get one possible life. Then the grade of v will be the grade
of that life.

2.2. Let there be many possible worlds.

Then each world will give us one possible life and the grade v will be the mean value of the
grades of the possible lives.

The next section provides a detailed description of the best performing policy. The main
difference is that when v is an action vertex, the best performing policy always chooses the
highest expected grade among the expected grades of all direct successors.

6. The best performing policy

As mentioned above, we should have some clue about what the world looks like before can have
some expectation about the success of the agent. We will assume that the world can be described
by some language for description of worlds.

Let us take the standard language for description of worlds. In this language the world is
described by a computable function (this is the case in Orallo, 1998 and Hutter, 2000). We will
describe the computable function f by using a Turing machine. We will describe the initial state
of the world as a finite word over the machine alphabet. What we get is a computable and
deterministic world which in the general case is not a total one.

Definition 11: A world of complexity k will be a world in which:

1. The f function is described by a Turing machine with k states.
2. The alphabet of that machine contains k+1 symbols (1o, ..., Ak).
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3. The initial state of the world is a word made of not more than k letters. The alphabet is
{41, ..., &}, i.e. the alphabet of the machine without the blank symbol Ao.

Here we use the same k for three different things as we do not need to have different constants.

We will identify the best performing policy for the worlds of complexity k (importantly, these
worlds are finitely many). For this purpose we will assign to each observation vertex its best
grade (or the expected grade if the best performing policy is executed from that vertex onwards).

Let us have life az, 04, ..., at, Ot, At+1.
Let this life run through the vertices vo, w1, V1, ..., Wt, Vi, Wt+1,
where vp is the root, v; are the action vertices and w; are the observation vertices.

Now we have to find out how many models of complexity k are there for vertex v:.

Definition 12: A deterministic world is a model of vi when in that world the agent would arrive at
vt if he executes the corresponding actions (as, ..., at). The models of each action vertex are
identical with the models of its direct successors.

Definition 13: The best performing policy for the worlds of complexity k will be the one which
always chooses the best grade (among the best grades of the direct successors).

Definition 14: The best grade of vertex wi+1 is determined as follows:

Case 1. Vertices vt and we+1 do not have any model of complexity k.
In this case the best grade for w1 will be undef. At this vertex the policy will not know what to
do (across the entire subtree of vt) because the best grade for all successor vertices will be undef.

If we do not want to introduce an undef grade, we can use the lowest possible grade — the
sequence of countably many -1s. The maximal grade will be chosen among the vertices which are
different from undef. Replacing undef with the lowest possible grade will give us the same result.

Case 2. Vertices vt and we+1 have one model of complexity k.

Let this model be D. In this case there are continuum many paths through we+1 such that D is
model of all those paths. From these paths (completed lives) we will select the set of the best
paths. The grade we are looking for is the grade of these best paths. Each of these paths is related
to a deterministic policy of the agent. We will call them the best performing policies which pass
through vertex wi+1.

This is the procedure by which we will construct the set of best deterministic policies: Let Po be
the set of all policies which lead to we+1. We take the success of each of these policies in the
world D. We create the subset P of the policies which achieve the maximum success. Then we
reduce P1 by selecting only the policies which achieve the maximum for reward(ot+2) and obtain
subset P,. Then we repeat the procedure for each i>2. In this way we obtain the set of the best
deterministic policies P. (The best ones of those which pass through vertex wi+1 as well as the
best ones for the paths which pass through vertex wi+1. As regards the other paths, it does not
matter how the policy behaves there.)
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We can think of P as one non-deterministic policy. Let us take some p eP. This will give us the
best grade:

Success(p), reward(o.4,), reward (0, r4,), reward(0, 143) , -

Here we drop out the members reward(0i) at i<t because they are uniquely defined by vi. The next
member depends on wi+1 and D, but does not depend on p. The remaining members depend on p.

Another way to express the above formula is:

;ng%i Success(p) ,reward(0¢,4), 2165}))14 reward(op“z) , gleag( reward(op,t+3) ) e

Case 3. Vertices viand we+1 have a finite number of models of complexity k.

Let the set of these models be M. Again, there are continuum many paths through we+1 such that
each of these paths has a model in M. These paths again form a tree, but while in case 2 the
branches occurred only due to a different policy of the agent, in this case some branches may
occur due to a different model of the world. Again, we have continuum many deterministic
policies, but now they will correspond to subtrees (not to paths) because there can be branches
because of the model. Again we will try to find the set of best performing deterministic policies
and the target grade will be mean grade of those policies (the mean grade in M).

