Proof of the Goldbach Conjecture

By Mr Bachid Annouaoui

<u>Statement of the Conjecture</u>: « Every even natural integer is the sum of two prime integers».

Démonstration:

Let n be an even integer.

Let Pn denote the set of all prime factors less than n defined as follows:

Pn = {1(p_1); 2(p_2);; pm} these p_i are listed in ascending order:

 $p_1 < p_2 < \dots < p_{m-1} < p_m$.

So p_m is the largest prime factor less than n, in other words there is no more prime factor between p_m and n.

We therefore have $\forall p_i \in Pn$, $p_i \leq p_m < n$ and $n-p_i < n$.

The contrapositive of the Goldbach conjecture is as follows:

 \prec There exists an even natural number which is not equal to any sum of two prime numbers \gg : Supposition 1 \rightarrow S1 .

We are therefore going to study this contrapositive for this n.

The meaning of this contrapositive with what was previously defined is:

 $\ll \forall p_i \in Pn, n-p_i \notin Pn \gg$.

We have $p_1 < p_2 < \dots < p_{m-1} < p_m$ therefore

 $n-p_m < n-p_{m-1} < \dots < n-p_2 < n-p_1$.

Suppose then that $\forall p_i \in Pn$, $p_1 < n-p_i < p_m$: supposition $2 \rightarrow S2$.

So for $p_i = p_m$ we get $p_1 < n - p_m < p_m$,

 $p_1 < n-p_m \Rightarrow p_m < n-p_1$ Contradiction with $n-p_i < p_m$

This assumption S2 is therefore false (S2 therefore closed).

And then $\exists p_{j/n} \in Pn$ such that $n - p_{j/n} \le p_1$ or $n - p_{j/n} \ge p_m$,

And since n- $p_{j/n} \notin Pn$ then n- $p_{j/n} \neq p_1 = 1$.

We therefore only have the case where n- $p_{j/n} \ge p_m$ more exactly n- $p_{j/n} > p_m$ because n- $p_{j/n}$ is not prime(S1) and p_m is prime.

n- $p_{j/n} \mathrel{\scriptstyle\triangleright} p_m \mathrel{\scriptstyle\Rightarrow} n\text{-} p_m \mathrel{\scriptstyle\triangleright} p_{j/n}$ and therefore

 $n-p_m > p_{j/n} > p_{(j/n)-1} > p_{(j/n)-2} > \dots > p_2 > p_1$.

25/10/2022

We will continue this analysis with the largest prime factor pj/n which allows the inequality $n-p_{j/n} > p_m$.

We will then have n- $p_{j/n} > p_m$ and n- $p_{(j/n)+1} < p_m$

With $p_{(j/n)+1}$ the prime factor following the prime factor $p_{j/n}$.

(we can write $p_{(j/n)+1}$ or $p_{(j+1)/n}$; $p_{(j/n)+i}$ or $p_{(j+i)/n}$).

As $p_{j/n} > p_{(j/n)-1} > p_{(j/n)-2} > \dots > p_2 > p_1$ and

 $p_{(j/n)+1} < p_{(j/n)+2} < \ldots < p_{m-1} < p_m$ we then obtain:

 $\rightarrow \forall p_k \le p_{j/n}$, n- $p_k > p_m$ because n- $p_k \ge n$ - $p_{j/n} > p_m$ (which indicates the non-primality of n- p_k for $p_k \le p_{j/n}$ because there is no prime factor between p_m and n) And

 $\rightarrow \forall p_k \ge p_{(j+1)/n}$, n- $p_k < p_m$ or $p_1 < n-p_k < p_m$ because n- $p_k < n-p_{(j/n)+1} < p_m$

We will therefore first show the existence of $p_{j/n}$:

 $p_{j/n}$ was defined as follows:

∃ $p_{j/n}$ ∈ Pn such that n- $p_{j/n}$ > p_m and n- $p_{(j/n)+1}$ < p_m with $p_{(j/n)+1}$ the prime factor following the prime factor $p_{j/n}$.

Then suppose the opposite: $\forall p_j \in Pn$, $n-p_j > p_m$: Assumption $3 \rightarrow S3$

So for $p_j \text{-} p_m$ we then obtain n- p_m > p_m > n > $2p_m$

As $n > p_m$ then $p_m < 2p_m < n$.

