A solution of a quartic equation

Tai Choon Yoon*
(Dated: Oct. 9th, 2022)
This solution is equal to L. Ferrari's if we simply change the inner square root \sqrt{w} to $\sqrt{\alpha+2 y}$. This article shows the shortest way to have a resolvent cubic for a quartic equation as well as the solution of a quartic equation.

A. Derivation of a solution of a quartic equation

The solution of a quartic polynomial was discovered by Lodovico de Ferrari in 1540. Ferrari's solution is good for solving a quartic equation. This article shows a simpler way to solve the quartic equation than Ferrari.
A monic form of a quartic polynomial is written as

$$
\begin{equation*}
x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}=0 \tag{1}
\end{equation*}
$$

To solve a quartic, we need to get a resolvent ${ }^{1}$ [1] cubic. A resolvent cubic can be obtained from the above quartic equation by using the following biquadratic equation.

$$
\begin{equation*}
\left(x^{2}+a_{1} x+a_{0}\right)^{2}-w\left(x+b_{0}\right)^{2}=0 \tag{2}
\end{equation*}
$$

where a_{1}, a_{0} and b_{0} are arbitrary coefficients, and w is a coupling constant. Unfolding the brackets of the equation (2) and comparing to those coefficients of the equation (1), we can find

$$
\begin{align*}
a_{1} & =\frac{1}{2} c_{3} \tag{3}\\
a_{0} & =\frac{1}{2} c_{2}+\frac{1}{2} w-\frac{1}{8} c_{3}^{2} \\
b_{0} & =\left(-c_{1}+\frac{1}{2} c_{2} c_{3}+\frac{1}{2} c_{3} w-\frac{1}{8} c_{3}^{3}\right) /(2 w)
\end{align*}
$$

and we get the remaining resolvent equation

$$
\begin{equation*}
a_{0}^{2}-b_{0}^{2} w-c_{0}=0 . \tag{4}
\end{equation*}
$$

Solving the equation (4) with substitutions from (3), we get the resolvent cubic equation with respect to w,

$$
\begin{align*}
& w^{3}+\left(2 c_{2}-\frac{3}{4} c_{3}^{2}\right) w^{2}+\left(-4 c_{0}+c_{1} c_{3}-c_{2} c_{3}^{2}+c_{2}^{2}+\frac{3}{16} c_{3}^{4}\right) w \tag{5}\\
& +\left(c_{1} c_{2} c_{3}-\frac{1}{4} c_{1} c_{3}^{3}+\frac{1}{8} c_{2} c_{3}^{4}-c_{1}^{2}-\frac{1}{64} c_{3}{ }^{6}-\frac{1}{4} c_{2}^{2} c_{3}^{2}\right)=0
\end{align*}
$$

As this resolvent cubic equation is somewhat lengthy and complicated, a reduced form is applicable as follows,

$$
\begin{equation*}
y^{3}+p_{1} y+p_{0}=0 \tag{6}
\end{equation*}
$$

where y represents

$$
\begin{equation*}
y=w+\frac{2}{3} c_{2}-\frac{1}{4} c_{3}^{2} \tag{7}
\end{equation*}
$$

[^0]with p_{1} and p_{0} respectively
\[

$$
\begin{align*}
& p_{1}=-4 c_{0}+c_{1} c_{3}-\frac{1}{3} c_{2}^{2} \tag{8}\\
& p_{0}=\frac{8}{3} c_{0} c_{2}-c_{0} c_{3}^{2}+\frac{1}{3} c_{1} c_{2} c_{3}-c_{1}^{2}-\frac{2}{27} c_{2}^{3} .
\end{align*}
$$
\]

A radical solution of the cubic (6) provides

$$
\begin{equation*}
y=\sqrt[3]{-\frac{p_{0}}{2}-\sqrt{\left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3}}}+\sqrt[3]{-\frac{p_{0}}{2}+\sqrt{\left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3}}} \tag{9}
\end{equation*}
$$

Or we can get the solution in the form of w from the equation (5) by using the equation (7)

$$
\begin{equation*}
w=-\frac{2}{3} c_{2}+\frac{1}{4} c_{3}^{2}+\sqrt[3]{-\frac{p_{0}}{2}-\sqrt{\left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3}}}+\sqrt[3]{-\frac{p_{0}}{2}+\sqrt{\left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3}}} . \tag{10}
\end{equation*}
$$

with p_{1} and p_{0} of (8).
It is to be noted that $D_{4}=\left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3}$ represents the discriminant of the above quartic equation (1) and it can be expanded as below,

