Proof of the Goldbach Conjecture

By Mr Bachid Annouaoui

Statement of the Conjecture: << Every even natural integer is the sum of two prime integers>>.

Démonstration:

Let n be an even integer.
Let $P n$ denote the set of all prime factors less than n defined as follows:
$P n=\left\{1\left(p_{1}\right) ; 2\left(p_{2}\right) ; \ldots ; p m\right\}$ these p_{i} are listed in ascending order:
$p_{1}<p_{2}<$ \qquad $<p_{m-1}<p_{m}$.

So p_{m} is the largest prime factor less than n, in other words there is no more prime factor between p_{m} and n.

We therefore have $\forall p_{i} \in P n, p_{i} \leq p_{m}<n$ and $n-p_{i}<n$.
The contrapositive of the Goldbach conjecture is as follows:
<< There exists an even natural number which is not equal to any sum of two prime numbers >>: Supposition $1 \rightarrow$ S1 .

We are therefore going to study this contrapositive for this n.

The meaning of this contrapositive with what was previously defined is:
$\left\langle\forall p_{i} \in P n, n-p_{i} \notin P n \gg\right.$.
We have $p_{1}<p_{2}<\ldots \ldots . . .<p_{m-1}<p_{m}$ therefore
$n-p_{m}<n-p_{m-1}<\ldots \ldots . . .<n-p_{2}<n-p_{1}$.
Suppose then that $\forall p_{i} \in P n, p_{1}<n-p_{i}<p_{m}$: supposition $2 \rightarrow S 2$.
So for $p_{i}=p_{m}$ we get $p_{1}<n-p_{m}<p_{m}$,
$p_{1}<n-p_{m} \Rightarrow p_{m}<n-p_{1}$ Contradiction with $n-p_{i}<p_{m}$
This assumption S 2 is therefore false (S 2 therefore closed).

And then $\exists p_{j / n} \in P n$ such that $n-p_{j / n} \leq p_{1}$ or $n-p_{j / n} \geq p_{m}$,
And since $n-p_{j / n} \notin P n$ then $n-p_{j / n} \neq p_{1}=1$.
We therefore only have the case where $n-p_{j / n} \geq p_{m}$ more exactly $n-p_{j / n}>p_{m}$ because $n-p_{j / n}$ is not prime(S1) and p_{m} is prime.
$n-p_{j / n}>p_{m} \Rightarrow n-p_{m}>p_{j / n}$ and therefore
$n-p_{m}>p_{j / n}>p_{(j / n)-1}>p_{(j / n)-2}>\ldots \ldots \ldots>p_{2}>p_{1}$.

We will continue this analysis with the largest prime factor pj / n which allows the inequality $n-p_{j / n}>p_{m}$.

We will then have $n-p_{j / n}>p_{m}$ and $n-p_{(j / n)+1}<p_{m}$
With $p_{(j / n)+1}$ the prime factor following the prime factor $p_{j / n}$.
(we can write $\mathrm{p}_{(\mathrm{j} / \mathrm{n})+1}$ or $\mathrm{p}_{(\mathrm{j}+1) / n} ; \mathrm{p}_{(\mathrm{j} / \mathrm{n})+i}$ or $\mathrm{p}_{(\mathrm{j}+\mathrm{i}) / n}$).
As $p_{j / n}>p_{(j / n)-1}>p_{(j / n)-2}>\ldots \ldots . . .>p_{2}>p_{1}$ and
$p_{(j / n)+1}<p_{(j / n)+2}<\ldots \ldots<p_{m-1}<p_{m}$ we then obtain:
$\rightarrow \forall p_{k} \leq p_{j / n}, n-p_{k}>p_{m}$ because $n-p_{k} \geq n-p_{j / n}>p_{m}$ (which indicates the non-primality of $n-p_{k}$ for $p_{k} \leq p_{j / n}$ because there is no prime factor between p_{m} and n) And
$\rightarrow \forall p_{k} \geq p_{(j+1) / n}, n-p_{k}<p_{m}$ or $p_{1}<n-p_{k}<p_{m}$ because $n-p_{k}<n-p_{(j / n)+1}<p_{m}$ We will therefore first show the existence of $\mathrm{p}_{\mathrm{j} / \mathrm{n}}$:
$\mathrm{p}_{\mathrm{j} / \mathrm{n}}$ was defined as follows:
$\exists p_{j / n} \in P n$ such that $n-p_{j / n}>p_{m}$ and $n-p_{(j / n)+1}<p_{m}$ with $p_{(j / n)+1}$ the prime factor following the prime factor $p_{j / n}$.