However, according to Chebychev's theorem, there is always a prime number between q and 2q (with q natural integer >1) and since there is

25/10/2022

no prime factor between p_m and n then there is no also a prime factor between p_m and $2p_m$ which contradicts the theorem of Tchebychev, we then deduce that $\exists p_{j/n} \in Pn$ such that n- $p_{j/n} > p_m$ the assumption S3 is therefore closed.

And at the same time we have just proved that $n - p_m < p_m$.

On the other hand,

→ If n- $p_{m-1} < p_m$ then n- $p_{m-1} < n$ - $p_{j/n}$ because n- $p_{m-1} < p_m < n$ - $p_{j/n} \Rightarrow p_{j/n}$ < p_{m-1} and therefore $p_{j/n}$ is included between p_1 and p_{m-1} and then $p_{(j/n)+1}$ is between p_2 and p_m .

 \rightarrow If n- p_{m-1} > p_m then we have n- p_m < p_m and n- p_{m-1} > p_m so $p_{j/n}$ = p_{m-1} and $p_{(j/n)+1}$ = p_m .

We have therefore just demonstrated the existence of $p_{j/n}$ and $p_{(j/n)+1}$. We therefore have $\forall p_i \in Pn$ such that $p_i \ge p_{(j/n)+1}$

n- $p_{j/n}$ > p_m > $p_i \Rightarrow$ n- $p_{j/n}$ > $p_i \Rightarrow$ n- p_i > $p_{j/n}$

and more particularly $\forall p_i \ge p_{(j/n)+1}, p_{j/n} < n-p_i < p_m$.

Let us then study the distribution of these n-p_i between $p_{j/n}$ and p_m :

Let p_i be between $p_{j/n}$ and p_m , $\exists ! p_{i1} > p_{j/n}$ and $\exists ! p_{i2} > p_{j/n}$ such that p_{i1} and p_{i2} are successive prime factors with $p_{i1} < n - p_i < p_{i2}$, strictly because $n - p_i$ is not prime and p_{i1} and p_{i2} are prime (with $p_1 < n - p_i < p_m$).

We have $p_{i1} < n - p_i < p_{i2} \Rightarrow p_i < n - p_{i1}$ and $p_i > n - p_{i2} \Rightarrow n - p_{i2} < p_i < n - p_{i1}$

25/10/2022

More over for the n- p_k , n- p_{i2} and n- p_{i1} are also successive because

$$p_{i1} < p_{i2} < p_{i3} < \dots \Rightarrow \dots < n - p_{i3} < n - p_{i2} < n - p_{i1} < \dots$$

this shows two different n- pk cannot belong to the same interval composed by two successive prime factors since there is a prime factor between the two n- pk (n- $p_{i2} < (p_i) < n- p_{i1}$)

Let us then schematize this distribution on the following graduated line:

In effect,

 $n\text{-} p_{j/n} \mathrel{\raisebox{.5ex}{\scriptsize{\scriptstyle{\triangleright}}}} p_m \mathrel{\Rightarrow} n\text{-} p_m \mathrel{\raisebox{-5ex}{\scriptsize{\scriptstyle{\circ}}}} p_{j/n}$

and n- $p_{(j+1)/n} < p_m \Rightarrow$ n- $p_m < p_{(j+1)/n}$ whence $p_{j/n} <$ n- $p_m < p_{(j+1)/n}$

the number of p_k between p_m and $p_{(j+1)/n}$ is equal to m-(j+1)+1=m-j.

And the number of n-p_k (with p_k between $p_{(j+1)/n}$ and p_{m-1} because p_m is already used between $p_{j/n}$ and $p_{(j+1)/n}$) is equal to (m-1) -(j+1)+1=m-j-1 which corresponds exactly to the number of intervals between $p_{(j+1)/n}$

25/10/2022

and p_m , and since we have n- $p_{m-1} < n- p_{m-2} < \dots < n- p_{(j+1)/n}$ then we have exactly the following distribution:

 $p_{(j+1)/n} < n-p_{m-1} < p_{(j+2)/n}; p_{(j+2)/n} < n-p_{m-2} < n-p_{(j+3)/n} \dots And p_{m-1} < n-p_{(j+1)/n} < p_m .$

Because we had demonstrated that between two successive prime factors ($\geq p_{(j+1)/n}$) there is a unique n-p_k ($p_k \geq p_{(j+1)/n}$)

Similarly n- $p_{j/n} > p_m \Rightarrow p_m < n - p_{j/n} < n$,

So all the n-p_k ($p_k \le p_{j/n}$: n- $p_{j/n} < n-p_k$) are beyond p_m , which confirms the distribution of the n-p_i on the graduated ruler drawn above.