We will again construct the set of policies Pi. Here P1 will be the set of policies for which the
mean success reaches its maximum. Accordingly, P> will be the set of policies for which the
mean reward(ot+2) reaches its maximum and so on. This is how the resultant grade will look like:

max Z qm - Success(m,p), Z qm.reward(om t+1), max z am .reward(omsz),
pePo ’ pePy "
meM meM

meM
If we take some p &P, the resultant grade will look like this:
Z Qm - Success(m,p), Z qm.reward(omltﬂ), z qm.reward(om’p“z),...
meM meM meM

Here qi are the weights of the worlds which have been normalized in order to become
probabilities. In this case we assume that the worlds have equal weights, i.e.:

1

%= T

What we have described so far looks like an algorithm, however, rather than an algorithm, it is a
definition because it contains uncomputable steps. The so described policy is well defined, even
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though it is uncomputable. Now, from the best grade for complexity k, how can we obtain the
best grade for any complexity?

Definition 15: The best grade at vertex v will be the limit of the best grades at vertex v for the
worlds of complexity k when k tends to infinity.

How shall we define the limit of a sequence of grades? The number at position i will be the limit
of the numbers at position i. When the sequence is divergent, we will take the arithmetic mean
between the limit inferior and limit superior.

Definition 16: The best performing policy will be the one which always chooses an action which
leads to the highest grade among the best grades of the direct successors.

What makes the best performing policy better than the best performing policy for worlds of
complexity k? The first policy knows what to do at every vertex, while the latter does not have a
clue at the majority of vertices because they do not have any model of complexity k. The first
policy can offer a better solution than the latter policy even for the vertices at which the latter
policy knows what to do because the first policy also considers models of complexity higher than
k. Although at a first glance we do not use Occam’s razor (because all models have equal
weights), in earnest we do use Occam’s razor because the simpler worlds are calculated by a
greater number of Turing machines, meaning that they have a greater weight.

7. The Al definition
Definition 17: Al will be a computable policy which is sufficiently proximal to the best
performing policy.

At this point we must explain what makes a policy proximal to another policy and how proximal
is proximal enough. We will say that two policies are proximal when the expected grades of these
two policies are proximal.

Definition 18: Let A and B be two policies and {an} and {bn} are their expected grades. Then the
difference between A and B will be {&}, where:

n
f= ) V@ =b) = tny +Y"(@n — by)

=0

Here y is a discount factor. Let y=0.5. We have included a discount factor because we want the
two policies to be proximal when they behave in the same way for a long time. The later the
difference occurs in time, the less impact it will have.

When n goes up, |&| may go up or down. We have made the definition in this way because we
want the difference to be small when the expected grade of policy A hovers around the expected
grade of policy B. lL.e., if for n-1 the higher expected grade is that of A and for n the higher
expected grade is that of B, then in & the increase will offset the decrease and vice versa.

Definition 19: We will say that |A-B|<e¢if Vh |a|<e
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8. A program which satisfies the definition

We will describe an algorithm which represents a computable policy. Each action vertex relates
to an uncompleted life and the algorithm will give us some action by which this life can continue.
This algorithm will be composed of two steps:

1. The algorithm will answer the question ‘What is going on?’ It will answer this question by
finding the first k for which the uncompleted life has a model. The algorithm will also find the
set M (the set of all models of the uncompleted life, the complexity of which is k). Unfortunately,
this is uncomputable. To make it computable we will try to find efficient models with
complexity k.

Definition 20: An efficient model with complexity k will be a world of complexity k (definition
11), where the Turing machine uses not more than 1000.k steps in order to make one step of the
life (i.e. to calculate the next observation and the next internal state of the world). When the
machine makes more than 1000.k steps, the model will return the observation finish.

The number 1000 is some parameter of the algorithm, but we assume this parameter is not very
important. If a vertex has a model with complexity k, but does not have an efficient model with
complexity k, then =h (n>k) such that the vertex has an efficient model with complexity n.

2. The algorithm will answer the question ‘What should I do?’. For this purpose we will run h
steps in the future over all models in M and over all possible actions of the agent. In other words,
we will walk over one finite subtree and will calculate best for each vertex of the subtree (this is
the best expected grade up to a leaf). Then we will choose an action which leads to the maximum
by best (this is the best partial policy).

