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Abstract 

An algebraic basis gauge transformation here is a transformation on the set of basis elements that 

fundamentally define an algebra through product rules that determine the definition of multiplication 

between n dimensional algebraic elements. They are linear combinations of the intrinsic basis element 

set structured such that a reversible bijection is produced from each indexed intrinsic basis element to 

the same index basis element in the gauge basis. The gauge invariant feature is an algebraic 

isomorphism between any chosen orientation of the intrinsic algebra basis and the resultant orientation 

for the gauge transformed basis. 

For Octonion Algebra, the transformation matrix is shown to be a lower 7x7 block diagonal member of 

the group SO(7). The Octonion covariant derivative is shown to be form invariant between intrinsic and 

gauge basis systems if the transformation is global. Allowing local variation, fields in the physics sense 

are added to the still present form invariant content. 

Subgroups of PSL(2,7) give two methods for creating Octonion algebraic basis gauge transformations. 

Both are shown to be expressible as circle group fibrations over the basis element basic quad subspace 

defined for each Quaternion subalgebra, followed by completing the subalgebra gauge transformed 

components with a process called basic quad algebraic completion. 

One method uses permutation subgroups of PSL(2,7) that leave one non-scalar basis element 

unchanged. It is shown to gauge out symmetries provided by Octonion Algebra when that unchanged 

basis element is taken to be physically non-spatial.  

The other method uses permutation subgroups of PSL(2,7) that leave the set of basis elements in one 

Quaternion subalgebra triplet intact. Half-angle 2-torus fibrations on the basic quad subspace embed a 

standard orthonormal whole-angle spherical-polar basis in the preserved subalgebra after algebraic 

completion, and half-angle 3-torus fibrations embed its compatible whole angle Euler Angle basis in 

the preserved subalgebra after algebraic completion. 

A composition where the intrinsic basis elements in one gauge basis are replaced by the equivalent 

index gauge transformed basis element of another is shown to produce a proper gauge transformation 

specified by the product of the two gauge transformation matrices. A parallelism between this 

composition and fiber product structure is demonstrated for the latter method above. 

*** 
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Octonion Automorphisms as Algebraic Basis Gauge Transformations 

There are several types of gauge transformations. They typically leave some feature of the 

mathematical system and/or expressions invariant after application of either a structural or functional 

transformation. This screed is about transformations applied to the basis system of Octonion Algebra. 

This algebra is commonly referred to as 𝕆. I refer to the transformations that follow as algebraic basis 

gauge transformations. The modifier algebraic basis is added to expressly point out that the basis 

transformations we seek here are not the simple linear algebra vector space basis coefficient 

modifications that are only required to continue spanning the space. We will be transforming 𝕆 

algebra’s fundamental basis element system, whose member products define the operation of 8-

dimensional algebraic element multiplication, specified as * here. The invariant feature we will seek is 

transformations to a new basis system which exhibits the same orientation structure of the original 

intrinsic algebra basis. This orientation structure is the full set of rules defining *, and different 

orientations for Octonion Algebras define different rule sets. 

Define this gauge transformed basis as gi = Mij ej where Mij is an 8x8 matrix of scalar values specifying 

the linear combination of the intrinsic Octonion basis element set ej for each resultant gauge basis 

element gi. We will enforce our gauge invariance of * by requiring the algebra defined by products of 

the g basis elements to be an algebraic isomorphism with the chosen intrinsic e basis algebra 

orientation. To simplify identification and use of this isomorphism, we will look to structure matrix M 

such that there is a reversable algebraic structure bijection relating same indexed e and g bases en → gn. 

This means after choosing any of 16 Octonion Algebra orientations defining ea * eb = sabc ec where the 

sabc are its structure constants, we must also have ga * gb = sabc gc. The ex in each g of course multiply as 

usual within the g basis products. 

One requirement for the g isomorphism with the intrinsic 𝕆 e basis is the product ga * gb for a ≠ b ≠ 0 

must anti-commute. This forces all gn for n ≠ 0 to have no scalar content. We must also have no scalar 

content for every product ga * gb for a, b ≠ 0 unless a = b. We can write the scalar portion of the product 

ga * gb for a, b ≠ 0 as Maj ej * Mbj ej = –Maj Mbj. If a=b, this must equal –1 and if a ≠ b this must equal 

0. Therefore, we require Maj Mbj = δab. Restricting g to an algebraic isomorphism with e therefore 

requires M to be an orthonormal matrix.  

The requirement that g0 * gn = gn * g0 forces g0 to have no non-scalar content, so we must have M00 = 

1, as well as M0a = 0 and Ma0 = 0 for a ≠ 0. M then is restricted to a lower block diagonal 7x7 

orthonormal matrix which we will restrict to a +1 determinant or Jacobian as the case may be. This 

block diagonal portion of T will then be a member of the group SO(7). It might be desirable to make 

M00 = c, the speed of light in order to cast the scalar basis with dimension length like the others. This 

will give the common and appropriate 1/c and 1/c2 scalings for first and second order time partial 

derivatives respectively. With no loss of generality take it here as c = 1.  

Not every member of the group SO(7) for this M portion restriction will produce a desirable 

isomorphism. For instance, the SO(7) subgroup of all 7! 7x7 permutation matrices will include 

members that will violate my desire to use only one choice of the 30 possible ways to partition the 

Quaternion subalgebra triplet enumerations defined below. Pick one, then move on since the 

differences are basis element naming conventions which are structurally irrelevant. The meat on the 

structural bones begins with the Quaternion subalgebras and is fully provided using any single choice. 

The complexity of 480 different Octonion multiplication tables is unnecessary, only 480/30 = 16 are 

required. Each of the full complement of 7! = 5040 permutation matrices will however provide one of 

480 legitimate Octonion representations, but if we want to stick within one way to partition the triplets, 

we must stay within the order 5040/30 = 168 subgroup of permutations that do this. This group is of 

course PSL(2,7), the automorphism group of the Fano Plane. A subset of SO(7), not any member of the 
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full group, will therefore provide us all desirable isomorphic algebraic basis gauge transformations.  

Beyond consideration of the simple required orthogonality conditions outlined above and living within 

a single Quaternion subalgebra triplet enumeration, we must complete the full set of basis element 

product comparisons. We must step outside the domain of linear algebra, matrix manipulation and 

group theory of SO(7) to find such transformations. Methods to achieve this are presented below.  

When the algebraic basis defining the operation of algebraic element multiplication * is changed up 

through some transformation, we need to understand how to do calculus within the new basis. A proper 

general definition of differentiation should explicitly tell us how to do this in any basis. This form is 

called the covariant derivative. The proper covariant derivative definition for Octonion Algebra is the 

Ensemble Derivative E defined in references [1], [6] as: 

E(F(v)) = 1/J /vi [ Cij  Tkl  Fk ]  ej * el    

Variable v is the position algebraic element for the transformed basis defined as vi gi. Tkl is the 

transformation matrix from the intrinsic Octonion Algebra e basis to our gauge transformation g basis. 

The algebraic gauge basis transformation is then defined to be gk = Tkl el. Matrix Cij holds the cofactor 

of each Tij, and J is the Jacobian of T. Since here we restrict g to an algebraic isomorphism, T is 

required to be as with M above, lower block diagonal limited member of SO(7).  

Limiting T to J = +1 orthonormal, matrix C will equal matrix T. The covariant derivative form may 

then be written as  

E(F(v)) = /vi [ Fk gi * gk ]  

If the g basis is independent of the gauge transformation functional position algebraic element v, that is 

the gauge transformation is a global gauge, gi and gk may be taken out of the differentiation. The 

differentiation over v can be written then as a g system product of the algebraic element operator given 

by (v) = gi /vi acting on the g basis functional algebraic element Fk gk, and this may be written as 

(v) * F(v). 