$$
\begin{align*}
D_{4}= & \left(\frac{p_{0}}{2}\right)^{2}+\left(\frac{p_{1}}{3}\right)^{3} \tag{11}\\
= & -\frac{1}{108}\left(18 c_{3} c_{2} c_{1}^{3}-80 c_{3} c_{2}{ }^{2} c_{1} c_{0}+144 c_{3}{ }^{2} c_{2} c_{0}{ }^{2}-6 c_{3}{ }^{2} c_{1}{ }^{2} c_{0}-4 c_{2}{ }^{3} c_{1}{ }^{2}+16 c_{2}{ }^{4} c_{0}\right. \\
& -192 c_{3} c_{1} c_{0}{ }^{2}+144 c_{2} c_{1}{ }^{2} c_{0}-128 c_{2}{ }^{2} c_{0}{ }^{2}-27 c_{1}^{4}+256 c_{0}{ }^{3} \\
& \left.+c_{3}{ }^{2} c_{2}{ }^{2} c_{1}{ }^{2}-4 c_{3}{ }^{2} c_{2}{ }^{3} c_{0}+18 c_{3}{ }^{3} c_{2} c_{1} c_{0}-4 c_{3}{ }^{3} c_{1}{ }^{3}-27 c_{3}{ }^{4} c_{0}{ }^{2}\right) .
\end{align*}
$$

Now, we can derive out a radical solution of a quartic equation. It is convenient to deal with the equation (2) directly otherwise it is so complicated. It provides two quadratic solutions. One of them is

$$
\begin{equation*}
x^{2}+\left(a_{1}-\sqrt{w}\right) x+a_{0}-b_{0} \sqrt{w}=0 . \tag{12}
\end{equation*}
$$

This gives two roots of the quadratic

$$
\begin{equation*}
x_{1,2}=-\frac{a_{1}}{2}+\frac{\sqrt{w}}{2} \pm \frac{1}{2} \sqrt{\left(a_{1}-\sqrt{w}\right)^{2}-4\left(a_{0}-b_{0} \sqrt{w}\right)} . \tag{13}
\end{equation*}
$$

Substituting with the equations (3), we get

$$
\begin{equation*}
x_{1,2}=-\frac{c_{3}}{4}+\frac{\sqrt{w}}{2} \pm \frac{1}{4} \sqrt{3 c_{3}^{2}-8 c_{2}-4 w-\frac{8 c_{1}-4 c_{3} c_{2}+c_{3}^{3}}{\sqrt{w}}} . \tag{14}
\end{equation*}
$$

with w from (10).
These are two roots of a quartic equation (1) ${ }^{2}$
${ }^{2}$ Ferrari's solution is given from a reduced form of a quartic

$$
y^{4}+\alpha y^{2}+\beta y+\gamma=0
$$

which provides two kinds of solutions according to the condition of $\beta=0$ or not.
In case $\beta \neq 0$,

$$
x=-\frac{b}{4 a} \pm_{s} \frac{\sqrt{\alpha+2 y}}{2} \pm_{t} \frac{1}{2} \sqrt{-(3 \alpha+2 y) \pm_{s} \frac{2 \beta}{\sqrt{\alpha+2 y}}} .
$$

If $(\alpha+2 y)$ is changed to w, the above is equal to that of this article.
In case $\beta=0$,

$$
x=-\frac{b}{4 a} \pm \sqrt{-\frac{\alpha}{2} \pm \sqrt{\alpha^{2}-4 \gamma}}
$$

This condition is no more required in this article, but $w=0$.

B. A full solution of a quartic equation

A general quartic equation is written as

$$
\begin{equation*}
c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}=0 . \tag{15}
\end{equation*}
$$

Dividing by c_{4}, we get a monic quartic equation

$$
\begin{equation*}
x^{4}+\frac{c_{3}}{c_{4}} x^{3}+\frac{c_{2}}{c_{4}} x^{2}+\frac{c_{1}}{c_{4}} x+\frac{c_{0}}{c_{4}}=0 . \tag{16}
\end{equation*}
$$

An intermediary biquadratic equation for a solution of a general monic quartic equation (16) is given as

$$
\begin{equation*}
\left(x^{2}+l x+m\right)^{2}=w(x+n)^{2} . \tag{17}
\end{equation*}
$$

For a reduced quartic, one may use the following form

$$
\left(x^{2}+m\right)^{2}=w(x+n)^{2}
$$

this is simply equal to the above (17) in case $l=0$.
Unfolding the brackets and comparing to those coefficients of the equation (17), the coefficients are given as

$$
\begin{align*}
l & =\frac{c_{3}}{2 c_{4}} \tag{18}\\
m & =\frac{w}{2}-\frac{c_{3}{ }^{2}}{8 c_{4}{ }^{2}}+\frac{c_{2}}{2 c_{4}} \\
n & =-\frac{c_{3}^{3}}{16 c_{4}{ }^{3} w}+\frac{c_{3} c_{2}}{4 c_{4}{ }^{2} w}+\frac{c_{3}}{4 c_{4}}-\frac{c_{1}}{2 c_{4} w}
\end{align*}
$$