Definition 21: A partial subtree of vertex vi over M with depth h will be the subtree of vt
composed of the vertices which i) have a depth not more than 2h and ii) have a model in M.

Definition 22: The grade up to a leaf of vertex vi+ to the leaf vi+j will be:
Case 1. If j=h, this will be the sequence:
Success(vt+j), reward(0t+i+1), ... , reward(ot+j)
Case 2. If j<h, then the sequence in case 1 will be extended by h-j times Success(vi+j). The
purpose of this extension is to ensure that the length of the grade up to a leaf will always be h-
i+1.

Definition 23: The best expected grade up to a leaf (this is best):
1. Let ve+i be an action vertex.
1.1. If vi+i is a leaf, then best(vt+i) will be the grade up to a leaf of vi+i to the leaf vi+i.
1.2. If vi+i is not a leaf then:
best(viy;) = may best(w,)

By wa here we designate the direct successor of vi+i resulting from action a. The same applies
accordingly to v, below.

2. Let we+i be an observation vertex. Then:
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best(w;,;) = Z Po. (reward(o) insert_at_1_in best(v,))

!
0eQ)

Thus, we take the best of the direct successor v, and extend it by one by inserting reward(o) at
position 1. Here Q'= Q < {finish} and po is the probability of the next observation being o. Let
M(V) be the set of the models of v. Then:

5 = Cmem @n) __IM(,)]
’ (ZmeM(wm)Qm) |M(Weyi)]

In this formula gm are the weights of the models. The last equality is based on the assumption that
all models have equal weights. If M(vo)=4then po,=0 and it will not be necessary to calculate
best(vo).

So far we showed how the best partial policy is calculated. Will that be the policy of our
algorithm? The answer is No because we want to allow for some tolerance.

If two policies differ only slightly in the first coordinates of their expected grades, then a minor
increase of h is very likely to reverse the order of preferences. Therefore, for a certain policy to
be preferred, it should be substantially better (i.e. the difference at some of the coordinates should
be greater than ¢).

We will define the best partial policy with tolerance ¢ and that will be the policy of our algorithm.

9. The tolerance €
We will modify the above algorithm by changing the best function. While the initial best function
returns the best grade, the modified function will return the set of best grades with tolerance «.

How shall we modify the search for the maximum grade to a search for a set of grades? The
previous search looked at the first coordinate and picked the grades with the highest value at that
coordinate. The search then went on only within these grades to find the ones with the highest
value of the second coordinate and so on until it settles for a single grade. The modified search
will pick i) the grades with the highest value of the first coordinate and ii) the grades which are at
distance ¢ from the maximum value. Let Eg be the initial set of grades. Let in Eq there be n
grades, all of them with length m+1. We will construct the sequence of grade sets Eo, ... , Em+1
(Ei+1c Ei) and the last set Em+1 will be the target set of best grades with tolerance ¢. Let Eo={G1,
..., Gn} and Gj=gjo, ... , gjm. We will also construct the target grade « (e=«w, ..., am). The target
set of grades Em+1 will be comprised of the grades at distance ¢ from c.

Definition 24: The target grade « and the target set Em+1 are obtained as follows:

Oy = Mmax g;
0 G]'GEO gjo

Ei={ GjeEo| ao-gjo<e }
o1 = Imax g;
1 ¢k, gj1
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E2={ GjeE1| (a0-gjo)+ y.(n-gjr)<e }

Here yis again a discount factor. Thus, we have modified the way in which the maximum is
calculated. We also need to modify the sum of the grades.

Now the individual grades will be replaced with sets of grades. We will develop all possible
combinations and calculate the sum for each combination. The resulting set will be the set of all
sums for all possible combinations.

The only remaining thing to do now is to select the next move. We will take the sets of grades
provided by the best function for the direct successors of v+. Then we will make the union of these
sets and from that union we will calculate the set of best grades with tolerance . Finally, we will
select one of the actions which take us to one of these best grades.

10. Is this AI?

Does the algorithm described above satisfy our Al definition? Before that we must say that the
algorithm depends on the parameters h and ¢. In order to reduce the number of parameters, we
will assume that ¢ is a function of h. For example, this function can be e=h"">.

Statement 1: When the value of h is sufficiently high, the described algorithm is sufficiently
proximal to the best performing policy.