The covariant Ensemble Derivative in the intrinsic e basis with position algebraic element ui ei defines 

u = v, Tkl = δkl, Cij = δij, J = +1 so we can write the intrinsic basis covariant derivative as  

E(F(u)) = /ui [ Fk ] ei * ek = (u) * F(u). 

This is seen to be form invariant with the g basis representation, and do remember that * in both are 

isomorphic definitions of basis element multiplication for each side of the reversable bijection e ↔ g. 

Since all Octonion covariant differential equations are required to be constructed from full applications 

of the Ensemble Derivative, any such equation will exhibit form invariance for any proper global 

algebraic basis gauge transformation. 

If we allow the parametrization of the SO(7) portion of T to vary with v position, we now have a local 

algebraic basis gauge transformation. The * isomorphism is still required to hold at each v position, 

but for the covariant derivative, we can no longer take gi and gk out of the differentiation, losing form 

invariance through the addition of new fields (fields in the physics sense) to the still present form 

invariant portions. As one might imagine, this can add significant complexity. 

It will be important now to establish some understanding of a partial motivation for such a process to 

better understand it beyond the nice stuff just discussed. We will be required to cast our algebraic 

expressions in a way that is applicable to any and all orientations for the applied Octonion Algebra. 
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Hopefully, the next few paragraphs will set the foundation. 

Mathematics tells us that we need a sufficient number of independent variables (read dimensions) to 

span the problem at hand. If this count is greater than the four our primary senses give us, so be it. 

Theoretical and experimental physics is not restricted to simply match the expectations provided by our 

limited senses, these were only refined genetically through natural selection by improving our chance 

of survival long enough to procreate. The math connection is there to help us develop a deeper 

understanding of things than our senses can possibly provide. When math says more structure is 

needed, we should pay attention. 

An early clue on the need for more than four dimensions was given to us by the mathematical treatment 

of Electrodynamics where the disparate nature of the magnetic and electric fields was revealed. This 

was uncovered when the seemingly free and arbitrary choice of coordinate system orientation was 

explored. Without being given reasonable cause to pick one orientation over the other, the mathematics 

was telling us proper physical theories needed to be structured such that the same result, say the 

physical direction a charged particle moving through a magnetic field is deflected, is independent of the 

orientation choice for the coordinate system.  

This led to the more general notion of axial vectors (e.g., the magnetic field) and polar vectors (e.g., the 

electric field). The math was shouting to us that these are fundamentally different enough that they 

cannot simply be added or subtracted such that one type might be able to eliminate the other. They 

must be kept separate from each other at a fundamental level within any proper mathematical 

framework. The good and bad thing about mathematics is that it is robust enough to sometimes not 

force us into a singular way to account for such intrinsic differences. Historically, the choice was made 

to stick with four fundamental dimensions (space-time) and place the six components for the magnetic 

and electric field in separate positions within the second rank combined field tensor. It is important to 

keep in mind this was a choice among alternatives, not a requirement. It works well, but issues 

consolidating Electrodynamics with Gravitation seem to be telling us not well enough. 

A different choice would of course be to increase the number of fundamental mathematical spatial 

dimensions, two-fold at least to cover both 3D axial and 3D polar types fundamentally within a 

physical xyz framework. We could then stick within the knitting of a suitable dimension base algebra, 

rather than achieving the required additional structure through tensor algebra rank increases or the like.  

This algebra must be true to the vector multiplication rules for axial like and polar like vectors. The 

vector product of two axial types is another axial type. In other words, the multiplication rules for the 

three basis elements partitioning axial type vectors must be closed. The vector product of two polar 

types is an axial type, so the multiplication rules for the three basis elements partitioning the polar types 

cannot be closed. We do however find product order permutations on one axial and two polar 

components is closed. The open polar type product rules are seen then to be appropriately defined by 

three additional closed basis triplet product rules, one for each included axial component.  

The general concept of 3D polar and axial types given by coordinate system orientation concerns 

should be supplanted with basis element triplet sets open and closed for multiplication respectively. 

When we shift to a higher dimension vector space and include a prescribed algebra defining 

multiplication of algebraic elements spanning this vector space, the simplistic right-handed/left-handed 

choice invariance to mathematical physics results must be supplanted by result invariance to any and 

all possible orientation choices defined by said algebra. For Octonion Algebra, I have called this The 

Law of Octonion Algebraic Invariance, (refs. [1], [2], [5]) stating the Octonion mathematical physics 

cover of any experimentally observable must be invariant across all possible 𝕆 algebra orientation 

changes.  
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To this end, we must carry the impact of orientation alternatives within our mathematical physics 

expressions, for only then we will not fall into the trap of developing theoretical results that might 

adversely change if the orientation of the algebra is changed up, or perhaps worse remain oblivious to 

the impact of orientation changes. We will be required to carry this structure below when methods to 

produce algebraic basis gauge transformations are developed, so it is important to fully understand how 

to do this before jumping in. 

One of the three required and fundamental rules defining an algebra tells us we can only combine 

coefficients attached to the same basis element when algebraic elements are added. When we concern 

ourselves with Algebraic Variance/Invariance, we find this is not good enough. We must additionally 

only add coefficients scaling identical basis elements if they have identical variance/invariance 

classification.  

The full complement of orientation options for every order 2n chain of hypercomplex algebras of order 

four and up are specified by a free choice between the two possible orientations for each of its 

Quaternion algebra/subalgebras. The non-Quaternion triplet type products (effectively real and 

complex subalgebra limited products) are unchanged for any orientation change within any such 

hypercomplex algebra, so we can fully classify 𝕆 orientation modified coefficients through the 

algebraic structure constants defining each of its Quaternion subalgebra triplet product rules.  

It is optimal to pick a single proper Octonion Algebra orientation and always use it within any 

Octonion mathematical expression. There is no loss of generality doing this if we carry, when needed, 

Quaternion subalgebra triplet structure constants with indexes ordered in the +1 orientation for the 

chosen algebra orientation. If we choose R0 as defined below, we would prefer the specification of the 

product c e2 * d e1 = –s123 cd e3 instead of c e2 * d e1 = +s213 cd e3 although both are correct as written 

and the latter is in line with the fundamental definition of the structure constants. This simplifies the 

task of evaluating products of structure constants.  

Clearly sabc sabc = +1. When we form the product of two different +1 ordered Quaternion subalgebra 

structure constants, they will always share a single common index, and their product result will be the 

third +1 ordered structure constant sharing that common index. Example for R0 defined +1 index order 

we have s572 s653 = s541 (see ref [5] to help here and below). Ordering the structure constants in the +1 

index order for a selected Octonion orientation obviates the need to track four separate index order 

possibilities for a product of two. These sign changes are instead processed identically as non-oriented 

scalars are, through products of their attached signs. 

This is the essence of what I have called the in-place Octonion Variance Sieve. Each formed product 

term carries not just its resultant basis element, but also the orientation choice variance as a 

characteristic that is updated each subsequent product throughout its product history. The update is 

done at the time each successive product is processed (an in-place computation). Reductions like trig 

identities and cancellation by otherwise sum of equal but opposite sign coefficients scaling the same 

basis element, can only be performed if the variance characteristic is the same in all product terms 

used. This gives results that naturally partition into 16 different possible variance categories: odd/even 

parity times eight from seven triplet orientations plus one not defined by any triplet orientation (e.g., 

sabc sabc = +1, e0 * en, en * en). The two parity choices are an odd or even count of applied oriented basis 

element products throughout the product term’s full product history. This accounts for the anti-

automorphism map between Right and Left Octonion Algebra orientations, where odd parity will yield 

a sign change and even parity will not.  

