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Abstract. In this paper we investigate some properties of perfect numbers

and associated sequences using the notion of the disc induced by the sum-of-
the-divisor function σ. We reveal an important relationship between perfect

numbers and abundant numbers.

1. Introduction

Let σ : N −→ N denotes the sum-of-divisor function, defined as

σ(N) :=
∑
n|N

n

for a fixed N ∈ N. We say N is a perfect number if and only if σ(N) = 2N . If
N is even then N is called an even perfect number. On the other hand, if N is
perfect and is odd then we say it is an odd perfect number. It is still unknown if
there exist any odd perfect numbers and the problem for asserting their existence
or non-existence still remains an active area of research. Much work has already
been done in this area and most subtle and basic properties about odd perfect - if
they exist - are now known. The eighteenth century mathematician Leonard Euler
was the first to show that if any odd perfect number N exists then it must be of
the form

N := qβ
n∏
i=1

pαi
i

where q, β ≡ 1 (mod 4) and αi ≡ 0 (mod 2) for each 1 ≤ i ≤ n. He also showed
that all even perfect numbers must be of the form 2p−1(2p− 1) provided 2p− 1 is a
prime number for a p ∈ P. It is also know that, if an odd perfect number N exists
then it must satisfy the inequality N > 101500 [1]. It is also known that (see [2]) an
odd perfect number must not be divisible by 105 and must satisfy the congruence
conditions (see [3])

N ≡ 1 (mod 12) and N ≡ 117 (mod 468) N ≡ 81 (mod 324).

If there are k of the exponents αi in the prime factorization of N with αi ≡ 0
(mod 2), then it is known that the smallest prime factor of N is at most k−1

2 [4].
In this case, it has been shown that (see [5])

N < 24
k+1−2k+1
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and with q
∏k
i=1 pi < 2N

17
26 [6]. The scale of the largest and the second largest

prime factor of an odd perfect number - if they exist - has also been studied quite
extensively in a series of papers by several authors. It is now known that the largest
prime factor of N is greater than 1018 (see [7]) and less than (3N)

1
3 [8]. It has also

been shown that the second largest prime factor of an odd perfect number N must
be greater than 104 and less than (2N)

1
5 [9]. The third largest prime factor is now

known to be greater than 100. All of these result could conceivably be synthesized
in a nice way to study the main question of the existence or non-existence of an
odd perfect number.
We say a number N is deficient if σ(N) < 2N and, respectively, abundant if
σ(N) > 2N . In this paper, by using the notion of the disc induced by arithmetic
functions, we expose a subtle connection between perfect numbers and abundant
numbers.

2. The notion of the disc induced by arithmetic functions and
applications

In this section we introduce and study the notion of the disc induced by arith-
metic functions. We find this notion suitable for studying the distribution of perfect
numbers and associated sequences.

Definition 2.1. Let f : N −→ N and let a, r ∈ N be fixed. Then by the disc
induced by f with center a and radius r, denoted Df (a, r), we mean

Df (a, r) := |f(m)− a| ≤ r

for m ∈ N. We say s ∈ Df (a, r) if and only if |f(s) − a| ≤ r. We say the disc
induced is degenerative if there exists some t ∈ Df (a, 0) and we call Df (a, 0) the
degenerated disc. Otherwise we say the disc induced is non-degenerative. We say
the disc induced is uniformly degenerative if it is degenerative for all a ∈ N.

Proposition 2.2. The following properties hold

(i) Let g : N −→ N be multiplicative and s = uv with (u, v) = 1 with u, v > 1.
If s ∈ Dg(a, r) for a fixed r, a ∈ N and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then u ∈ Dg(a, r − ε) and v ∈ Dg(a, r − δ) for some ε, δ > 0.

(ii) Let g : N −→ N be additive and s = uv with (u, v) = 1 with u, v > 1. If
s ∈ Dg(a, r) for a fixed r, a ∈ N and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then u ∈ Dg(a, r − ε) and v ∈ Dg(a, r − δ) for some ε, δ > 0.

Proof. We only prove property (i) since the same approach could be adapted for
property (ii). Let s ∈ Dg(a, r) and write s = uv such that (u, v) = 1 with u, v > 1.
Then since g is multiplicative and

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2
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we can write

|g(u)− a| < |g(s)− a| = |g(u)g(v)− a| ≤ r
so that there exists some ε > 0 such that |g(s) − a| = |g(u) − a| + ε ≤ r and it
follows that u ∈ Dg(a, r − ε). It follows similarly that there exists some δ > 0 such
that v ∈ Dg(a, r − δ). �

Remark 2.3. Now we verify an important but yet trivial preparatory observation
for asserting the truth of our main result. It conveys the principal notion that no
degenerated disc induced by an arithmetic function will ever contain a composite.

Proposition 2.4. Let g : N −→ N be multiplicative (resp. additive). If s = uv
with (u, v) = 1 and u, v ≥ 3 such that at least one of the following holds

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2

then s 6∈ Dg(a, 0).

Proof. Let s = uv such that (u, v) = 1 with u, v ≥ 3 and assume to the contrary
that s ∈ Dg(a, 0). Since g is multiplicative, let us assume at least one of the
following holds

a <
g(u) + g(s)

2
a <

g(v) + g(s)

2
.

Then it follows from Proposition 2.2 that at least one of the following holds

u ∈ Dg(a,−ε) v ∈ Dg(a,−δ)
for some ε, δ > 0. This is impossible since the radius of each of the degenerated
disc is negative, thereby ending the proof. �

Theorem 2.5. If N is a perfect number, then for any ε > 0 there exists l =
Nd (d ≥ 1) with (N, d) = 1 such that

l ∈ Dσ(2l, ε).

Otherwise σ(l) > 2l

Proof. Suppose N is a perfect number and let l = Nd for d ≥ 2 with (N, d) = 1.
Assume to the contrary that

l /∈ Dσ(2l, ε) and σ(l)− 2l < 0

since l /∈ Dσ(2l, ε) =⇒ σ(l) 6= 2l and choose ε > 0 such that

0 < l − σ(l)

2
≤ ε < 2l − σ(l) (2.1)

It follows from (2.1) the inequality

σ(l)

2
< l − ε

2
≤ l

2
+
σ(l)

4
. (2.2)

Since N is a perfect number and l = Nd with (N, d) = 1 and σ is a multiplicative
function, it follows that

σ(N)σ(d)

4
<
Nd

2
=⇒ σ(d) < d

which is impossible for all d ≥ 1. �
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Theorem 2.5 tells us something subtle about the distribution of perfect numbers
and abundant numbers. It tells us that most abundant numbers can be constructed
from knowing a perfect numbers. In other words, it may be possible to construct
an abundant numbers by using perfect numbers as a building block. In the worst
case scenario, we may also use the constructive regime to produce other perfect
numbers of large magnitude.

Corollary 2.6. If N is a perfect number, then there exists an l ∈ N with l = Nd
and (N, d) = 1 such that σ(l) ≥ 2l.

Proof. This is an easy consequence of Theorem 2.5. �
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