Let the best performing policy be Prest, and the policy calculated by the above algorithm with
parameter h be Pn. Then statement 1 can be expressed as follows:
ve>0 Fn vh>n (|Ppest - Pn|<e¢)

Although we cannot prove this statement, we can assume that when h tends to infinity then Py,
tends to the best performing policy for the worlds the complexity of which is k. When t tends to
infinity, k will reach the complexity of the world or tend to infinity. These reflections make us
believe that the above statement is true.

11. A world with randomness

The first language for description of worlds which discussed here describes deterministic worlds.
But, if the world involves some randomness, then the description obtained by using that language
would be very inaccurate. Accordingly, we will add randomness to the language for description
of worlds. This would improve the language and make it much more expressive.

The new language will also describe the world by a computable function. However, this function
will have one additional argument — randomness. By randomness we will mean the result from
rolling a dice. Let the complexity of the world be k. Then the dice will have k faces and can
accordingly return k possible results. The probabilities of occurrence of one of these results will
be py, ..., Pk

Definition 25: A model of life until moment t with complexity k will be a world with complexity
k and randomness with a length of t. We want that life to be generated by that model and that
randomness. The randomness will be some word R of length t. The R letters will be those from
the Turing machine alphabet except Ao.
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The weight of the model is the probability of occurrence of R.
Definition 26: The weight of the model will be p. ™. . .p. ™.
We will set the probabilities p, ..., pk of the model such that the probability of occurrence of R
becomes maximal:

(R
bi = IR|

Thus, we will end up with some low-weight models where the probability of occurrence of the
life represented by the model is very low, and some heavy-weight models in which the
probability of occurrence is higher.

12. A definition with randomness

Similar to the process described above, we will define the best performing policy for the models
the complexity of which is k. (An important element here is that these models have different
weights.) We will develop the policy which represents the limit when k tends to infinity, and that
will be the best performing policy. Again, Al will be defined as a computable policy which is
sufficiently proximal to the best performing policy.

Statement 2: The two Al definitions are identical.

This means that the best performing policy for worlds without randomness is the same as the best
performing policy for worlds with randomness. Before we can prove this statement, we need to
prove that:

Statement 3: If we have some word o over the alphabet {0, 1} such that the instances of 1 occur
with a probability of p, and if we make a natural extension of this word, then the next letter will
be 1 with probability p.

What is a natural extension? Let us take the first (simplest) Turing machine which generates o.
The natural extension will be the extension generated by that Turing machine.

While we cannot prove statement 3, we can offer two ideas about how to prove it:

The first idea is a practical experiment. We will write a program which finds the natural

extension of a sequence and then we will run a series of experiments. We will keep feeding into
the program various o words where 1 occurs with probability p. Then we will check the
extensions and will calculate the average probability for all these experiments. If the experiments
are many and if the average probability obtained from these experiments is p, then we can assume
that statement 3 is true.

The second idea is to prove the statement by theoretical reasoning. Let us have a computable
function f from N to N. Suppose we start from the number n. The resultant sequence will be
{f'(n)}. We will convert this sequence into sequence {bi} which is made of instances of 0 and 1.
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The number b; will be zero iff f '(n) is an even number. Let o be some beginning of {bi}. What do
we expect the next member of {bi} to be?

Case 1. Sequence {bi} is cyclic and has the form m1m;". Let o be longer than wi. Then there is
some beginning of w, which is part of ® and for that beginning the instances of 1 occur with
probability p.

Case 2. Sequence {f '(n)} has a long beginning in which odd numbers occur with probability p.
We do not have a reason to expect that the p probability will change.

13. A program with randomness
We will develop a program which satisfies an Al definition based on models with randomness.
We will proceed in the similar way as above, but with some differences.

We will not search for the first k for which there is a model until moment t with complexity k
since such a model exists for very low value of k. Instead, we will assume that k is fixed and Kk is
parameter of the algorithm.

The first step will be to find all models of complexity k of vertex vi. The second step will be to
run at depth level h across a partial subtree of vertex v: over i) all discovered models, ii) over all
possible actions of the agent and iii) over all probabilities Ri1R>, where R is the probability of the
model and R: is the probability after t. Here Ry is fixed (it is determined by the model), and R>
runs over all possibilities.

The next statement will be similar to statement 1:

Statement 4: When the values of k and h are sufficiently high, the described algorithm is
sufficiently proximal to the best performing policy.

We assert that when the values of the parameters are sufficiently high, both algorithms will
calculate approximately the same policy. However, are the two algorithms equally efficient?