Any calculation can be performed this way within a single chosen Octonion orientation, and the final 

result can be mapped to what it would be if some other orientation was used by simply negating 

product terms whose variance triplet changes sign from that of the chosen algebra, mindful of parity 
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considerations.  

The set of product terms with even parity and no triplet designation are Octonion Algebraic Invariants, 

they will not change sign across all possible Octonion orientation choices. The set of product terms 

with odd parity and no triplet designation will be invariant within every Right or every Left Octonion, 

but will change sign with the anti-automorphism map between Right and Left. The remaining 14 sets of 

product terms may or may not change sign when specific Octonion orientation changes are made, but it 

is important to realize every product term within any variance set will change sign or not in like 

fashion.  

We could assign a value of zero to the sum of all signed product terms in each of the variance sets. 

Doing so would yield a result that is fully an Octonion algebraic invariant, since +0 = –0. I call these 

homogeneous equations of algebraic constraint. This methodology is important to an Octonion cover of 

physics, since observables must be algebraic invariants, and notions like confinement tell us some 

things may be arguably present but not observable. 

With just a little more background, we will finally be able to rip into the construction and utility of 

particular algebraic basis gauge transformations. The notion of time clearly has a dimensional home 

partitioned at least by e0, the Octonion scalar basis element. We need to double up on the three physical 

xyz dimensions, but have seven, not six non-scalar basis elements. This can be remedied by selecting 

one non-scalar basis element to be non-spatial in the physical 3D xyz sense. I submit that this is a free 

choice, but once made, the die is cast so to speak. My choice is e4. The four individually closed basis 

element triplet multiplication rules required to cover all products between axial types and polar types 

can find homes within an Octonion Algebra structure using the four of its seven Quaternion subalgebra 

triplets that do not include one non-scalar basis element, the one we assign as non-spatial.  

The Quaternion subalgebra triplet enumerations used here is the vastly superior one of 30 possible 

ways to do it, where the binary logic bit-wise exclusive-or of all three basis element indexes is zero 

(see ref [4]). Thus, their partitioning with optimal Q index enumeration is the following: 

Q1 = {e2 e4 e6} Q2 = {e1 e4 e5} Q3 = {e3 e4 e7}  

Q4 = {e1 e2 e3} Q5 = {e2 e5 e7} Q6 = {e1 e6 e7} Q7 = {e3 e5 e6}  

I call this enumeration n on Qn optimal because the three Q triplets any single non-scalar basis element 

en will appear in are indexed by the indexes of the three basis element members of Qn. As an example, 

intrinsic basis element e4 is found within Q1, Q2 and Q3 and the content of Q4 is {e1 e2 e3}. 

Having arbitrarily chosen e4 to not be part of the spatial xyz scene, we set our four required triplets to 

cover axial and polar type product rules to be Q4, Q5, Q6 and Q7, none of which include e4. We cannot 

determine which one of the four to associate with axial types, any one will do. Just like the choice of 

non-spatial non-scalar basis element, this remains a symmetry of the algebra, but maybe we need to do 

a little more work instead of simply picking one. If we can devise a algebraic basis gauge 

transformation that would map any single spatial triplet choice to any one of the other three, we might 

be able to “gauge out” this symmetry given to us by the fundamental structure of Octonion Algebra.  

We are given clues on how to do this within the group PSL(2,7), the automorphism group for the Fano 

Plane. The members of this group can be represented by 7x7 orthonormal permutation matrices where 

each row and column have a single +1 entry with remaining entries 0. Their determinants then are 

always +1. When we apply them to permute the set of seven non-scalar Octonion basis elements, this 

group gives us the full complement of basis element permutations that do not violate our triplet 

enumerations Qn, nor any attributes that qualify the algebra as proper Octonion. From the covariant 

derivative form invariance to gauge transformations analyzed above, the ability to use any of these 
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permutation matrices as a gauge transformation in the Ensemble Derivative matrix T validates its 

covariance for any Octonion orientation. 

Two n dimensional algebras are considered isomorphic if and only if their basis element multiplication 

tables are equivalent. One may exchange rows and columns of any multiplication table without 

changing any product rule, and any names given to the basis elements have no fundamental structural 

importance, they just need to be distinct. This tells us the map between any two isomorphic algebras is 

a permutation of basis elements. So we can rightfully call PSL(2,7) the automorphism group of any 

Octonion Algebra defined within a single enumeration of its seven Quaternion subalgebra triplets 

because it gives us the full group of consistent basis element permutations, hence the full complement 

of permutation maps between equivalent Octonion multiplication tables, hence the full set of Octonion 

Algebra orientation automorphisms.  

Understand here that we seek an algebraic basis gauge transformation that has precisely the same 

multiplication table the intrinsic basis element basis set has been given, not simply an equivalent one. 

Our bijection is en → gn. 

The 128 possible orientation choices for the seven Qn Quaternion subalgebras result in 16 proper 

Octonion Algebra orientations, and 112 that I have called Broctonion (Broken Octonion) forms, which 

are one Quaternion subalgebra orientation off of a proper Octonion form (see ref [7]). The 16 proper 

Octonion orientations partition chirally into two structurally different sets of eight: Right Octonion and 

Left Octonion. Every basis element permutation created by members of PSL(2,7) will map Right 

Octonion to Right Octonion, and Left Octonion to Left Octonion. No basis element permutation exists 

that will map between Right and Left, their basis element multiplication tables are not equivalent and 

hence they should not be strictly considered isomorphic algebras even though all 16 are proper 

Octonion normed composition division algebras.  

One could map between Right and Left Octonion by negating an odd number of basis elements, then 

absorbing these –1 values into the algebra structure constants, but it would be both foolish and 

incorrect to assume this does not change the structure of the Octonion Algebra fundamentally in an 

identifiable manner. In terms of our algebraic basis gauge transformation, the map between Right and 

Left would require the lower block diagonal portion of orthogonal matrix M to have determinant –1, 

not our +1 restriction that will keep things within the confines of the group PSL(2,7) which we will use 

below.  

This is not the case for Quaternion Algebra. Negating one or three non-scalar basis element negates the 

determinant of this transformation, but it is equivalent to a permutation exchanging two basis elements. 

All Quaternion multiplication tables are equivalent. The difference might be because any non-scalar 

basis element appears in three separate Quaternion subalgebra triplets that partially define Octonion 

orientation, or perhaps because Octonion Algebra has an orientable subalgebra whereas Quaternion 

Algebra does not. 

PSL(2,7) has 14 order 24 subgroups which are isomorphic to the symmetric group S4, the group of all 

permutations on four objects. Seven of these, label them Nx preserve basis element ex, one group for 

each of the seven non-scalar basis elements. The other seven, label them Tx preserve the set of basis 

elements within triplet Qx, one group for each of the seven triplets. For the moment we will focus on 

N4, the group of all basis element permutations that leave our selected non-spatial e4 alone.  