Then suppose the opposite: $\forall p_{j} \in P n, n-p_{j}>p_{m}:$ Assumption $3 \rightarrow S 3$
So for $p_{j}=p_{m}$ we then obtain $n-p_{m}>p_{m} \Rightarrow n>2 p_{m}$
As $n>p_{m}$ then $p_{m}<2 p_{m}<n$.
However, according to Chebychev's theorem, there is always a prime number between q and $2 q$ (with q natural integer >1) and since there is
no prime factor between p_{m} and n then there is no also a prime factor between p_{m} and $2 p_{m}$ which contradicts the theorem of Tchebychev, we then deduce that $\exists p_{j / n} \in \operatorname{Pn}$ such that $n-p_{j / n}>p_{m}$ the assumption $S 3$ is therefore closed.

And at the same time we have just proved that $n-p_{m}<p_{m}$.
On the other hand,
\rightarrow If $n-p_{m-1}<p_{m}$ then $n-p_{m-1}<n-p_{j / n}$ because $n-p_{m-1}<p_{m}<n-p_{j / n} \Rightarrow p_{j / n}$ $<p_{m-1}$ and therefore $p_{j / n}$ is included between p_{1} and p_{m-1} and then $p_{(j / n)+1}$ is between p_{2} and p_{m}.
\rightarrow If $n-p_{m-1}>p_{m}$ then we have $n-p_{m}<p_{m}$ and $n-p_{m-1}>p_{m}$ so $p_{j / n}=p_{m-1}$ and $\mathrm{P}_{(\mathrm{j} / \mathrm{n})+1}=\mathrm{p}_{\mathrm{m}}$.

We have therefore just demonstrated the existence of $p_{j / n}$ and $p_{(j / n)+1}$.
We therefore have $\forall p_{i} \in P n$ such that $p_{i} \geq p_{(j / n)+1}$
$n-p_{j / n}>p_{m}>p_{i} \Rightarrow n-p_{j / n}>p_{i} \Rightarrow n-p_{i}>p_{j / n}$
and more particularly $\forall p_{i} \geq p_{(j / n)+1}, p_{j / n}<n-p_{i}<p_{m}$.
Let us then study the distribution of these $n-p_{i}$ between $p_{j / n}$ and p_{m} :
Let p_{i} be between $p_{j / n}$ and $p_{m,} \xi!p_{i 1}>p_{j / n}$ and $\exists!p_{i 2}>p_{j / n}$ such that $p_{i 1}$ and $p_{i 2}$ are successive prime factors with $p_{i 1}<n-p_{i}<p_{i 2}$, strictly because $n-p_{i}$ is not prime and $p_{i 1}$ and $p_{i 2}$ are prime (with $p_{1}<n-p_{i}<p_{m}$). We have $p_{i 1}<n-p_{i}<p_{i 2} \Rightarrow p_{i}<n-p_{i 1}$ and $p_{i}>n-p_{i 2} \Rightarrow n-p_{i 2}<p_{i}<n-p_{i 1}$

More over for the $n-p_{k}, n-p_{i 2}$ and $n-p_{i 1}$ are also successive because
$\mathrm{p}_{\mathrm{i} 1}<\mathrm{p}_{\mathrm{i} 2}<\mathrm{p}_{\mathrm{i} 3}<$ \qquad $<n-\mathrm{p}_{\mathrm{i} 3}<\mathrm{n}-\mathrm{p}_{\mathrm{i} 2}<\mathrm{n}-\mathrm{p}_{\mathrm{i} 1}<\ldots$.
this shows two different n - pk cannot belong to the same interval composed by two successive prime factors since there is a prime factor between the two $n-p_{k}\left(n-p_{i 2}<p_{i}<n-p_{i 1}\right)$

Let us then schematize this distribution on the following graduated line:

In effect,
$n-p_{j / n}>p_{m} \Rightarrow n-p_{m}>p_{j / n}$
and $n-p_{(j+1) / n}<p_{m} \Rightarrow n-p_{m}<p_{(j+1) / n}$ whence $p_{j / n}<n-p_{m}<p_{(j+1) / n}$
the number of p_{k} between p_{m} and $p_{(j+1) / n}$ is equal to $m-(j+1)+1=m-j$.
And the number of $n-p_{k}$ (with p_{k} between $p_{(j+1) / n}$ and p_{m-1} because p_{m} is already used between $p_{j / n}$ and $p_{(j+1) / n}$) is equal to ($m-1$) $-(j+1)+1=m-j-1$ which corresponds exactly to the number of intervals between $\mathrm{p}_{(\mathrm{j}+1) / n}$
and p_{m}, and since we have $n-p_{m-1}<n-p_{m-2}<\ldots . . .<n-p_{(j+1) / n}$ then we have exactly the following distribution:
$P_{(j+1) / n}<n-p_{m-1}<P_{(j+2) / n} ; p_{(j+2) / n}<n-p_{m-2}<n-p_{(j+3) / n}$ And $p_{m-1}<n-p_{(j+1) / n}$ $<p_{m}$.