Substituting these coefficients to the equation (16), we get the resolvent cubic equation,

$$
\begin{equation*}
x^{4}+\frac{c_{3}}{c_{4}} x^{3}+\frac{c_{2}}{c_{4}} x^{2}+\frac{c_{1}}{c_{4}} x+R(w)=0, \tag{19}
\end{equation*}
$$

where $R(w)$ provides the resolvent cubic with respect to w,

$$
\begin{equation*}
4 w R(w)=w^{3}+s w^{2}+t w+u=0 \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
s & =-\frac{3 c_{3}{ }^{2}}{4 c_{4}{ }^{2}}+\frac{2 c_{2}}{c_{4}} \tag{21}\\
t & =\frac{3 c_{3}{ }^{4}}{16 c_{4}{ }^{4}}-\frac{c_{3}{ }^{2} c_{2}}{c_{4}{ }^{3}}+\frac{c_{3} c_{1}}{c_{4}{ }^{2}}+\frac{c_{2}{ }^{2}}{c_{4}{ }^{2}}-\frac{4 c_{0}}{c_{4}} \\
u & =-\frac{c_{3}{ }^{6}}{64 c_{4}{ }^{6}}+\frac{c_{3}{ }^{4} c_{2}}{8 c_{4}{ }^{5}}-\frac{c_{3}{ }^{2} c_{2}{ }^{2}}{4 c_{4}{ }^{4}}-\frac{c_{3}{ }^{3} c_{1}}{4 c_{4}{ }^{4}}+\frac{c_{3} c_{2} c_{1}}{c_{4}{ }^{3}}-\frac{c_{1}{ }^{2}}{c_{4}{ }^{2}} .
\end{align*}
$$

In case $w=0$, the biquadratic (17) simply becomes a perfect square of a quadratic equation $\left(x^{2}+l x+m\right)^{2}=0$, which includes the case $l=0$ when it becomes $\left(x^{2}+m\right)^{2}=0$.
Therefore the equation (17) is applicable for all quartic polynomials except when $\left(x^{2}+l x+m\right)^{2}=0$ and $\left(x^{2}+m\right)^{2}=$ 0 , which are simply solvable by factoring. To solve the resolvent cubic equation (20), we get a reduced form by substituting with $w=y-\frac{s}{3}$,

$$
\begin{equation*}
y^{3}+p y+q=0, \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& p=\frac{c_{3} c_{1}}{c_{4}^{2}}-\frac{c_{2}^{2}}{3 c_{4}^{2}}-\frac{4 c_{0}}{c_{4}} \tag{23}\\
& q=\frac{c_{3} c_{2} c_{1}}{3 c_{4}^{3}}-\frac{c_{3}^{2} c_{0}}{c_{4}^{3}}-\frac{2 c_{2}^{3}}{27 c_{4}^{3}}+\frac{8 c_{2} c_{0}}{3 c_{4}^{2}}-\frac{c_{1}^{2}}{c_{4}^{2}} \tag{24}
\end{align*}
$$

We get a solution from (22)

$$
\begin{equation*}
y=\sqrt[3]{-\frac{q}{2}-\sqrt{D 4}}+\sqrt[3]{-\frac{q}{2}+\sqrt{D 4}} \tag{25}
\end{equation*}
$$

where D_{4} is the discriminant of the quartic (15), which is given as follows,

$$
\begin{align*}
D_{4}= & \frac{1}{4} q^{2}+\frac{1}{27} p^{3} \tag{26}\\
= & -\frac{1}{108 c_{4}{ }^{6}}\left(18 c_{4} c_{3} c_{2} c_{1}{ }^{3}-80 c_{4} c_{3} c_{2}{ }^{2} c_{1} c_{0}+144 c_{4} c_{3}{ }^{2} c_{2} c_{0}{ }^{2}-6 c_{4} c_{3}{ }^{2} c_{1}{ }^{2} c_{0}-4 c_{4} c_{2}{ }^{3} c_{1}{ }^{2}+16 c_{4} c_{2}{ }^{4} c_{0}\right. \\
& -192 c_{4}{ }^{2} c_{3} c_{1} c_{0}{ }^{2}+144 c_{4}{ }^{2} c_{2} c_{1}{ }^{2} c_{0}-128 c_{4}{ }^{2} c_{2}{ }^{2} c_{0}{ }^{2}-27 c_{4}{ }^{2} c_{1}{ }^{4}+256 c_{4}{ }^{3} c_{0}{ }^{3}+c_{3}{ }^{2} c_{2}{ }^{2} c_{1}{ }^{2} \\
& \left.-4 c_{3}{ }^{2} c_{2}{ }^{3} c_{0}+18 c_{3}{ }^{3} c_{2} c_{1} c_{0}-4 c_{3}{ }^{3} c_{1}{ }^{3}-27 c_{3}{ }^{4} c_{0}{ }^{2}\right) .
\end{align*}
$$