Both groups Nx and Tx have similar normal subgroups isomorphic to the Klein 4-group where non-

identity members include two separate transpositions of basis elements. The product of transposed 

basis elements in one transposition is within sign the product of basis elements in the other paired 

transposition. This common basis element product is the same for all three double transpositions within 
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each Nx definition and is the preserved ex. We have for group N4 the normal subgroup An defining the 

following permutation cycles where the product of each transposed element pair is ±e4: 

A0 = [I] (identity) A1 = [e1 e5] [e2 e6] A2 = [e1 e5] [e3 e7] A3 = [e2 e6] [e3 e7]  

These transform Q4, Q5, Q6 and Q7 paired with the set of remaining non-scalar basis elements 

excluding e4 as follows 

A0          A1               A2         A3 

{e1 e2 e3} :: {e5 e6 e7} →  {e5 e6 e3} :: {e1 e2 e7}      {e5 e2 e7} :: {e1 e6 e3}       {e1 e6 e7} :: {e5 e2 e3}   

{e5 e6 e3} :: {e1 e2 e7} →  {e1 e2 e3} :: {e5 e6 e7}      {e1 e6 e7} :: {e5 e2 e3}       {e5 e2 e7} :: {e1 e6 e3}   

{e5 e2 e7} :: {e1 e6 e3} →  {e1 e6 e7} :: {e5 e2 e3}      {e1 e2 e3} :: {e5 e6 e7}       {e5 e6 e3} :: {e1 e2 e7}   

{e1 e6 e7} :: {e5 e2 e3} →  {e5 e2 e7} :: {e1 e6 e3}      {e5 e6 e3} :: {e1 e2 e7}       {e1 e2 e3} :: {e5 e6 e7}   

This normal subgroup of N4 is seen to map any of our four declared pure spatial Q triplets to each of 

the other three pure spatial triplets. We are also shown how to correlate the pairing of basis elements for 

x, y and z physical dimensions. The two basis elements excluding e4 within each of Q1, Q2 and Q3 

define a pair of basis elements associated with one and the same physical x, y or z. In this way the 

product of e4 with any other non-scalar basis element reveals its pairing. 

We seek not replacements as done with these transpositions, but smooth continuous transformations on 

the intrinsic Octonion e basis set for our algebraic basis gauge transformation. To accomplish this, we 

will do equivalent angle rotations about e4 within both of the planes defined by the pair of transposed 

basis elements, a different angle for each of the three cycles shown.  

Start with the A1 smooth map, requiring rotations about e4 in the e1 e5 and e2 e6 planes by the same 

angle β3 with 𝕆 algebra specific orientations as indicated: 

e'1 = e1 cos(β3) – s541 e5 sin(β3) 

e'5 = e5 cos(β3) + s541 e1 sin(β3) 

e'2 = e2 cos(β3) + s642 e6 sin(β3) 

e'6 = e6 cos(β3) – s642 e2 sin(β3) 

From e'4 = s642 e'2 * e'6, e'3 = s123 e'1 * e'2, and e'7 = s761 e'6 * e'1, we have 

e'4 = e4 

e'3 = e3 

e'7 = e7 

Next do the A2 smooth map, rotations about e4 in the e1 e5 and e3 e7 planes by the same angle β2 but 

with 𝕆 algebra specific orientations as indicated: 

e''1 = e'1 cos(β2) + s541 e'5 sin(β2) 

e''5 = e'5 cos(β2) – s541 e'1 sin(β2) 

e''3 = e'3 cos(β2) – s743 e'7 sin(β2) 

e''7 = e'7 cos(β2) + s743 e'3 sin(β2) 

Determining e''2 e''4 and e''6 with products of these as done with A1 and writing e'a in terms of the 

intrinsic basis eb we have 

e''1 = e1 {cos(β2) cos(β3) + sin(β2) sin(β3)} + s541 e5 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

e''2 = e2 cos(β3) + s642 e6 sin(β3) 

e''3 = e3 cos(β2) – s743 e7 sin(β2) 
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e''4 = e4 

e''5 = e5 {cos(β2) cos(β3) + sin(β2) sin(β3)} – s541 e1 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

e''6 = e6 cos(β3) – s642 e2 sin(β3) 

e''7 = e7 cos(β2) + s743 e3 sin(β2) 

Finally, do the A3 smooth map, rotations about e4 in the e2 e6 and e3 e7 planes by the same angle β1 but 

with 𝕆 algebra specific orientation as indicated: 

g2 = e''2 cos(β1) – s642 e''6 sin(β1) 

g6 = e''6 cos(β1) + s642 e''2 sin(β1) 

g3 = e''3 cos(β1) + s743 e''7 sin(β1) 

g7 = e''7 cos(β1) – s743 e''3 sin(β1) 

Once again, determine g1, g4 and g5 with products of these, then write e''a in terms of the intrinsic basis 

eb to form the following definitions.  

g0 = e0 

g1 = e1 {cos(β2) cos(β3) + sin(β2) sin(β3)} + s541 e5 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

g2 = e2 {cos(β3) cos(β1) + sin(β3) sin(β1)} + s642 e6 {sin(β3) cos(β1) – cos(β3) sin(β1)} 

g3 = e3 {cos(β1) cos(β2) + sin(β1) sin(β2)} + s743 e7 {sin(β1) cos(β2) – cos(β1) sin(β2)} 

g4 = e4 

g5 = e5 {cos(β2) cos(β3) + sin(β2) sin(β3)} – s541 e1 {sin(β2) cos(β3) – cos(β2) sin(β3)} 

g6 = e6 {cos(β3) cos(β1) + sin(β3) sin(β1)} – s642 e2 {sin(β3) cos(β1) – cos(β3) sin(β1)} 

g7 = e7 {cos(β1) cos(β2) + sin(β1) sin(β2)} – s743 e3 {sin(β1) cos(β2) – cos(β1) sin(β2)} 

Make the angle assignments 

ζ1 = β2 – β3   

ζ2 = β3 – β1 

ζ3 = β1 – β2 

Our definitions for the N4 g basis algebraic gauge transformation may then be written as 

g0 = e0 

g1 = e1 cos(ζ1) + s541 e5 sin(ζ1) 

g2 = e2 cos(ζ2) + s642 e6 sin(ζ2) 

g3 = e3 cos(ζ3) + s743 e7 sin(ζ3) 

g4 = e4 

g5 = e5 cos(ζ1) – s541 e1 sin(ζ1) 

g6 = e6 cos(ζ2) – s642 e2 sin(ζ2) 

g7 = e7 cos(ζ3) – s743 e3 sin(ζ3) 

The transformation matrix defined here is seen to be orthonormal with +1 determinant, and every 

product combination of basis elements ga * gb, indicate the smooth map en → gm is an algebraic 

isomorphism. Note that from our definitions we have ζ1 + ζ2 + ζ3 = 0 identically, but actually 0 mod 2π 

will do just fine. This identity will be required for trigonometric reductions when demonstrating the g 

basis algebraic isomorphism with any initial intrinsic e basis Octonion Algebra orientation choice when 

using the ζ angle form of g in which the angle difference is only implicit, but the restriction is not 

required when using the β angle explicit form from which the identity follows. We will find below each 

of the β angles parametrize a free choice of any three points on the unit circle within the e0 – e4 plane, 

and there is no unique β angle choice that could be called the identity map. 
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Using the cyclic right +result, cyclic left –result ordered permutation triplet product rule (ea eb ec) 

which implies ea*eb = +ec, eb*ec = +ea, ec*ea = +eb, ec*eb = –ea, eb*ea = –ec, ea*ec = –eb indicating the 

orientation choice for any particular Quaternion subalgebra, Octonion Algebra R0 is defined by the 

following triplet orientations: 

(e6 e4 e2), (e5 e4 e1), (e7 e4 e3), (e1 e2 e3), (e5 e7 e2), (e7 e6 e1), (e6 e5 e3) 

For complete disclosure here, (ref [1] et.al.) the orientation change for any triplet is seen to be the order 

changing transposition of any two of its three basis elements, any of which changes the resultant sign of 

all six products, thus negating the rule. The optimal enumeration of the remaining seven Right 𝕆 

orientations Rn for n = 1 through 7 negates the four R0 orientation triplets that do not include en. The 

anti-automorphism map between Right and Left 𝕆 Rm ↔ Lm is the involution negating all seven 

triplet orientations. 