Because we had demonstrated that between two successive prime factors $\left(\geq p_{(j+1) / n}\right)$ there is a unique $n-p_{k}\left(p_{k} \geq p_{(j+1) / n}\right)$

Similarly $n-p_{j / n}>p_{m} \Rightarrow p_{m}<n-p_{j / n}<n$,
So all the $n-p_{k}\left(p_{k} \leq p_{j / n}: n-p_{j / n}<n-p_{k}\right)$ are beyond p_{m}, which confirms the distribution of the $n-p_{i}$ on the graduated ruler drawn above.

So let's recap all of the above:
$\rightarrow \forall p_{i}$ between $p_{(j+1) / n}$ and p_{m} we have $p_{j / n}<n-p_{i}<p_{m}$
\rightarrow Between two successive prime factors greater than $p_{j / n}$, there is a unique $n-p_{k}$ with $p_{j / n} \leq p_{k} \leq p_{m}$.

On the other hand,

We have $\forall \mathrm{p}_{\mathrm{k}}$ (between $\mathrm{p}_{\mathrm{j} / \mathrm{n}}$ and $\mathrm{p}_{\mathrm{m}-1}$) and $\forall \mathrm{p}_{\mathrm{k}+1}$ (between $\mathrm{p}_{(\mathrm{j}+1) / n}$ and p_{m}), successive prime factors, p_{k} and p_{k+1} cannot be twin primes $\left(p_{k+1}-p_{k}=\right.$ 2) because if it was then the only integer that exists between p_{k} and p_{k+1} is $p_{k}+1$ and since $p k<n-p_{i}<p_{k+1}$ then $n-p_{i}=p_{k}+1$

Which is impossible because $n-p_{i}$ is odd and $p_{k}+1$ is even

From where $\forall p_{k} \geq p_{j / n}, p_{k}$ and p_{k+1} cannot be twin primes.
So the only twin primes are those between p_{1} and $p_{j / n}$.

Let's recap:
$\rightarrow n \in E p$ (set of even integers), $\forall p_{i} \in P n, n-p_{i} \notin P n$.
\rightarrow Between each p_{k} and p_{k+1} (with k between j / n and $m-1$) there is a unique $n-p_{i}$ (with i between $(j+1) / n$ and m).

Schematized on the following graduated line:

\rightarrow There are no twin primes between $p_{j / n}$ and p_{m}.
\rightarrow The only twin primes exist between p_{1} and $p_{j / n}$.

We will study later the even numbers between p_{m} and n,
The first integer (increasing direction) in this case is $\mathrm{p}_{\mathrm{m}}+1$, but it is equal to the sum of two prime numbers, likewise for $p_{m}+3 ; p_{m}+5 ; p_{m}+7$. We will then reason on the numbers of the form $p_{m}+2 k+1$ which are the even numbers between strictly p_{m} and n , with $2 \mathrm{k}+1$ not prime because the numbers of the form $p_{m}+2 k+1$ with $2 k+1$ prime meet the criterion: sum of two prime numbers ($\exists \mathrm{k} 1 \in \mathbb{N}$ such that $n=p_{m}+2 k 1+$ 1).

The numbers of the form $p_{m}+2 k$ are odd which does not interest us in our case.

The first number such that $p_{m}+2 k+1$ even and $2 k+1$ not prime is the number $\mathrm{p}_{\mathrm{m}}+9$ which we will note n 1 .

Note that $P_{n 1}=P_{n}$ because there is no longer a prime factor between $p m$ and $n\left(p_{m}(n 1)=p_{m}(n)\right)$.

Suppose then that $n 1$ is not equal to any sum of two prime factors of Pn, we will then adopt the same reasoning as for n, where $\exists p_{j / n 1} \in \operatorname{Pn}$ such that $p_{j / n 1}<n 1-p_{m}<p_{(j+1) / n 1} \Rightarrow p_{j / n 1}<p_{m}+9-p_{m}<p_{(j+1) / n 1} \Rightarrow$ $p_{j / n 1}<9<p_{(j+1) / n 1} \Rightarrow$
$p_{j / n 1}=7$ and $p_{(j+1) / n 1}=11$

But we had demonstrated as for n that there are no twin primes between $\mathrm{p}_{\mathrm{j} / n 1}$ and pm whereas in this case there are several twin primes beyond $p_{j / n 1}=7$, contradiction $\Rightarrow n 1=p_{m}+9$ is written as the sum of two prime factors.

Ditto for the second number such that $p_{m}+2 k+1$ even and $2 k+1$ not prime, this number is equal to $n 2=p_{m}+15\left(P_{n 2}=P_{n 1}=P n\right) \Rightarrow p_{j / n 2}=13$ and $p_{(j+1) / n 2}=17$ and since there are several twin primes beyond $p_{j / n 2}=$ 13 then a contradiction and therefore $p_{m}+15$ is written as the sum of two prime factors.

Same for $n 3=p_{m}+21 \Rightarrow p_{j / n 3}=19$ and $p_{(j+1) / n 3}=23$ and so on.... -End-

