Elementary proof of Fermat-Wiles' Theorem by Ahmed Idrissi Bouyahyaoui

Fermat-Wiles' Theorem:

(1) « the equality $x^n+y^n=z^n$, with $n, x, y, z \in N^*$, is impossible for n>2. »

Abstract of proof:

In the division of $x^n = z^n - y^n$ by $x^{n-1} = az^{n-1} - by^{n-1}$, $(a,b) \in Z^2$, remainder must be zero implying the equality $b^2 y^{n-2} = a^2 z^{n-2}$ which is impossible for n>2 since $x^{n-1} = az^{n-1} - by^{n-1}$ and x, y, z are coprim numbers.

The application of the procedure scheme of Euclidian division until remainder equal to z^n - y^n , and the evaluation of remainders and partial quotients allow to obtain the unique remainder which can and must be equal to zero.

We suppose x, y and z are coprim numbers.

Given gcd(y,z)=1 and the corollary of the Bachet's theorem (1624), it exists two relative integers a and b such that :

(2)
$$x^{n-1} = az^{n-1} - bv^{n-1}$$

ahmed.idrissi@free.fr

In the division (z^n-y^n) : $(az^{n-1}-by^{n-1})$ $(x=x^n/x^{n-1})$ remainder must be zero.

Let us put the division and carry out the operations until obtain the remainder equal to dividend $z^n - y^n$ and then obtain the candidate remainders to be zero.

$$x^{n} = z^{n} - y^{n} \qquad | x^{n-1} = az^{n-1} - by^{n-1} - z^{n} + (b/a)zy^{n-1} \qquad z/a + y/b - z/a - z/a + y/b - z/a -$$

INPI - Paris (France)

Evaluation of remainders and partial quotients:

If the remainder R_0 is zero then the quotient is x = z/a, so ax = z, which is impossible since gcd(x,z)=1.

If the remainder R_2 is zero then the quotient is x = z/a + y/b-z/a = y/b, so bx = y, which is impossible since gcd(x,y)=1.

$$R_3 = z^n - y^n \neq 0$$
, $x, y, z \in N^*$ and $gcd(y,z)=1$.

The application of the procedure scheme of the Euclidean division allowed to obtain the remainders and the remainder which can and must be zero is unique and obtained by deduction: three remainders out of the four obtained cannot be equal to zero.

So the problem of the existence of unique remainder zero does not arise.

Therefore only the remainder R₁ can and must be equal to zero:

(3)
$$R_1 = (b/a)zy^{n-1} - (a/b)yz^{n-1} = ((b/a)y^{n-2} - (a/b)z^{n-2})yz = 0$$

So $(b/a)y^{n-2} - (a/b)z^{n-2} = 0$ which implies the equality:

(4)
$$b^2 y^{n-2} = a^2 z^{n-2}$$

where, for n>2, as gcd(y,z)=1, y divides a^2 and z divides b^2 , so gcd(a,y)>1 and gcd(b,z)>1.

Then, according to the equality $x^{n-1} = az^{n-1} - by^{n-1}$ (2), gcd(a,y) > 1 => gcd(x,y) > 1 and gcd(b,z) > 1 => gcd(x,z) > 1, but gcd(x,y) = gcd(x,z) = 1 (hypothesis).

Therefore, the equalities $b^2y^{n-2} - a^2z^{n-2} = 0$ (R), $x^{n-1} = az^{n-1} - by^{n-1}$ (d), $x^n = z^n - y^n$ (D) are impossible for n>2.

Division with integer numbers:

$$a * z^{n} - y^{n}$$
 (D₀) | $az^{n-1} - by^{n-1}$ (d)

$$z + ay -bz + bz$$

$$-az^{n} + bzy^{n-1}$$

 $-az^{n} + bzy^{n-1}$ as we have multiplied D_0 by a, then D_1 by b,

we have z/a + ay/ab - bz/ab + bz/ab

Evaluation of remainders and partial quotients:

$$b * bzy^{n-1} - ay^{n} (D_1)$$

b * bzyⁿ⁻¹ - ayⁿ (D₁)
$$R_0 = 0 \Rightarrow (q) = x = z/a \Rightarrow ax = z \Rightarrow R_0 \neq 0$$

$$D_1=R_0= => b^2zy^{n-1} - aby^n$$

 $-a^2yz^{n-1} + aby^n$

>>>
$$R_1$$
= $b^2zy^{n-1} - a^2yz^{n-1}$ (D₂) R_1 =0 => $b^2y^{n-2} - a^2z^{n-2}$ =0 => (q)= x = z/a + y/b $-b^2zy^{n-1} + abz^n$

$$D_3=R_2=$$
 $abz^n - a^2yz^{n-1}$ (D_3)
 $-abz^n + b^2zy^{n-1}$

$$D_3=R_2=$$
 $abz^n-a^2yz^{n-1}$ (D_3) $R_2=0=>(q)=x=z/a+y/b-z/a=> bx = y => $R_2\neq 0$$

$$b^2zy^{n-1} - a^2yz^{n-1}$$

 $R_1 <<<<$ $b^2 z y^{n-1} - a^2 y z^{n-1}$ end of the operations cycle.

Remark:

Let the system:

(5)
$$a^x + b^y = c^z$$
, $(a, b, c, x, y, z) \in N^{*6}$ et a, b, c coprim integers.

(6)
$$a^x = c^z - b^y$$

(7)
$$a^{x-1} = uc^{z-1} - vb^{y-1}$$
, $(u, v) \in Z^2$

In application of the algorithm described above to the division c^z - b^y : uc^{z-1} - vb^{y-1} , the remainder which can and must be zero implies the equality:

(8)
$$v^2b^{y-2} = u^2c^{z-2}$$
,

which is impossible for y>2 or z>2 and, by symmetry, for x>2 and z>2.