If we choose ζ1 = ζ2 = ζ3 = 0, the map en → gm is the identity map en = gn. 

For ζ1 = π  ζ2 =  –π/2  ζ3 =  –π/2 and 𝕆 algebra R0 

(g1 g2 g3) = (–e1 –e6 –e7) = (e7 e6 e1)   (g7 g6 g1) = (e3 e2 –e1) = (e1 e2 e3) 

(g5 g7 g2) = (–e5 e3 –e6) = (e6 e5 e3)   (g6 g5 g3) = (e2 –e5 –e7) = (e5 e7 e2) 

(g5 g4 g1) = (–e5 e4 –e1) = (e5 e4 e1)   (g6 g4 g2) = (e2 e4 –e6) = (e6 e4 e2) 

(g7 g4 g3) = (e3 e4 –e7) = (e7 e4 e3) 

For ζ1 = –π/2  ζ2 =  π  ζ3 =  –π/2 and 𝕆 algebra R0 

(g1 g2 g3) = (–e5 –e2 –e7) = (e5 e7 e2)   (g7 g6 g1) = (e3 –e6 –e5) = (e6 e5 e3) 

(g5 g7 g2) = (e1 e3 –e2) = (e1 e2 e3)   (g6 g5 g3) = (–e6 e1 –e7) = (e7 e6 e1) 

(g5 g4 g1) = (e1 e4 –e5) = (e5 e4 e1)   (g6 g4 g2) = (–e6 e4 –e2) = (e6 e4 e2) 

(g7 g4 g3) = (e3 e4 –e7) = (e7 e4 e3) 

For ζ1 =  –π/2  ζ2 = –π/2  ζ3 =  π and 𝕆 algebra R0 

(g1 g2 g3) = (–e5 –e6 –e3) = (e6 e5 e3)   (g7 g6 g1) = (–e7 e2 –e5) = (e5 e7 e2) 

(g5 g7 g2) = (e1 –e7 –e6) = (e7 e6 e1)   (g6 g5 g3) = (e2 e1 –e3) = (e1 e2 e3) 

(g5 g4 g1) = (e1 e4 –e5) = (e5 e4 e1)   (g6 g4 g2) = (e2 e4 –e6) = (e6 e4 e2) 

(g7 g4 g3) = (–e7 e4 –e3) = (e7 e4 e3) 

 

We can see for these particular angle selections meeting the sum to zero restriction, we map each of the 

three Quaternion subalgebra triplets that include e4 to themselves without orientation change, and map 

each of the four spatial only Quaternion subalgebra triplets excluding e4 to any one of the other three, 

and their resultant orientations stay within the R0 definition. Since the map en → gm is an algebraic 

isomorphism, demonstrating that each of the four Quaternion subalgebra triplets not including e4 

uniquely map to each of the other three one to one and onto for 𝕆 algebra R0, this mapping holds for 

every 𝕆 orientation.   

Holding ζ1, ζ2, and ζ3 fixed over all of 8-space makes this a global algebraic basis gauge 

transformation. A proper global basis gauge transformation must also exhibit form invariance when 

applied within the proper covariant derivative definition. Differentiation results expressed in the global 

transformed basis must end up explicitly independent of ζ1, ζ2, and ζ3 although these angles are implicit 

within the g definitions.  Moreover, to be form invariant, all trigonometric functions including ζ1, ζ2, 

and ζ3 must not appear directly within coefficients of the transformed representation since they are not 

present in the intrinsic basis presentation. From the analysis at the beginning of this document we can 

see this will be the case due to the fact our transformation matrix is orthonormal. Additional usefulness 

of the gauge transformation will come into play when ζ1, ζ2, and ζ3 can vary over 8-space, and thus 
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becoming a local basis gauge transformation. 

With this algebraic basis gauge transformation creating an algebraic basis isomorphism, we are now 

free to assign without preference nor privilege {g1 g2 g3} to be the 3D physical space axial basis 

(Quaternion subalgebra) triplet where the magnetic field lives, and {g5 g6 g7} to be the 3D physical 

space polar basis (not Quaternion subalgebra) triplet where the electric field lives.  

As it works out, there is an additional central force living in the same Quaternion subalgebra we placed 

the magnetic field in, the g basis subspace {g1 g2 g3}.  This is algebraically distinct from the 

charge/electric field central force living in the open set polar type basis defined by the g basis subspace 

{g5 g6 g7}. This fact is independent of whether or not we even do a gauge transformation. My money is 

on this being Gravitation using the classical potential function approach instead of space-time 

curvature, cleanly integrated with Electrodynamics. 

There is an alternate construction method that will simplify as well as illuminate things going forward. 

We can partition the eight Octonion basis elements into two equal size subspaces. One subspace holds 

the four basis elements of a Quaternion subalgebra. The remaining four basis elements do not form an 

algebra for numerous reasons, but their basis element product definitions can be used to generate the 

whole of the particular Octonion orientation. This set of four basis elements is commonly referred to as 

a “basic quad” for this reason. It is possible to perform manipulations on a basic quad set only, then 

legitimately and consistently complete the full new isomorphic algebra using products within basis 

elements of the modified basic quad, if the full set of basis element product rules are known or at least 

are specifiable. We did this above to complete the three rotations. Define the Quaternion subalgebra 

partition used below as {e0 e1 e2 e3}. Its basic quad is then the set {e4 e5 e6 e7}. 

We can recreate the N4 g basis gauge transformation just presented with the following three points on 

the circle group in the e0 e4 plane, noticing for this type of construction e4 is one member of our basic 

quad set. Because it is, we will have to exclude e4 from like modification just below since the result 

would include terms in basis element e0. As shown above, having scalar content kills any chance of a 

basis automorphism. Define these three different parametrizations of this unit circle as 

p5 = cos(ζ 1) e0 + sin(ζ 1) e4 

p6 = cos(ζ 2) e0 + sin(ζ 2) e4 

p7 = cos(ζ 3) e0 + sin(ζ 3) e4 

 

Once again, we require ζ1 + ζ2 + ζ3 = 0, and this notably gives us p5 * p6 * p7 = +1. 

We can now map the remaining three basic quad Octonion intrinsic basis elements excluding e4 to the 

same index gauge basis gm using the pm by forming the product gm = pm * em, in a manner of speaking, 

“fibering” over individual basis subspaces with different but relational cross sections of the same circle 

group. The result is: 

g5 = p5 * e5 = cos(ζ1) e0 * e5 + sin(ζ1) e4 * e5 = cos(ζ1) e5 – s541 sin(ζ1) e1 

g6 = p6 * e6 = cos(ζ2) e0 * e6 + sin(ζ2) e4 * e6 = cos(ζ2) e6 – s642 sin(ζ2) e2 

g7 = p7 * e7 = cos(ζ3) e0 * e7 + sin(ζ3) e4 * e7 = cos(ζ3) e7 – s743 sin(ζ3) e3 

 

These are identical to the gauge basis mappings {g5 g6 g7} above using the first approach. We can now 

use basic quad algebraic completion to generate the proper automorphism forms for the non-scalar 

basis element set {g1 g2 g3} using products of pairs in the set {g5 g6 g7} as follows using the restriction 

ζ1 + ζ2 + ζ3 = 0: 

g1 = s761 g7 * g6 = cos(ζ1) e1 + s541 sin(ζ1) e5 
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g2 = s572 g5 * g7 = cos(ζ2) e2 + s642 sin(ζ2) e6 

g3 = s653 g6 * g5 = cos(ζ3) e3 + s743 sin(ζ3) e7 

The process does not define g0 and g4 so leaving these equal to their same index intrinsic basis elements 

we reproduce the whole of our N4 group g algebraic basis gauge transformation developed above. 

