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Abstract 

An ansatz for the Bose-Einstein condensate in an external potential of the form x 4 is proposed . The ansatz 
was chosen by numerical comparison of the stationary wave packet with different ansatz . 
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1. Introduction 

The study of the low energy of collective excitations is important for understanding the dynamics of 
an atomic quantum liquid [1 ]. Most of these theoretical and experimental studies have been carried out for 
a condensate in a harmonic trap. The description of the dynamics of the wave function of the condensate in 
such a trap has many simplified properties for both repulsive and attractive interactions between atoms . The 
theory is based on the Gross- Pitaevskii equation , which is a non-linear Schrödinger equation with a linear 
oscillator potential. 

An analysis of the repulsive condensate shows that in such a potential the motion of the center of 
mass of the condensate does not depend on fluctuations in the width of the condensate, and vice versa. The 
same properties are also valid for the case with possessive BEC, where waves of matter soliton can exist in 
quasi-1 D geometry. This property can be shown as at the level of symmetries of the 1-dimensional Gross - 
Pitaevskii equation . and using the method of moments. Individual resonances in the oscillations of the width 
and position of the soliton were studied in [2]. 

In the case of an anharmonic trap, the properties of the dynamics of translational motion relative to 
the trap (movement of the center of mass) and the internal regime (width fluctuation) become coupled. This 
results in the ability to control internal oscillations by manipulating the position of the trap. This possibility 
can also be useful in the creation of new technical devices, including quantum computers, and in ultra-
sensitive interferometers. 

For a soliton wave in a parabolic potential, it is well known that the oscillations of the center of mass 
are completely separated from the internal excitation, and this is an analogue of Kohn's theorem for a soliton 
wave packet . the centers of mass of the condensate are independent of each other. This property makes it 
impossible to control the width of the condensate by changing the position of the condensate relative to the 
parabolic trap. 

In [1], the case of an anharmonic trap V ( x ) = x 2 + m x 4 , with a small parameter m , and it is shown 
that in an anharmonic trap, the fluctuations in the width and coordinates of the center of mass of the 
condensate are mutually related, namely, the fluctuations of the center of mass lead to fluctuations in the 
width of the condensate. In asymmetric potentials, it is also possible to control the dynamics of the center 
of mass by manipulating the values of the condensate width. In this paper, we study the dynamics of a 
condensate with a focusing nonlinearity in an external potential of the form V ( x ) = x 4 . An ansatz for the 
derivation of ordinary differential equations in the variational approximation is proposed. 

2. Model 

The dynamics of the quasi-one-dimensional Bose-Einstein condensate is described by the one-
dimensional Gross- Pitaevskii equation , 
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where m is the mass of the condensate atom, a s is the scattering length, and w is the frequency of the 
oscillator in the perpendicular direction. This equation is derived from the 3D Gross- Pitaevskii equation 
with a strong anisotropic external potential, where the frequencies of the harmonic potential are many times 
greater in the perpendicular directions than in the longitudinal direction. Dynamics in perpendicular 
directions is averaged and fluctuations in the longitudinal direction of the condensate are described by 
equation (1). For the convenience of calculations, and also for the universality of the results, we reduce 
equation (1) to the following dimensionless form (where t and x are dimensionless quantities): 
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Here, time t and distance x are normalized to the frequency and length of the gramonic oscillator, 

respectively. The subscripts t and x mean differentiations with respect to time and coordinate, 
respectively, g is the coefficient of two-particle interaction, which we consider to be negative. 

Equation (1) can be obtained from the variational equations 
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where the superscript * denotes complex conjugation, the Lagrangian density for equation (1) is given by 
the equation 
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3. Ansats 

For the wave function of the condensate u ( x,t ) we examined the following ansatzes : 
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where the parameters A , a , b , x 0 k are amplitude, width, chirp , center of mass and speed , respectively. 
The first of these ansatz , the Gaussian ansatz , showed a good approximation, in the case of a harmonic 
external potential. 

For our case, of the considered ansatz, according to our calculations , ansatz (3) is the most suitable. 
Ansatz (7-8) have a problem in getting the averaged Lagrangian. 
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