A Problem on Sums of Powers

Suaib Lateef

Oke Oore, Iwo, Osun State, Nigeria.
lateefholuyinka@gmail.com

1 Problem Statement

The motivation for the problem to be presented is based on Newton's identity which states that

$$
\sum_{i=k-n}^{k}(-1)^{i-1} e_{k-i}\left(x_{1}, \ldots, x_{n}\right) p_{i}\left(x_{1}, \ldots, x_{n}\right)=0
$$

for all $k>n \geq 1$, where $e_{k}\left(x_{1}, \ldots, x_{n}\right)$, for $k \geq 0$, is the sum of all distinct products of k distinct variables, and $p_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{k}$, where $k \geq 1$.

2 Problem

For $n \geq 3$, if

$$
\begin{gathered}
\sum_{k=1}^{n-1} x_{k}=y_{1}=2 n-2, \\
\sum_{k=1}^{n-1} x_{k}^{2}=y_{2}=3 n-2, \\
\sum_{k=1}^{n-1} x_{k}^{3}=y_{3}=4 n-2, \\
\vdots \\
\sum_{k=1}^{n-1} x_{k}^{n-1}=y_{n-1}=n^{2}-2,
\end{gathered}
$$

then

$$
\sum_{k=1}^{n-1} x_{k}^{n}=y_{n}=n^{2}+n-2 .
$$

Essentially, $y_{1}, y_{2}, y_{3} \ldots y_{n}$ are in arithmetic progression(A.P) whose first term is $2 n-2$ and common difference is n.

3 Special Cases

CASE $\mathbf{n}=3$:

We see when $n=3$ that

$$
\begin{aligned}
& x_{1}+x_{2}=4 \\
& x_{1}^{2}+x_{2}^{2}=7
\end{aligned}
$$

Now, we need to show that $x_{1}^{3}+x_{2}^{3}=10$.
We know that

$$
\begin{gather*}
x_{1}^{3}+x_{2}^{3}=\left(x_{1}+x_{2}\right)^{3}-3 x_{1} x_{2}\left(x_{1}+x_{2}\right) \\
\left(x_{1}^{3}+x_{2}^{3}\right)=64-12 x_{1} x_{2} \tag{1}
\end{gather*}
$$

Also, we know that

$$
\begin{gather*}
\left(x_{1}+x_{2}\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}\right)=2 x_{1} x_{2} \\
4^{2}-7=2 x_{1} x_{2} \\
x_{1} x_{2}=\frac{9}{2} \tag{2}
\end{gather*}
$$

Putting (2) in (1), we see that

$$
x_{1}^{3}+x_{2}^{3}=10
$$

And indeed,

$$
\begin{gathered}
\left(\frac{4+i \sqrt{2}}{2}\right)+\left(\frac{4-i \sqrt{2}}{2}\right)=4 \\
\left(\frac{4+i \sqrt{2}}{2}\right)^{2}+\left(\frac{4-i \sqrt{2}}{2}\right)^{2}=7 \\
\left(\frac{4+i \sqrt{2}}{2}\right)^{3}+\left(\frac{4-i \sqrt{2}}{2}\right)^{3}=10
\end{gathered}
$$

CASE $\mathrm{n}=4$:

We see when $n=4$ that

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=6 \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=10 \\
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=14
\end{gathered}
$$

Now, we need to show that $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=18$.
We know that

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left(x_{1}+x_{2}+x_{3}\right)^{2}-2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right) \\
10=36-2\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)
\end{gathered}
$$

$$
\begin{gather*}
x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}=13, \\
\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)^{2}=169 \\
x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)=169, \\
x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}+12 x_{1} x_{2} x_{3}=169 \\
\frac{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{2}-\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right)}{2}+12 x_{1} x_{2} x_{3}=169 . \tag{3}
\end{gather*}
$$

Also, we know that

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3 x_{1} x_{2} x_{3}=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{2} x_{3}-x_{1} x_{3}\right),
$$

we have

$$
\begin{align*}
14-3 x_{1} x_{2} x_{3} & =6(10-13), \\
x_{1} x_{2} x_{3} & =\frac{32}{3} . \tag{4}
\end{align*}
$$

Putting (4) into (3), we have

$$
\begin{gathered}
\frac{10^{2}-\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right)}{2}+12\left(\frac{32}{3}\right)=169 \\
x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=18
\end{gathered}
$$

And indeed, if

$$
\alpha=\sqrt[3]{\frac{1}{3}+\frac{2 \sqrt{3}}{9}}+\sqrt[3]{\frac{1}{3}-\frac{2 \sqrt{3}}{9}}+2
$$

then

$$
\begin{aligned}
& \alpha+\left(\frac{-3 \alpha(\alpha-6)+i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)+\left(\frac{-3 \alpha(\alpha-6)-i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)=6, \\
& \alpha^{2}+\left(\frac{-3 \alpha(\alpha-6)+i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{2}+\left(\frac{-3 \alpha(\alpha-6)-i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{2}=10, \\
& \alpha^{3}+\left(\frac{-3 \alpha(\alpha-6)+i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{3}+\left(\frac{-3 \alpha(\alpha-6)-i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{3}=14, \\
& \alpha^{4}+\left(\frac{-3 \alpha(\alpha-6)+i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{4}+\left(\frac{-3 \alpha(\alpha-6)-i \sqrt{384 \alpha-(3 \alpha(\alpha-6))^{2}}}{6 \alpha}\right)^{4}=18 .
\end{aligned}
$$

4 Conclusion

We have proven the special cases $n=3$ and $n=4$ of our claim. To prove higher cases of n using the method used here(which is inefficient to prove all the cases of n) is long and complicated. We hope a profound technique will be used to prove every integer n.

References

[1] 'Newton's identities' (2022) Wikipedia. Available at: https://en.m.wikipedia.org/wiki/Newton\'s_ identities (Accessed: September 5, 2022)