We finish up now on Nx type automorphisms with their general requirements. We have found these 

types take three different parametrizations of the same circle group using the complex subalgebra 

including one of the four basic quads, then scales the other three basic quad elements uniquely pairing 

one circle group with each. Taking the three simply as different complex numbers instead, working 

again with N4, define U = u0 e0 + u4 e4, V = v0 e0 + v4 e4, and W = w0 e0 + w4 e4. Next form the general 

automorphic forms as above: g5 = U * e5, g6 = V * e6 and g7 = W * e7. Using basic quad algebraic 

completion, form g1, g2 and g3 leaving g0 = e0 and g4 = e4. We can then form equations of constraint on 

U, V and W in order to have a proper automorphism from all unique solutions to equations given by 

ga * gb – sabc gc = 0 the null Octonion. 

All are satisfied by the following restrictions on the u, v and w coefficients: 

u0
2 + u4

2 = 1 v0
2 + v4

2 = 1 w0
2 + w4

2 = 1 

–u4 = v0 w4 + v4 w0 –v4 = u0 w4 + u4 w0 –w4 = u0 v4 + u4 v0  

u0 = v0 w0 – v4 w4 v0 = u0 w0 – u4 w4 w0 = u0 v0 – u4 v4  

The first row is satisfied with  

U = cos(θ) e0 + sin(θ) e4,  V = cos(φ) e0 + sin(φ) e4  W = cos(γ) e0 + sin(γ) e4  

Inserting into the next two rows we have the two groupings 

–sin(θ) = cos(φ) sin(γ) + sin(φ) cos(γ) = sin(φ + γ) → (φ + γ) = –(θ) 

–sin(φ) = cos(γ) sin(θ) + sin(γ) cos(θ) = sin(γ + θ) → (γ + θ) = –(φ) 

–sin(γ) = cos(θ) sin(φ) + sin(θ) cos(φ) = sin(θ + φ) → (θ + φ) = –(γ) 

cos(θ) = cos(φ) cos(γ) – sin(φ) sin(γ) = cos(φ + γ) → (φ + γ) = ±(θ) 

cos(φ) = cos(γ) cos(θ) – sin(γ) sin(θ) = cos(γ + θ) → (γ + θ) = ±(φ) 

cos(γ) = cos(θ) cos(φ) – sin(θ) sin(φ) = cos(θ + φ) → (θ + φ) = ±(γ) 

These last two groupings are satisfied by the restriction (θ + φ + γ) = 0. This is comparable to what we 

found above. The extensive nature of the restrictions might make it difficult to form a different style of 

N4 solution for the u, v and w coefficients. We perhaps only have flexibility in angle choices within the 

restriction that they sum to 0 mod 2π.  

The identity transformation requires ζ1 = ζ2 = ζ3 = 0. Replaying their source 

ζ1 = β2 – β3   

ζ2 = β3 – β1 

ζ3 = β1 – β2 

We see there is no preferred identity transformation choice for βn. 

Moving on now to the other seven order 24 subgroups of PSL(2,7) that preserve Quaternion subalgebra 

triplets, their order 4 normal subgroup non-identity members are also characterized by two basis 

element transpositions, now exclusively utilizing pairs of the basic quad set associated with the 
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preserved Quaternion triplet. The group Tn is enumerated by the index n associated with the preserved 

triplet Qn as defined above. The product of the two basis elements in each of the paired transpositions is 

bijectively within sign one of the basis elements in the preserved triplet. T4 is intimately related to N4 

just covered in some detail, so we will proceed with it. Group T4 preserves the triplet Q4 = {e1 e2 e3}. 

Its basic quad set is {e4 e5 e6 e7}. Its Klein 4-group normal subgroup is: 

A0 = [I] (identity) A1 = [e4 e5] [e6 e7] A2 = [e4 e6] [e5 e7] A3 = [e4 e7] [e5 e6]  

To generate smooth maps instead of basis element exchanges we now follow the same path of rotations 

about the basis element given by the product of the two transposed basis elements, in the planes defined 

by them. For these An, n not 0 the product of transposed basis elements in each paired transposition is 

within sign en. Unlike Nx these rotation circle groups lie exclusively within the Quaternion subalgebra 

of the preserved triplet rather than using any member of the basic quad partition. We can again fiber 

over the basic quad subspace, but now since the fibers are external to the basic quad, we can take the 

whole basic quad set as the subspace fibered over, since we will not produce any content scaling an e0 

basis preventing an automorphism result. Rather than follow the laborious path of different circle group 

scalings, we can cut to the chase so to speak by examining the general requirements to create this type 

of algebraic basis gauge automorphism similar to the general considerations above with the group N4. 

Since our fiber fully resides within the Q4 triplet Quaternion subalgebra, specify a generic simple 

Quaternion for it. Let F = f0 e0 + f1 e1 + f2 e2 + f3 e3. Fiber over the basic quad subspace with F to form 

the automorphic products gn = F*en for n: 4 to 7. Next do the basic quad algebraic completion to 

generate g1, g2 and g3 leaving g0 = e0. We require F to generate an algebraic automorphism so we must 

once again insist on the following which will generate equations of constraint on F: 

ga * gb – sabc gc = 0 the null Octonion. 

Doing the math, we will find all unique equations are satisfied by simply requiring the norm of F := |F| 

=1. Any but clearly not all of the f coefficients may be zero.  

All four basic quad elements appear in each of our three normal subgroup dual transpositions, and each 

of the three dual transpositions indicate using smooth maps about each of the three basis elements of 

Q4. This suggests scaling all four basic quads by three circle groups defined in separate {e0  en} 

complex subalgebras for n: 1 to 3, which we will define as rotations that are oriented as the preserved 

Quaternion subalgebra is: 

c1 = cos(α1/2) e0 – s123 sin(α1/2) e1  

c2 = cos(α2/2) e0 – s123 sin(α2/2) e2  

c3 = cos(α3/2) e0 – s123 sin(α3/2) e3  

The use of half angles will be justified shortly. We actually could fiber over the basic quad subspace 

with any of these individually, any product of two of them, or products of all three since each of these 

will be unity norm. The resultant basic quad gauge transformation basis set {g4 g5 g6 g7} is then used 

within basic quad algebraic completion to form the Quaternion subalgebra set {g1 g2 g3}. Form the 

product of all three as R4 = c1 * c2 * c3: 

R4 = 

+cos(α1/2) cos(α2/2) cos(α3/2) e0  

+sin(α1/2) sin(α2/2) sin(α3/2) e0  

–s123 sin(α1/2) cos(α2/2) cos(α3/2) e1  

+s123 cos(α1/2) sin(α2/2) sin(α3/2) e1  

–s123 cos(α1/2) sin(α2/2) cos(α3/2) e2  
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–s123 sin(α1/2) cos(α2/2) sin(α3/2) e2  

–s123 cos(α1/2) cos(α2/2) sin(α3/2) e3  

+s123 sin(α1/2) sin(α2/2) cos(α3/2) e3  

Unrestricted, R4 can be seen to be an 8-fold cover of the 3-sphere. This can easily be seen by 

examination of the antipodal points on the 3-sphere ±e0, ±e1, ±e2, ±e3, where each will have multiple 

{α1/2 α1/2 α1/2} solution sets. This multiple cover cannot be fully reduced, since the 3-sphere is 

topologically distinct from the product (Quaternion or cartesian product) of three circles. It is instead a 