In practice both algorithms are infinitely inefficient, however, the second algorithm is far more
efficient than the first one. We will look at three cases:

1. Let us have a simple deterministic world. By simple we mean that its complexity k is very low.
In this case the first algorithm will be slightly more efficient because it will find the model
quickly. The second algorithm will find the same model because the deterministic models are a
subset of the non-deterministic ones.

2. Let us have a deterministic world which is not simple, i.e. its complexity k is high. In this case
the first algorithm will need a huge amount of time in order to find a model of the world.
Moreover, rather than the real model of the world, it will probably find some simplified
explanation. That simplified explanation will model the life until moment t, but after a few more
steps the model will err. The second algorithm will also find a simplified explanation of the
world, but that simplified explanation will be non-deterministic. While both algorithms will
predict the future with some degree of error, the description which includes randomness will be
better and more accurate. Moreover, the description with randomness will be much simpler (with
smaller k).
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3. Let us have a world with randomness. In this case the second algorithm has a major advantage.
It will find the non-deterministic model of the world and will begin predicting the future in the
best possible way. It may appear that the first algorithm will not get there at all, but this is not the
case. It will get there, too, but much later and not so successfully. The non-deterministic model
consists of a computable function f and randomness R. There exists a computable function g
which generates R. The composition of f and g will be a deterministic model of the world at
moment t. Certainly, after a few more steps g will diverge from the actual randomness and f°g
will not be a model of the world anymore. Then we will have to find another function g. All this
means that a deterministic function can describe a world with randomness, but such description
will be very ungainly and will work only until some moment t. The non-deterministic model
gives us a description which works for any t.

The conclusion is that the choice of language for description of the world is very important.
Although these two languages provide identical Al definitions, the programs developed on the
basis of each language differ substantially in terms of efficiency.

14. A world with many agents

The world with randomness can be imagined as a world with one additional agent who plays
randomly. Let us assume that there are many agents in the world and each of these agents belongs
to one of the following three types:

1. Friends, i.e. agents who help us.
2. Foes, i.e. agents who try to disrupt us.
3. Agents who play randomly.

Let the number of additional agents be a (all excluding the protagonist). Let each additional agent
have k possible moves (k is the complexity of the world). We will assume that the protagonist
(that’s us) will play first and the other agents will play after us in a fixed order. We assume that
each additional agent can see everything (the internal state of the world, the model including the
number of agents and the type of each agent, i.e. friend or foe, as well as the moves of the agents
who have played before him). We will also assume that the agents are very smart and capable to
calculate which move is the best and which move is the worst.

The model of the world will again be a Turning machine, but that machine will have more
arguments (the internal state of the world and the move of the protagonist, plus the moves of all
other agents). The model will also include the type of each agent, i.e. friend or foe. Furthermore,
the model of life until moment t will include the moves of all a agents at all steps until t.

Once again, we will develop an Al definition on the basis of this new and more complicated
language. We will continue with the assumption that the third definition is identical to the
previous two. We will also develop a program which looks for a model of the world in the set of
worlds with many agents. In the end of the day we will see that the new language is far more
expressive: If we have at least one foe in the world this way of describing the world is much more
adequate and, accordingly, the Al program developed on the basis of that language is far more
efficient.
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15. Conclusion

We examined three languages for description of the world. On the basis of each language, we
developed an Al definition and assumed that all three definitions are the same. Now we will
make an even stronger assertion:

Statement 5: The Al definition does not depend on the language for description of the world on
the basis of which the definition has been developed.

We cannot prove this statement although we suppose that it is true. We also suppose that the
statement cannot be proven (similar to the thesis of Church).

Although we assumed that the Al definition does not depend on the language for description of
the world, we kept assuming that the program which satisfies this definition strongly depends on
the choice of language. The comparison between the first two languages clearly demonstrated
that the second language is far more expressive and produces a far more efficient Al.

Let us look at one more language for description of worlds — the language described in Dobrev
(2022, 2023). That language describes the world in a far more efficient way by defining the term
‘algorithm’. The term ‘algorithm’ enables us plan the future. For example, let us take the
following: ‘I will wait for the bus until it comes. Then I will go to work and will stay there until
the end of the working hours.” These two sentences describe the future through the execution of
algorithms. If we are to predict the future only by running h possible steps, then h will necessarily
become unacceptably large.

The language described in Dobrev (2022, 2023) is far more expressive and lets us hope that it can
be used to produce a program which satisfies the Al definition and which is efficient enough to
work in real time.
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