So let's recap all of the above:

 \rightarrow \forall p_i between $p_{(j+1)/n}$ and p_m we have $p_{j/n}$ < n- p_i < p_m

 \rightarrow Between two successive prime factors greater than $p_{j/n}$, there is a unique n-p_k with $p_{j/n} \leq p_k \leq p_m.$

On the other hand,

We have $\forall p_k$ (between $p_{j/n}$ and p_{m-1}) and $\forall p_{k+1}$ (between $p_{(j+1)/n}$ and p_m), successive prime factors, p_k and p_{k+1} cannot be twin primes ($p_{k+1} - p_k =$ 2) because if it was then the only integer that exists between p_k and p_{k+1} is $p_k + 1$ and since $pk < n-p_i < p_{k+1}$ then $n-p_i = p_k + 1$

Which is impossible because $n-p_i$ is odd and $p_k + 1$ is even

From where $\forall p_k \ge p_{j/n}$, p_k and p_{k+1} cannot be twin primes.

So the only twin primes are those between p_1 and $p_{j/n}$.

Let's recap:

 \rightarrow n \in Ep (set of even integers), \forall p_i \in Pn , n-p_i \notin Pn.

 \rightarrow Between each p_k and p_{k+1} (with k between j/n and m-1) there is a unique n-p_i (with i between (j+1)/n and m).

Schematized on the following graduated line:

- \rightarrow There are no twin primes between $p_{j/n}$ and $p_m.$
- \rightarrow The only twin primes exist between p_1 and $p_{j/n.}$

25/10/2022

We will study later the even numbers between p_m and n,

The first integer (increasing direction) in this case is $p_m + 1$, but it is equal to the sum of two prime numbers, likewise for $p_m + 3$; $p_m + 5$; $p_m + 7$. We will then reason on the numbers of the form $p_m + 2k+1$ which are the even numbers between strictly p_m and n, with 2k+1 not prime because the numbers of the form $p_m + 2k+1$ with 2k+1 prime meet the criterion: sum of two prime numbers ($\exists k1 \in \mathbb{N}$ such that $n = p_m + 2k1 + 1$).

The numbers of the form p_m + 2k are odd which does not interest us in our case.

The first number such that $p_m + 2k+1$ even and 2k+1 not prime is the number p_m+9 which we will note n1.

Note that $P_{n1} = P_n$ because there is no longer a prime factor between pm and n ($p_m(n1) = p_m(n)$).

Suppose then that n1 is not equal to any sum of two prime factors of Pn, we will then adopt the same reasoning as for n, where $\exists p_{j/n1} \in Pn$ such that $p_{j/n1} < n1 - p_m < p_{(j+1)/n1} \Rightarrow p_{j/n1} < p_m + 9 - p_m < p_{(j+1)/n1} \Rightarrow$

 $p_{j/n1} \triangleleft 9 \triangleleft p_{(j+1)/n1} \Rightarrow$

 $p_{j/n1} = 7$ and $p_{(j+1)/n1} = 11$

25/10/2022

But we had demonstrated as for n that there are no twin primes between $p_{j/n1}$ and pm whereas in this case there are several twin primes beyond $p_{j/n1} = 7$, contradiction $\Rightarrow n1 = p_m + 9$ is written as the sum of two prime factors.

Ditto for the second number such that $p_m + 2k+1$ even and 2k+1 not prime, this number is equal to $n2 = p_m + 15$ ($P_{n2} = P_{n1} = Pn$) $\Rightarrow p_{j/n2} = 13$ and $p_{(j+1)/n2} = 17$ and since there are several twin primes beyond $p_{j/n2} =$ 13 then a contradiction and therefore $p_m + 15$ is written as the sum of two prime factors.

Same for n3 = p_m + 21 \Rightarrow $p_{j/n3}$ = 19 and $p_{(j+1)/n3}$ = 23 and so on....

-End-