Quaternion 3-torus. Set this aside for now. Fibering over the {e4 e5 e6 e7} basic quad subspace with R4 

creates the basic quad gauge transformation basis set {g4 g5 g6 g7} given by 

g4 = 

+cos(α1/2) cos(α2/2) cos(α3/2) e4  

+sin(α1/2) sin(α2/2) sin(α3/2) e4  

+s761 sin(α1/2) cos(α2/2) cos(α3/2) e5  

–s761 cos(α1/2) sin(α2/2) sin(α3/2) e5  

+s572 cos(α1/2) sin(α2/2) cos(α3/2) e6  

+s572 sin(α1/2) cos(α2/2) sin(α3/2) e6  

+s653 cos(α1/2) cos(α2/2) sin(α3/2) e7  

–s653 sin(α1/2) sin(α2/2) cos(α3/2) e7  

 

g5 = 

–s761 sin(α1/2) cos(α2/2) cos(α3/2) e4  

+s761 cos(α1/2) sin(α2/2) sin(α3/2) e4  

+cos(α1/2) cos(α2/2) cos(α3/2) e5  

+sin(α1/2) sin(α2/2) sin(α3/2) e5  

–s743 sin(α1/2) sin(α2/2) cos(α3/2) e6  

+s743 cos(α1/2) cos(α2/2) sin(α3/2) e6  

–s642 sin(α1/2) cos(α2/2) sin(α3/2) e7  

–s642 cos(α1/2) sin(α2/2) cos(α3/2) e7  

 

g6 = 

–s572 cos(α1/2) sin(α2/2) cos(α3/2) e4  

–s572 sin(α1/2) cos(α2/2) sin(α3/2) e4  

+s743 sin(α1/2) sin(α2/2) cos(α3/2) e5  

–s743 cos(α1/2) cos(α2/2) sin(α3/2) e5  

+cos(α1/2) cos(α2/2) cos(α3/2) e6  

+sin(α1/2) sin(α2/2) sin(α3/2) e6  

–s541 cos(α1/2) sin(α2/2) sin(α3/2) e7  

+s541 sin(α1/2) cos(α2/2) cos(α3/2) e7  

 

g7 = 

–s653 cos(α1/2) cos(α2/2) sin(α3/2) e4  

+s653 sin(α1/2) sin(α2/2) cos(α3/2) e4  

+s642 sin(α1/2) cos(α2/2) sin(α3/2) e5  

+s642 cos(α1/2) sin(α2/2) cos(α3/2) e5  

+s541 cos(α1/2) sin(α2/2) sin(α3/2) e6  

–s541 sin(α1/2) cos(α2/2) cos(α3/2) e6  

+cos(α1/2) cos(α2/2) cos(α3/2) e7  

+sin(α1/2) sin(α2/2) sin(α3/2) e7  
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Next use these four basic quads within the basic quad algebraic completion to form the Quaternion 

gauge transformation subalgebra set {g1 g2 g3}. 

g1 = s541 g5 * g4 

g2 = s642 g6 * g4 

g3 = s743 g7 * g4 

The result including the trivial g0 map is: 

g0 = e0 

g1 = 

+cos(α2) cos(α3) e1  

+cos(α2) sin(α3) e2  

–sin(α2) e3   

 

g2 = 

+sin(α1) sin(α2) cos(α3) e1  

–sin(α3) cos(α1) e1  

+cos(α1) cos(α3) e2  

+sin(α1) sin(α2) sin(α3) e2  

+sin(α1) cos(α2) e3  

g3 = 

+sin(α1) sin(α3) e1  

+sin(α2) cos(α1) cos(α3) e1  

+cos(α1) sin(α2) sin(α3) e2  

–sin(α1) cos(α3) e2  

+cos(α1) cos(α2) e3  

Notice for the set {g1 g2 g3}, we have converted all half angles to full angles. These forms are a 

representation of an algebraic invariant Euler Angle basis for the Quaternion subalgebra defined by the 

preserved triplet. If our initial definitions for c1, c2 and c3 were not oriented by the structure constant 

s123 this would not be the case, particular portions of the Euler Angles would indicate orientations. 

Either way, the transformation matrix for this g basis is seen to be orthonormal as required. 

If we used a different product order for the creation of R4 = c1 * c2 * c3, the basic quad g forms will 

have some sign changes and we will shuffle the representations of Euler Angles. All basic quads will 

remain in terms of half-angles, and all Euler Angle bases will be in terms of full angles. Every full 

gauge basis transformation representation will be an isomorphism with the chosen intrinsic e basis 

Octonion orientation. The different Euler Angle representations are the Octonion equivalent of the 

three-dimensional fact that three rotations performed on an ordinary vector will not result in the same 

outcome if the order of rotation is changed. This is the genesis of the different known forms for 

common cartesian Euler Angle transformations. Different generating rotation order and directions lead 

to different forms, but all should generally be considered proper Euler Angle representations. 

Our algebraic basis gauge transformations have been presented as transformations directly on the 

intrinsic basis set e producing algebraic automorphisms/isomorphisms. As such, call them primary 

algebraic automorphisms. If we have two primary algebraic automorphisms defined as ai = Aij ej and bi 

= Bij ej we can form a composition of these by either replacing all en in am with bn or by replacing all en 

in bm with an. We can see both will result in another algebraic automorphism by writing out each 

replacement: 
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a`i = Aij Bjk ek = Cik ek where C is the matrix product A*B 

b`i = Bij Ajk ek = Dik ek where D is the matrix product B*A 

The requirement on A, B, C and D forming an algebraic automorphism is they must be orthonormal 

matrices. Matrices A and B are given to be orthonormal, and C and D will also be orthonormal since 

the matrix product of two orthonormal matrices will always be orthonormal. 

The two will not generally have the same result since matrix products generally do not commute, so the 

same holds for this composition. Call the composition of two primary algebraic automorphisms a 

secondary algebraic automorphism. For completeness defining terms used below, take the next step 

and define a tertiary algebraic automorphism as the composition of a primary and a secondary 

algebraic automorphism. Clearly this composition process can be repeated ad nauseum without any 

limitation on the two being composed other than both being proper algebraic automorphisms. 

The flexibility afforded by the norm +1 Tn type subgroups fibration over its basic quad subspace with 

basic quad algebraic completion bolts up nicely to to the composition process just outlined. To see this, 

let’s take the T4 group consideration one circle group at a time rather than subspace fibering with the 

triple product R4 = c1 * c2 * c3. Repeating the definitions for our three unit circles we have: 

c1 = cos(α1/2) e0 – s123 sin(α1/2) e1  

c2 = cos(α2/2) e0 – s123 sin(α2/2) e2  

c3 = cos(α3/2) e0 – s123 sin(α3/2) e3  

Taking these one at a time, fibering with each over the full intrinsic basis basic quad subspace then 

doing the basic quad algebraic completion, the results are as follows: 

