Elementary proof of Fermat-Wiles' Theorem by Ahmed Idrissi Bouyahyaoui

Fermat-Wiles' Theorem :
(1) « the equality $x^{n}+y^{n}=z^{n}$, with $n, x, y, z \in N^{*}$, is impossible for $n>2$. »

Abstract of proof :

In the division of $x^{n}=z^{n}-y^{n}$ by $x^{n-1}=a z^{n-1}-b y^{n-1},(a, b) \in Z^{2}$, remainder must be zero implying the equality $b^{2} y^{n-2}=a^{2} z^{n-2}$ which is impossible for $n>2$ since $x^{n-1}=a z^{n-1}-b y^{n-1}$ and x, y, z are coprim numbers.
The application of the procedure scheme of Euclidian division until remainder equal to $z^{n}-y^{n}$, and the evaluation of remainders and partial quotients allow to obtain the unique remainder which can and must be equal to zero.

We suppose x, y and z are coprim numbers.
Given $\operatorname{gcd}(y, z)=1$ and the corollary of the Bachet's theorem (1624), it exists two relative integers a and b such that :
(2) $x^{n-1}=a z^{n-1}-b y^{n-1}$

In the division $\left(z^{n}-y^{n}\right):\left(a z^{n-1}-b y^{n-1}\right)\left(x=x^{n} / x^{n-1}\right)$ remainder must be zero.
Let us put the division and carry out the operations until obtain the remainder equal to dividend $z^{n}-y^{n}$ and then obtain the candidate remainders to be zero.

$$
\begin{aligned}
& x^{n}=z^{n}-y^{n} \quad \mid x^{n-1}=a z^{n-1}-b y^{n-1} \\
& -z^{n}+(b / a) z y^{n-1} \\
& \text {---------------------- } \\
& z / a+y / b-z / a-y / b \\
& \text { Evaluation of remainders and partial quotients : } \\
& R_{0}=-y^{n}+(b / a) z y^{n-1} \quad R_{0}=0 \Rightarrow(q)=x=z / a \Rightarrow a x=z \Rightarrow R_{0} \neq 0 \\
& +y^{n}-(a / b) y z^{n-1} \\
& R_{1}=(b / a) z y^{n-1}-(a / b) y z^{n-1} R_{1}=0 \Rightarrow b^{2} y^{n-2}-a^{2} z^{n-2}=0 \Rightarrow(q)=x=z / a+y / b \\
& \text { (b/a) } z y^{n-1}+z^{n} \\
& R_{2}=z^{n}-(a / b) y z^{n-1} \quad R_{2}=0=>(q)=x=z / a+y / b-z / a=>b x=y=>R_{2} \neq 0 \\
& +(a / b) y z^{n-1}-y^{n} \\
& R_{3}=z^{n}-y^{n} \neq 0, \quad \text { end of the operations cycle. }
\end{aligned}
$$

Evaluation of remainders and partial quotients :
If the remainder R_{0} is zero then the quotient is $x=z / a$, so $a x=z$, which is impossible since $\operatorname{gcd}(x, z)=1$.
If the remainder R_{2} is zero then the quotient is $x=z / a+y / b-z / a=y / b$, so $b x=y$, which is impossible since $\operatorname{gcd}(x, y)=1$.
$R_{3}=z^{n}-y^{n} \neq 0, \quad x, y, z \in N^{*}$ and $\operatorname{gcd}(y, z)=1$.

The application of the procedure scheme of the Euclidean division allowed to obtain the remainders and the remainder which can and must be zero is unique and obtained by deduction : three remainders out of the four obtained cannot be equal to zero.
So the problem of the existence of unique remainder zero does not arise.

Therefore only the remainder R_{1} can and must be equal to zero :
(3) $R_{1}=(b / a) z y^{n-1}-(a / b) y z^{n-1}=\left((b / a) y^{n-2}-(a / b) z^{n-2}\right) y z=0$

So (b/a) $y^{n-2}-(a / b) z^{n-2}=0$ which implies the equality :
(4) $b^{2} y^{n-2}=a^{2} z^{n-2}$
where, for $n>2$, as $\operatorname{gcd}(y, z)=1$, y divides a^{2} and z divides b^{2}, so $\operatorname{gcd}(a, y)>1$ and $\operatorname{gcd}(b, z)>1$.
Then, according to the equality $x^{n-1}=a z^{n-1}-\operatorname{by}^{n-1}(2), \operatorname{gcd}(a, y)>1 \Rightarrow \operatorname{gcd}(x, y)>1$ and $\operatorname{gcd}(\mathrm{b}, \mathrm{z})>1=>\operatorname{gcd}(\mathrm{x}, \mathrm{z})>1$, but $\operatorname{gcd}(\mathrm{x}, \mathrm{y})=\operatorname{gcd}(\mathrm{x}, \mathrm{z})=1$ (hypothesis).

Therefore, the equalities $b^{2} y^{n-2}-a^{2} z^{n-2}=0(R), x^{n-1}=a z^{n-1}-b y^{n-1}(d), x^{n}=z^{n}-y^{n}(D)$ are impossible for $n>2$.

Division with integer numbers :

$a^{*} z^{n}-y^{n}\left(D_{0}\right) \quad \mid$	$1 a z^{n-1}-b y^{n-1} \quad$ (d)
$\Rightarrow z^{n}-a y^{n}$	$z+a y-b z+b z$
$-a z^{n}+b z y^{n-1}$	as we have multiplied D_{0} by a, then D_{1} by b, we have $z / a+a y / a b-b z / a b+b z / a b$
------------------	Evaluation of remainders and partial quotients :
$b^{*} b z y^{n-1}-a y^{n}\left(D_{1}\right)$	$R_{0}=0 \Rightarrow>(q)=x=z / a \Rightarrow a x=z \Rightarrow R_{0} \neq 0$
$\mathrm{D}_{1}=\mathrm{R}_{0}=\Rightarrow b^{2} z y^{n-1}-a b y^{n}$	
$-a^{2} y z^{n-1}+a b y^{n}$	
$\begin{aligned} \ggg>R_{1}= & b^{2} z y^{n-1}-a^{2} y z^{n-1}\left(D_{2}\right) \\ & -b^{2} z y^{n-1}+a b z^{n} \end{aligned}$) $R_{1}=0 \Rightarrow b^{2} y^{n-2}-a^{2} z^{n-2}=0 \Rightarrow(q)=x=z / a+y / b$
$\begin{aligned} D_{3}=R_{2}= & a b z^{n}-a^{2} y z^{n-1}\left(D_{3}\right) \\ & -a b z^{n}+b^{2} z y^{n-1} \end{aligned}$	$R_{2}=0=>(q)=x=z / a+y / b-z / a=>b x=y=>R_{2} \neq 0$
$\mathrm{R}_{1} \lll \lll b^{2} z y^{n-1}-a^{2} y z^{n-1}$	end of the operations cycle.

Remark :

Let the system :

(5) $a^{x}+b^{y}=c^{z},(a, b, c, x, y, z) \in N^{* 6}$ et a, b, c coprim integers.
(6) $a^{x}=c^{2}-b^{y}$
(7) $a^{x-1}=u c^{z-1}-v b^{y-1}, \quad(u, v) \in Z^{2}$

In application of the algorithm described above to the division $c^{z}-b^{y}: u c^{z-1}-v b^{y-1}$, the remainder which can and must be zero implies the equality :
(8) $v^{2} b^{y-2}=u^{2} c^{z-2}$,
which is impossible for $y>2$ or $z>2$ and, by symmetry, for $x>2$ and $z>2$.