With these results, we have two quadratic equations that are two factors of the quartic equation (16)

$$
\begin{align*}
& x^{2}+\left(\frac{c_{3}}{2 c_{4}}-\sqrt{w}\right) x+\frac{1}{2} w+\frac{c_{3}{ }^{3}}{16 c_{4}^{3} \sqrt{w}}-\frac{c_{3} c_{2}}{4 c_{4}{ }^{2} \sqrt{w}}-\frac{c_{3}{ }^{2}}{8 c_{4}{ }^{2}}-\frac{c_{3} \sqrt{w}}{4 c_{4}}+\frac{c_{2}}{2 c_{4}}+\frac{c_{1}}{2 c_{4} \sqrt{w}}, \tag{27}\\
& x^{2}+\left(\frac{c_{3}}{2 c_{4}}+\sqrt{w}\right) x+\frac{1}{2} w-\frac{c_{3}^{3}}{16 c_{4}{ }^{3} \sqrt{w}}+\frac{c_{3} c_{2}}{4 c_{4}{ }^{2} \sqrt{w}}-\frac{c_{3}{ }^{2}}{8 c_{4}{ }^{2}}+\frac{c_{3} \sqrt{w}}{4 c_{4}}+\frac{c_{2}}{2 c_{4}}-\frac{c_{1}}{2 c_{4} \sqrt{w}} . \tag{28}
\end{align*}
$$

The four roots of a quartic equation are given from the above

$$
\begin{align*}
& x_{1,2}=-\frac{c_{3}}{4 c_{4}}+\frac{\sqrt{w}}{2} \pm \frac{1}{4 c_{4}} \sqrt{3 c_{3}{ }^{2}-8 c_{4} c_{2}-4 c_{4}{ }^{2} w-\frac{c_{3}{ }^{3}-4 c_{4} c_{3} c_{2}+8 c_{4}{ }^{2} c_{1}}{c_{4} \sqrt{w}}}, \tag{29}\\
& x_{3,4}=-\frac{c_{3}}{4 c_{4}}-\frac{\sqrt{w}}{2} \pm \frac{1}{4 c_{4}} \sqrt{3 c_{3}^{2}-8 c_{4} c_{2}-4 c_{4}{ }^{2} w+\frac{c_{3}{ }^{3}-4 c_{4} c_{3} c_{2}+8 c_{4}{ }^{2} c_{1}}{c_{4} \sqrt{w}}}, \tag{30}
\end{align*}
$$

and the resolvent cubic equation of w

$$
\begin{align*}
w= & -\frac{2 c_{2}}{3 c_{4}}+\frac{c_{3}^{2}}{4 c_{4}^{2}}+\frac{1}{3 c_{4}} \sqrt[3]{c_{2}^{3}-36 c_{4} c_{2} c_{0}+\frac{27 c_{4} c_{1}^{2}}{2}-\frac{9 c_{3} c_{2} c_{1}}{2}+\frac{27 c_{3}^{2} c_{0}}{2}+\frac{3 \sqrt{3}}{2} \sqrt{-D_{4}}} \tag{31}\\
& +\frac{1}{3 c_{4}} \sqrt[3]{c_{2}^{3}-36 c_{4} c_{2} c_{0}+\frac{27 c_{4} c_{1}^{2}}{2}-\frac{9 c_{3} c_{2} c_{1}}{2}+\frac{27 c_{3}^{2} c_{0}}{2}-\frac{3 \sqrt{3}}{2} \sqrt{-D_{4}}},
\end{align*}
$$

with D_{4} of (26).
A full solution of a quartic equation is consisted of three parts of the equations (29), (31) and (26).
[1] http://adsabs.harvard.edu/abs/2008arXiv0806.1927E
[2] http://en.wikipedia.org/wiki/Quartic_equation
[3] http://en.wikipedia.org/wiki/De_Moivre's_formula
[4] http://en.wikipedia.org/wiki/Discriminant
[5] http://en.wikipedia.org/wiki/Trigonometric_functions
[6] http://en.wikipedia.org/wiki/Hyperbolic_function
[7] http://www.nickalls.org/dick/papers/maths/quartic2009.pdf

[^0]: *Electronic address: tcyoon@hanmail.net
 ${ }^{1}$ Degree $(n-1)$ form of polynomial whose roots are related to the roots of the original equation.