c1g0 = e0   

c1g1 = e1   

c1g2 = cos(α1) e2 + sin(α1) e3      

c1g3 = cos(α1) e3 – sin(α1) e2   

c1g4 = cos(α1/2) e4 + s761 sin(α1/2) e5   

c1g5 = cos(α1/2) e5 – s761 sin(α1/2) e4   

c1g6 = cos(α1/2) e6 + s541 sin(α1/2) e7   

c1g7 = cos(α1/2) e7 – s541 sin(α1/2) e6   

c2g0 = e0   

c2g1 = cos(α2) e1 – sin(α2) e3      

c2g2 = e2   

c2g3 = cos(α2) e3 + sin(α2) e1   

c2g4 = cos(α2/2) e4 + s572 sin(α2/2) e6   

c2g5 = cos(α2/2) e5 – s642 sin(α2/2) e7   

c2g6 = cos(α2/2) e6 – s572 sin(α2/2) e4   

c2g7 = cos(α2/2) e7 + s642 sin(α2/2) e5   

c3g0 = e0   

c3g1 = cos(α3) e1 + sin(α3) e2      

c3g2 = cos(α3) e2 – sin(α3) e1   

c3g3 = e3   

c3g4 = cos(α3/2) e4 + s653 sin(α3/2) e7   

c3g5 = cos(α3/2) e5 + s743 sin(α3/2) e6   

c3g6 = cos(α3/2) e6 – s743 sin(α3/2) e5   



© Richard Lockyer October 2022                     All Rights Reserved                       page 17 

c3g7 = cos(α3/2) e7 – s653 sin(α3/2) e4   

Just as with the subspace fibration using R4 we see the basic quad half angles are converted to whole 

angles in the algebraic invariant preserved Quaternion subalgebra components. All three can be seen to 

be algebraic isomorphisms with any chosen intrinsic basis element algebra. Algebraic basis gauge 

transformation cng is seen to be a rotation by full angle about en within the plane defined by the other 

two triplet members of the preserved Quaternion subalgebra Q4. This gauge transformation also 

includes two rotations by half angle about en in the two planes orthogonal to en defined by the pairs of 

basic quad members for Q4 whose products are both within sign en. 

Now create a secondary automorphism by replacing each en in c2g with c3gn. Call the result c23g which 

follows: 

c23g0 = e0   

c23g1 = +cos(α2) cos(α3) e1 + cos(α2) sin(α3) e2 – sin(α2) e3      

c23g2 = –sin(α3) e1 + cos(α3) e2  

c23g3 = +sin(α2) cos(α3) e1 + sin(α2) sin(α3) e2 + cos(α2) e3     

c23g4 =  

+cos(α2/2)cos(α3/2) e4 – s761 sin(α2/2)sin(α3/2) e5 + s572 sin(α2/2)cos(α3/2) e6 + s653 cos(α2/2)sin(α3/2) e7   

c23g5 =  

+s761 sin(α2/2)sin(α3/2) e4 + cos(α2/2)cos(α3/2) e5 + s743 cos(α2/2)sin(α3/2) e6 – s642 sin(α2/2)cos(α3/2) e7   

c23g6 =  

–s572 sin(α2/2)cos(α3/2) e4 – s743 cos(α2/2)sin(α3/2) e5 + cos(α2/2)cos(α3/2) e6 – s541 sin(α2/2)sin(α3/2) e7   

c23g7 =  

–s653 cos(α2/2)sin(α3/2) e4 + s642 sin(α2/2)cos(α3/2) e5 + s541 sin(α2/2)sin(α3/2) e6 + cos(α2/2)cos(α3/2) e7   

Now form the product of these two circle groups c2 * c3, call = c23, we have the following: 

c23 =  

+cos(α2/2)cos(α3/2) e0 + s123 sin(α2/2)sin(α3/2) e1 – s123 sin(α2/2)cos(α3/2) e2 – s123 cos(α2/2)sin(α3/2) e3   

If we now fiber over the subspace (e4 + e5 + e6 + e7) with c23 we will find c23 * en = c23gn above for n: 

4,5,6,7. As we did for fibering with R4, do the basic quad algebraic completion for n: 1,2,3. Doing so 

reproduces the totality of c23g we originally derived as a secondary algebraic automorphism 

composition. c23 can be seen to be a Quaternion 2-torus, the Quaternion product of two circles.  

Notice that c23g1, c23g2 and c23g3 are an algebraic invariant representation of a spherical-polar 

orthonormal (θ, φ, r) basis respectively, indeed a standard 3D basis representation of the 2-sphere for r 

= 1. Thus, we have an algebraic method to embed the Quaternion 2-torus in 4D to the 2-sphere in a 3D 

representation, all within an Octonion Algebra framework. Keep in mind the use of half angles in the 

circle groups. If we use the full circles in both circles of the 2-torus, αn ranges from 0 to 4π which does 

more than a double cover of the 2-sphere. 

This Octonion representation of a spherical-polar orthonormal (θ, φ, r) basis embedded in the 

Quaternion subalgebra is extremely interesting and important. When a 3D cartesian xyz basis is 

mapped to a spherical-polar basis, or equivalently restricting the covariant Ensemble Derivative to a 

Quaternion subalgebra with a similar transformation, the Jacobian of the transformation is r2 sin(θ) 

which is obviously zero for r=0 or sin(θ)=0. This is problematic, and the typical approach is to simply 

turn a blind eye to it. When we cast classical spherical-polar coordinates as a Quaternion subalgebra of 

an Octonion Algebra algebraic basis gauge transformation, the Jacobian is identically +1 or c = the 

speed of light, independent of any angle or radius. 20-20 vision eyes wide open, no problem in sight. 
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If we now multiply c23 on the left by c1 the result will be R4 from above. We might expect, and indeed 

it is true that forming a circle group tertiary automorphism by the composition replacing all en in c1g 

with the secondary automorphism c23gn reproduces the T4 group algebraic basis gauge transformation g 

above. So, we see this g is reduceable, it is the composition of three circle group automorphisms just as 

R4 is the Quaternion triple product of the same circle groups.  

Following the logic above for an algebraic method for embedding the Quaternion 4D 2-torus into the 

3D 2-sphere, we can say that the T4 group basis gauge transformation g1, g2 and g3 are also an algebraic 

embedding. As mentioned above, R4 appears Quaternion 3-torus. This is embedded into a 3D 

representation as a doubled angle Euler Angle representation. Again, with the use of half angles in the 

three circle groups, using the full circle causes αn to range from 0 to 4π, which does more than a double 

cover of the Euler angle representation. The prudent thing to do is probably limiting the range of the 

angles meaningful for single covers of spherical-polar or Euler Angle bases, and thus restricting the 

range of the circle group parametrizations whose products source the fibers over the basic quad g 

subspace. 

Setting α1 = 0 in this particular Euler angle representation clearly will reproduce the c23g algebraic 

basis element gauge transformation appropriately covering a spherical-polar orthonormal basis within 

the preserved Quaternion subalgebra triplet. One could say these Euler Angle and spherical-polar forms 

are compatible or mutually appropriate. 

In conclusion, the basic quad subspace fibration with basic quad algebraic completion method provides 

a beautiful and general method to create algebraic basis gauge transformations.  

The Nx group gauge transformations can either be explicitly carried in the Octonion mathematical 

physics, or more simply its ability to gauge out the symmetries that give four equivalent choices to 

place 3D physical entity types within closed set multiplication rules, justifies this assignment being a 

free choice along with the free choice of non-spatial basis element. Inclusion is obviously required if 

this gauge is desired to be a local gauge, and not required in the case of a global gauge where form 

invariance makes it a moot point. 

The T4 group gauge transformations do not require a non-spatial basis element choice. Instead, the 

physical spatial-temporal space is a Quaternion subalgebra, and its basic quad set in its entirety may be 

considered required extra-spatial. The common 3D Euler Angle and spherical-polar basis 

representations are perhaps more meaningful when embedded within the direct physical Quaternion 

subalgebra of a full Octonion Algebra mathematical physics representation. Pathological issues caused 

by zero valued transformation Jacobians leading to x/0 coefficients are avoided since being a proper 

algebraic basis gauge transformation, the full Octonion transformation has a Jacobian that is always an 

extremely nice non-zero +constant value, +1 or +c. 
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